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Ab initio calculation of the macroscopic dielectric constant in silicon
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We perform a first-principles calculation of the static dielectric constant of Si in the framework of
density-functional theory. The only essential approximation used in this work is the local-density
approximation (LDA): norm-conserving pseudopotentials and large plane-wave basis sets are used,
numerical roundoff and convergence errors are kept below 1%. The present calculation gives for
the first time the “exact” value of the macroscopic dielectric constant at the LDA level. The
theoretical value of €, is 12% higher than experiment.

I. INTRODUCTION

In recent years a considerable amount of experience has
been gained in the first-principle calculation of ground-
state properties of the simplest semiconductors within the
framework of the density-functional theory (DFT).!—3
The state-of-the-art accuracy of the current calculations is
such that the only essential approximation made is the use
of the local-density approximation (LDA).*

A striking agreement between first-principle calcula-
tions and experimental data has been found for a number
of physical properties: the theory predicts the observed
crystal structures, lattice constants, elastic constants, and
phonon frequencies within a few percent from the experi-
ment.** This is indeed much better than expected, before
the starting of the present day intensive computational in-
vestigations; some reasons have been put forward to ex-
plain why LDA works so well beyond the limits of appli-
cability originally proposed for it.® Because of such a
successful experience, LDA has become the reference tool
to deal with the electronic ground state of real semicon-
ductors. The application of LDA to properties other than
those traditionally dealt within this approximation consti-
tutes not only an interesting extension of the present
first-principle investigation of real solids, but also pro-
vides valuable information to assess the limitations intrin-
sic to the LDA itself.

In this paper, the macroscopic dielectric constant of Si
is calculated for the first time from first principles, within
the LDA, using all the state-of-the-art ingredients for the
theoretical description of electronic ground states, namely
norm-conserving pseudopotentials and large plane-wave

Xo(q+G,q+G')=—

basis sets. The linear response within the DFT is exactly
expressed through a straightforward modification of the
random-phase approximation (RPA).” Local-field effects
are accounted for, as usual, through the inversion of large
dielectric matrices.*® Although the present formulation
is RPA based and involves, as such, perturbation sums
over the crystal conduction states, we stress that the static
dielectric constant we are calculating is a property of the
electronic ground state, to which DFT strictly applies. In
fact, the static dielectric response can be generally ob-
tained from the functional derivative of the electron den-
sity with respect to the external potential. The basic ques-
tion we address here is to which accuracy LDA is able to
predict the static electronic dielectric constant of covalent
semiconductors. Previous calculations within the LDA
were performed using local pseudopotentials; they were
affected by convergence problems, and do not agree in the
value of the calculated dielectric constant.!~!2 In this
work a final issue to this question is given.

II. BASIC THEORY

Within the DFT, one can define the independent-
electron polarizability X, as the functional derivative of
the electron density with respect to the total Kohn-Sham
potential,!> evaluated at the unperturbed electronic
ground state. In a periodic medium, X, is, at any given q
point in the Brillouin zone (BZ), a matrix over reciprocal-
lattice vectors whose expression was first given by Adler
and Wiser’ in the context of the self-consistent field (SCF)
approximation
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where E,(k) and |k,b) are, respectively, eigenvalues and
eigenfunctions of the Kohn-Sham unperturbed crystal
Hamiltonian. (Atomic units are used throughout.)

If exchange and correlation (xc) effects on the response
are neglected, X, directly yields the usual RPA expression
for the dielectric matrix:

€rpa(q+G,q+G’)
=8g,6—41Xo(q+G,q+G")/|q+G|* (2

or, in shorthand,
€rpa=1—0.Xp . 3)

In the following, expressions (2) and (3) are calculated
from the LDA band structure and will be simply referred
to as RPA dielectric matrices. Within the DFT, it can
easily be proved'®!® that the exact expression for the
dielectric matrix is

€rpa=1—v.Xo(1—frXo) ™", )

where f,. is the functional derivative of the xc potential
with respect to the electron density

[xe(1,2)=8V,.(1)/8n(2) (5)

evaluated at the unperturbed ground state. The exact
form of the operator f,. is of course unknown, and Eq.
(4) is useless unless some approximate form of it can be
used. In the LDA, f,. turns out to be a local operator in
r space, which can be easily evaluated in reciprocal space
using fast-Fourier-transform techniques. Use of such a
fxc in Eq. (4) together with X calculated from LDA ener-
gy bands, gives us a dielectric matrix which is the exact
response function at the LDA level.

The macroscopic dielectric constant €, is the inverse of
the long-wavelength (q—0) limit of the G=G'=0 ele-
ment of the inverse dielectric matrix (IDM):

6w=1/6_](0,0)5l/lirrz)[e_l(q,q)] . (6)
q—

In a cubic material, the q—0 limit of the G=G'=0
matrix element of any totally symmetric operator is ana-
lytic. Therefore we use, in Eq. (6), as well as in the fol-
lowing, the shorthand notation (0,0) to indicate unambigu-
ously such q—0 limit. The IDM has nonvanishing off-
diagonal elements—due to lattice periodicity—which gen-
erate “umklapp” effects in the response. These are gen-
erally referred to as “local-field effects”. As far as €, is
concerned, the basic local-field effect is that this is dif-
ferent (smaller, as we will see) from just the (0,0) element
of the direct dielectric matrix.

Up to now we have summarized rather well-known gen-
eral results. In the remainder of this section we focus on
three important points which are relevant to the present
work, and which are often overlooked in the literature,
namely: the sign of both local-field and exchange-
correlation effects on the macroscopic dielectric constant
of a crystal, and the evaluation of long-wavelength limits
in the presence of nonlocal pseudopotentials.

In order to discuss the above corrections, it is con-
venient to perform a simple transformation on € and deal
with Hermitian dielectric matrices. To this aim we define
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the “Hermitian dielectric matrix” as
2. (7)
€(0,00=€(0,0) and

e=v " %ev!
We notice in particular that
e-10,0=€7'0,0).

We first discuss the sign of the xc correction to the
RPA results. In terms of €, Eq. (4) reads as

Eipa=1—0"o(1—frXo) "0l . @)

An expansion of Eq. (8) in powers of f,. shows that

=~ = 12 12
€Lpa=¢€rpa—Vc  Xof xXolc

— v Xof xeXof xeXove P — -+ . 9)

It is easy to realize that, within the LDA, the operator f,.
is negative definite since the xc potential is a negative
function monotonically decreasing with increasing densi-
ty. Since both f,. and X, (Ref. 14) are negative definite,
one has that € ps —€rpa is positive definite. A similar
argument also proves that €[}s —€Rea is negative defin-
ite. Therefore, € 1pa > € RPA-

The second point concerns the sign of local-field effects
on €,. All previous calculations, as well as our results,
indicate that

€, =1/¢"10,0) <€0,0) . (10)

This relationship for the static response matrices follows

from the requirements of stability of the system and of

causality. Let us block partition the matrix & in the q—0

limit as

€0,00 W'
w B

€= , (11)

where the “body” B is obtained from € just suppressing
the first row (G=0) and the first column (G'=0). It has
been shown'*!’ that, due to stability and causality re-
quirements, both € and B are positive definite within
RPA. Now performing a block inversion of Eq. (11) we
obtain

€%0,0)=1/[€(0,0)—W'B-w7], (12)

which proves Eq. (10) at the RPA level.

Going beyond RPA and considering xc effects, the
above requirements only impose that B~!—1 is negative
definite, which is consistent, at least in principle, with
negative eigenvalues of B~!. However, in all those cases
where the xc effects are not too large and the approximate
expansion given in Eq. (9) holds, the conclusions drawn
within RPA maintain their validity within LDA.

The third point concerns the evaluation of long-
wavelength limits in the presence of nonlocal pseudopo-
tentials. In Eq. (1), the typical matrix element one has to
calculate for G=0 or G’'=0is

(k+q,c |97 |k,v)~iq-(k,c |r|kuv) . (13)

The matrix elements of r are ill defined when wave func-
tions obey Born—von Karman boundary conditions: As a
consequence, one is forced to evaluate them (when possi-
ble) using the commutator of r and the crystal self-
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consistent field Hamiltonian Hgcp:
(k,c|r|k,w)
=(k,c |[Hscp,r] | k,v) /[E.(k)—E,(k)] . (14)
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The local part of the self-consistent potential commutes
with r: the commutator is thus the sum of two terms,
coming from Kkinetic energy and nonlocal bare potential
V.- Equation (13) finally reads as

(k+q,c |7 | k,v)~q-(k,c | (p—i[r,Vu]) | k,v)/[E(k)—E,(k)] . (15)
T
The matrix elements of the commutator [r,V] have to  Vig,(r)=—(Z,/r)erf(r /r.,) + Zﬁl(a,—%-b,rz)e_(r/r’)z,
be explicitly evaluated: we only notice here that they are 1 (16)

well defined even within Born—von Karman boundary
conditions.

With the cautions exposed above, the long-wavelength
limits needed to study microscopic dielectric properties
can be evaluated analytically even in presence of nonlocal
ionic potentials. No finite-q calculation is performed in
the present work.

We stress that the dielectric matrix evaluated here is
perfectly consistent with the use of nonlocal ionic pseudo-
potentials, provided the perturbations considered are in-
duced by local potentials. This is indeed our case, which
concerns macroscopic electrostatics. When the perturba-
tion is described by a nonlocal potential (as it would be
the case in lattice dynamics) the standard dielectric matrix
does not contain all the necessary information.

III. CALCULATIONS

The electronic ground state of Si is calculated within
DFT, making use of the LDA. The electron-gas data
used here as input for the LDA are those by Ceperley and
Alder'® as interpolated by Perdew and Zunger.!” We use
ab initio norm-conserving pseudopotentials.'® Recent
work!'® has demonstrated the practical equivalence of the
results from either ab initio pseudopotential calculations
or all-electron ones. Therefore the pseudopotential ap-
proach is essentially not an approximation, but a con-
venient mathematical device which allows the use of
plane-wave basis sets. The bare ionic pseudopotentials are
generated according to the procedure described in Ref. 20.
The explicit expression for Si is

where f’,’s are projectors over the spaces of / angular
momentum wave functions, and the numerical values of
the parameters are reported in Table I. The kinetic-
energy cutoff used to truncate the plane-wave basis set is
14 Ry, which corresponds to about 250 plane waves at a
general point of the Brillouin zone. In Table II we com-
pare some calculated ground-state properties with the cor-
responding observed values. The agreement is excellent
and of the same quality as found by different authors.*>

The electronic self-consistent band structure so calcu-
lated is used as input for the calculation of the dielectric
matrix. The independent-electron polarizability X, has
been evaluated from Eq. (1) using the special-point tech-
nique for the BZ integration,?!?? while the f,. operator is
straightforwardly obtained from the self-consistent elec-
tronic charge density. We find that fully converged re-
sults are obtained using X, and f,. matrices of order 181.

The numerical evaluation of the sum over conduction
bands and of the BZ integration in Eq. (1) deserves some
particular comments. As a general rule, the “body” ma-
trix elements (G and G'£0) converge fast with the num-
ber of special points and slowly with the number of con-
duction bands, while the opposite is true for the “head”
(G=G'=0); as for the “wing” matrix elements (G or
G’ =0), their convergence behavior is intermediate. Such
trends have been already stressed by Baldereschi and To-
satti,”> who used an empirical pseudopotential scheme.
The convergence properties of X, can be easily understood
in terms of the energy denominators appearing in Egs. (1)
and (15). Let us write, e.g., the explicit expression for the
head of X, in the q—0 limit as

XO(qrq)z_

(217)3 vy,C [Ec(k)_Ev(k)]3

TABLE I. Pseudopotential parameters (a.u.) entering Eq.
(16), obtained from von Barth and Car, Ref. 20.

1 a b r
0 10.152 68 —5.23925 0.81
1 2.817 88 —1.16849 0.92
>2 —5.11354 1.32720 1.00
Z,=4, r,=1.09

!Z —1 2
2 szdeI(k,cl(p inVal ko) | . -

TABLE II. Some properties of the electronic ground state of
Si as calculated in the present work. Experimental values are
shown for comparison.

This work Expt. Units
Lattice constant 10.25 10.26 a.u.
Bulk modulus 0.96 0.99 MBar
LTO(T") phonon 15.5 15.7 THz

frequency
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TABLE III. Convergence of the calculated value of egps(0,0)
with respect to both the number of special points used for BZ
integration and the cutoff (Ry) used in the summation over con-
duction states. The value labeled « has been obtained using 210
conduction states. The difference between two given lines is al-
most constant, thus showing that the contribution of conduction
states higher than 2 Ry is well converged already with 10 points.

Cutoff 10 pts. 28 pts. 60 pts.
2 14.2119 13.4849 13.4035
3 14.2957 13.4885 13.4071
4 14.2971 13.4900 13.4086
10 14.298 46
o 14.298 51

It is easily seen that the quantity 1/[ E.(k)—E,(k)]® goes
rapidly to zero as the band index c increases, but when ¢
runs over the lowest conduction bands, small changes in
the energy denominator determine large variations in the
integrand, thus making the numerical integration rather
precarious. As for the wing elements, they have a squared
energy denominator, while for the body elements the ener-
gy difference comes in only to the first power, thus ex-
plaining the different convergence behavior.

In the present work we have obtained fully converged
results summing over 210 conduction bands for all the
matrix elements of X,. The calculated value of €, is dom-
inated by the head of X, Eq. (17), whose contributions
from the lowest conduction bands have to be integrated
rather accurately over the BZ. We have used 60 Chadi-
Cohen special points?"?? for conduction bands up to 4 Ry,
while contributions from conduction bands above this
limit have been integrated using 10 such special points.
Convergence studies have been performed either by trun-
cating the sum over conduction states or using 28 special
points.?? The relevant figures, which are reported in
Tables III and IV, show that the accuracy of our calculat-
ed value of € is better than 1%, while the use of 10 spe-
cial points throughout yields a value of €, 7% higher
than the converged result.

IV. RESULTS AND DISCUSSION

Our results for the (0,0) element of the direct and in-
verse dielectric matrices are reported in Table V, both in
RPA and in LDA. First of all we notice that, according
to our previous discussion, local-field effects lower €, by
10—15%. This is about the same as found in previous

TABLE IV. Convergence of the calculated value of
€,(RPA)=1/€gpa(0,0) with respect to the size N of the dielec-
tric matrix which is inverted.

N €, (RPA) N €, (RPA)
27 12.3948 89 12.0442
51 12.1650 113 12.0402
65 12.0514 181 12.0395
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TABLE V. Calculated values of the static dielectric constant
of Si. First line, obtained from Eq. (3); second line obtained
from Eq. (4); experimental data obtained from Refs. 25 and 26.

€(0,0) 1/6710,0)
RPA 13.41 12.04
LDA 15.17 12.72
Expt. 11.4
calculations performed in different pseudopotential

schemes. >4

The effect of xc, on the contrary, is to increase both €
and €(0,0). We notice that, contrary to our results and our
previous discussion, a null or negative shift for €(0,0) has
been recently reported in a different LDA calculation. '°

The calculated value of the macroscopic dielectric con-
stant is 12.7, compared to an experimental value of
11.4.22 The theoretical value is therefore 12% off the
experiment. So far*® a better agreement between theory
and experiment (of the order of a few percent only) has
been found for most electronic ground-state properties
(see, e.g., Table I). The theory predicts a higher dielectric
constant than experiment. The expressions used for xc
within LDA are electron-gas based: it is not unlikely that
the electronic system shows too high a value of € as a
memory of this metallic parentage.

It may appear surprising that several other properties
which crucially depend on dielectric screening are predict-
ed by LDA to a better accuracy than the value of €. Let
us consider, e.g., the optical phonon at the zone
center.?”?® In a nonpolar material the microscopic ex-
pression of the dynamical matrix?® does not depend upon
the head and wings of the IDM. The present results on
€., together with the higher accuracy achieved by LDA
in lattice dynamics, show that such approximation per-
forms better in dealing with the microscopic response
(body of the IDM) than with the macroscopic one (head
and wings).

From a technical point of view, another important
difference from other LDA calculations*> concerns the
BZ integration. It turns out that 10 special points are
more than sufficient in most circumstances, while in the
present calculation a substantially finer mesh was needed
to achieve a comparable accuracy.

In conclusion, we have applied for the first time the
tools of modern DFT to the calculation of the macroscop-
ic dielectric constant of a semiconductor. The prediction
is in good agreement with experiment, although not as
good as obtained in other applications of the LDA to co-
valent materials. The field of macroscopic dielectric
properties of semiconductors proves to be a very stringent
benchmark not only for numerical techniques, but also for
the predictive power of LDA itself.
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