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A. Goyette and A. Navon
University du Quebec, Trois-Rf'vires, Qudbec, Canada

(Received 13 October 1975)

15 MA Y 1976

We consider two dielectric spheres in a constant electric field which may be perpendicular
or parallel to the axis of the two spheres. The electrostatic potentials inside and outside
the spheres are expressed as infinite series. The coefficients appearing in these series sat-
isfy difference equations. By using perturbation expansion, we solve these difference equa-
tions. We also calculate the dipole moments of the two spheres.

I. INTRODUCTION

One-body problems (i.e. , problems where a body
of a given shape, either dielectric or metallic, is
subjected to a constant electric field) are currently
solved in books on electrostatics. "' The potentials
and the dipole moments for these "one-body" prob-
lems were calculated explicitly, in most cases,
and have quite simple forms. Only a few two-body
problems have reached the same degree of suc-
cess. This comes from the fact that it is difficult
to find suitable coordinates in which both the solu-
tion of the Laplace equation and the boundary con-
ditions are expressed in a simple form. Only re-
cently, ' the problem of two metallic spheres was
solved explicitly. The problem of finding the elec-
trostatic potential and dipole moment of two di-
electric spheres in a constant electric field was
not solved till now. The problem of finding the
electrostatic forces between two macroscopic di-
electric spheres was treated however by several
authors. In early days, Hamaker' calculated this
force by using a r ' atomic-type force between two
points of the two spheres. More recently, Mitchell
and Ninham' and Langbein' calculated the Van der
Waals interaction between two dielectric spheres
by using more sophisticated methods. In all these
cases it was possible to obtain the forces without
calculating explicitly the potentials.

In this paper, we obtain explicitly the electro-
static potentials and dipole moments of two dielec-
tric spheres in a constant electric field parallel
or perpendicular to their axis. We separate the
Laplace equations in bispherical coordinates as
was done in the case of two metallic spheres by
Levine and McQuarrie. ' We apply the usual bound-
ary conditions at the surface of the two spheres
and obtain a set of second-order difference equa-
tions (or in other words a three-term recurrence
relation} for the coefficients appearing in the po-
tentials. The difference equations have nonlinear
coefficients and we have to use a perturbation ex-

hence the surface g = const. represent spheres.
Our two spheres of radius R and centers at z = + 5

may be represented by q =q, (upper sphere) and
q= —q, (lower sphere} with

I = a c otto, R = a/sinhq, . (3)

For q = + ~, it follows from (I) that x = y = 0 and
z = +a. It also follows from (3) that I —R &a&l+R,
when g, )0 and, thus, the two points x = y = 0,
z =+a lie, respectively, inside the upper and the
lower spheres.

pansion. The difference equations with linear co-
efficients resulting from the zero, first, and sec-
ond order of the perturbation expansion are solved
by a method due to Boole' and Milne- Thomson. ' In
Sec. 0 we separate the Laplace equation in bi-
spherical coordinates, apply the boundary condi-
tions, and obtain the difference equations. In Sec.
III we introduce the perturbation expansion from
which we obtain difference equations with linear
coefficients. We obtain then the particular solu-
tion of these difference equations. In Sec. IV we
calculate the dipole moments of the two spheres.

II. GENERAL SOLUTION

We consider two identical spheres of radius R
and dielectric constant &,. The dielectric constant
of the medium is z,. The two spheres are placed
with their centers on the z axis symmetrically
about the origin, respectively, at z =+ l and z = —l.
The length of the tangent from the origin to one of
the spheres is a = (I'-R')'~'. We define the bi-
spherical coordinates" of a given point in space
by

x = a sinn cosQ/(cosh7) —cosa),

y = a sine sing/(cosh' —cosa),
z = a sinh/(cosh' —cosa) .

We have

z'+ y'+ (z a cothq)'=a'/sinh g,
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Laplace's equation reads in bispherical coordinates'

(cashed —cosa)' . S ]. ~V & sinn 8V $2 V+2V sine + + =0
cP sina sq coshq —cosa sq so coshq —cosa. sa. sino.'(coshq —cosa) s'p

(4)

Its most general solution is

V= (cosh@ —cosa)'~' p g (M„e""+N e "")[M' P"„(cosa)+N' Q„"(cosa)] (M" sinmp+N" cosmic),
n=O nt=-n

(5)

where n= n+ ~ and P„(coen), Q„(cosa} are, re-
spectively, Legendre functions of the first and
second kinds. Our solution has to be regular in
the xz plane at n=m& and this implies ¹ =0. We
shall now consider, in detail, the two cases when
the external uniform electrostatic field E is paral-
lel and perpendicular to the z axis.

Now we introduce the two boundary conditions

V,(l„a.) = V,(R„a.) (10)

V (q ~) = (coshY/ —coen)'~' Q B„e~P„(cosa}

(9b)

A. E parallel to z

In this case the electrostatic potential V has
cylindrical symmetry about the z axis. It is there-
fore independent of the angle P and only the term
m=0 has to be retained in Eq. (5); thus

V= (cosh@ —cosa.)'~' P (M„e'""+N„e "")P„(cosa).
n=o

(6)

We represent by V„V, and V„respectively,
the potentials inside the upper sphere, the lower
sphere, and the medium. The potential due to the
external field is V, = —Ez, if E points in the posi-
tive z direction. It is antisymmetric with respect
to reflections through the xy plane (z ——z or
q- —q). The potentials V, and V„V also possess
this property, i.e. ,

e E,(%, a) =&@„,(q„a), (11)

representing the continuity of the potential and of
the dielectric displacement at the surfaces of the

spheres. The normal component of the electric
field is E„=-[(cashed —cosa)/a](dV/dq), since the

gradient, in bispherical coordinates, is given by

cosh) —cosa a a 1 a
grad =

a a~ —+a~ s +a~
8g a s q

(12)

where a„, a, and a are unit vectors in the g,
and Q directions. Condition (11) can thus be writ-
ten

'go, Q =g — $0~01 .

V (- q, n) = —V (q, a),
V,(- 0, &) = —V (q, a).

(7a)

(7b}

From Eqs. (8), (9a), and (10), we obtain

B„e""0=A„sinhnq, —23 'Eane ""0,

In order to obtain the potential V, outside the
spheres we use the symmetry condition (7a) and
the fact that for z -~, V,- V,. Thus

V,(g, a) = (cashed —coen)'i'

Ea sinhgx P A„sinhnriP„(cosa. )—cosh' —cosa

where we have used the expansion'

sinhq, (cosh@, —cosa) '~' = 2' ' g ne ""'P„(cosa').

(14)

Replacing (8) and (9a) in (11'), multiplying by

(cosh@ cosa)'I', and using the expansion

From (7b} and from the fact that V, and V have to
be finite at the points x = y =0, z = +a, where

g = + ~, we obtain

V, (q, n) = (coshq —coen}'~' g B„e ~P„(cosa),

(9a)

(cosh@, —cosa. ) ' ' =2' ' g e ""oP„(cosa) (15)
n 0

and the recurrence relation

n n+1
cosePn

2 ~
P~, +

2 ) P~,

we get
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(2n+ 1) coshq, ( eA„cosh', +c,B„e""o)+sinhq, (c,A„sinhnq, —e,B„e""
0)

—(n+1)[&,A, cosh(n+&)q, +e,B. ,e ' ' "q,] —n[a,A, cosh(n —&)q, +c,B,e '" ' '"0]

= 2' 'c,Eae ""D[coshq, —(2n+ 1}sinhq, ]. (17)

We now eliminate B„between Eqs. (13) and (17) and obtain the following set of difference (or recurrence)
relations for the coefficients A„:

n[a, cosh(n- —,')q, +e, sinh(n —&)q,]A,—[(2n+ 1) cosh q( e sinhnq, + e, coshnq, )+ (c,—e, ) sinhq, sinhFTq, ]A„
+ (n+1)[a, cosh(n+ 2)q, +c, sinh(n+ 2)'q,]A, = 2' 'Ea(e, c,)e ""0[ne"' (n+1)e "0], n= 0, 1, 2, . .. .

(16)

8. E perpendicular to z

We shall take E pointing in the positive direction
of the y axis. The general form of the potential
outside the spheres is then

V, (q, o!,p) = (coshq —cosa)'i'

V, (q, o, P) = (coshq —cosa)'i'

& QC„cosh t7q P'„(cosa) sing
n=j,

&a sinn sinfgm}

cosh'- cosa (21)

x g g (C„coshnq+D„„sinhnq)
n=o m=-n

&& (C' sinmP+D' cosmic)

From (20b) and the finiteness of the poi'ential in-
side the spheres when g =+ ~ we obtain

V.(q, a, P) = (coshq —cosa) '~'

Ea sinn sing
cosh'- cosa '

(19)

D„e ""P„' cos& sin

V (q, o, P) = (coshq —cosc.)'i'

(22a)

where we have omitted the irregu|ar function
Q„(cosc.) and added the potential V, = —Ey due to
the external field. The potential V, is antisym-
metric with respect to reflections through the xz
plane (y- —y or Q -—Q). The same must be true
for V„hence we must have D' = 0 in Eq. (19).
Owing to the geometry of the problem, the poten-
tials are also symmetric with respect to reflec-
tions through the xy plane.

D„e""P„' cosa sin .
n=l

(22b)

Replacing (21) and (22) in the boundary condition
(10) and using expansion (14) and the relation

(23)

sino.'P„'(cosa) = [P,(cosa) —P,(cosa}],
n(n+ 1)
2n+ 1

V.( q, ~, e)=-V.(q, ~, y),

V.( q, ~, 4-)=V (q, o, A)

(20a)

(20b)

we find

D e ""O=C coshng, —2' 'Eae ""o.
n n (24)

The occurrence of the factor sing in V, in Eq. (19)
and the fact that the boundary condition

Consider now the boundary condition (11'}. Multi-
plying it by (coshq, coso.)'~' and using the rela-
tions

V, (qo, a, p) = V,(q„a, p) (10)
(2n+1) cosa P„'(cosa) =nP', ( scao)

has to be satisfied identically in sinmQ implies
that we should retain only the term m = 1 in Eq.
(19}. Making use of (20a), we then have, for the
potential outside the spheres,

+ (n+ 1)P',(cosa} (25)

and (23), together with the expansion (14), we ob-
tain

(2n+1) coshq, (e,C„sinhy7q, +e,D„e ""0)+sinhq, (e,C„coshnq, +&,D„e ""0)
—(n 1)[e,C, s-inh(n- &)q, +&,D,e ' ' ""0]

—(n+ 2)[e,C, sinh(n+ —,)q, + a,D,e ' ' ""0]= 2'~'g~se-""0 sinhq, . (26)

After eliminating D„between Eqs. (24) and (26), we obtain the following set of difference relations for the
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coefficients C„:

(n 1)[&,sinh(» ——,')&},+ a& cosh(n —,')&I—,]C,—[(2n+ 1)cosh&4(e, sinhn&I, + e& coshn&},) + (a, —e, ) sinh&} cosh n&I,]C„
+(n+2)[e, sinh(n+ ~}&I,+a& cosh(n+ a)&}]C,=2' '(e, —e&)Easinh&}e ""', n= 1, 2, 3, . . . . (27)

III. DIFFERENCE EQUATIONS

n = (e
&
—e.)/(e, + z.),

and set

A 2sf2gg~e-2n'top
tt ttt

=2 ~ gg4e nt

these equations become

s(e'llo de 2&n 1&BOP
tt- j.

+ [&sinhr&, —(2n+ 1) cosh&},

+ one '""'+n(n+ 1)e ' ~""o]X

(28)

(29)

+ (n+ 1)(e "'- d,e "~""')X
&

= (n+ 1)e '"'- n

(18')

We shall now find the solutions of the difference
equations (18) and (2V). If we replace the hyper
bolic sines and cosines by exponentials, introduce
the parameter

The theory of difference equations was developed
thoroughly during the nineteenth century. A good
description of the properties and structure of dif-
ference equations is given in the book of Milne-
Thomson. ' It is shown there that a linear differ-
ence equation of second order has analytic solu-
tions only if its coefficients are polynomials or at
most rational functions of the discrete variable n.
Equations (18) and (2V') are second-order linear
difference equations whose coefficients contain
exponentials of n, hence these equations do not
possess analytic solutions. In order to solve these
equations we have to use a perturbation expansion.
We note that for nonmetallic spheres and medium
(e„e,&~) we have ~&~&1 and that e "'&1, if the two
spheres are sufficiently small or far apart. Hence
all the terms in Eqs. (18') and (27') containing 6
and e '""o may be considered first order from the
point of view of perturbation theory and multiplied
by the perturbation parameter &. Introducing the
perturbation expansion

(n —1)(e"'+ne "~""o)e

+ [4sinhq, —(2n+ 1)cosh',

+/X +Q 2 +'''
n tt n tt (30)

&&~e-~«o (&&+ I)~e-2&~+»"o]C

+ (&&+2)(e-'&0+~a-2&~2&'&o)C =e»0 I (27~)

in Eq. (18'), we obtain to zero, first, and second
order in the perturbation parameter & the follow-
ing equations, respectively:

ne"&&X'o&+ [&sinh&}, —(2n+ 1) cosh&I, ]X„'o& + (n+ 1)e "OX",' = (n+ 1)e '"&& —n,

&M"'X„'&,'+ [4 sinh&I, —(2n+ 1}cosh&},]X„'"+(n + 1)e "'X"
&&

(Sla)

=ne '""0(ne»OX'", —[n+ (n+ l)e»0]X„"'+(n+1)e "02'0', ), (Slb)

ne"OX"&'+ [n sinh&7, —(Sn+ 1) cosh&I, ]X„"'+(n+ 1)e "'2"
&&

&is-»eo(&&e2'&op&» [&&+ (&&+ I)e "0]g& &+ (&&y 1)e ~"Og& &) (Slc)

introducing in Eq. (27') the perturbation expansion

(32)

we obtain to zero, first, and second order in z

(n- 1)e"oC",'+ [&sinh&I, —(2»+ 1) cosh&I, ]C„"&+ (n+ 2}e "OV„'o,' = e '"&& —1, (33a)

(n- l)e"OV„",'+ [a sinh&I„— (2»+ 1) cosh&I, ]C„"'+(n+2)e "OV",'

—n,e-»~o ( '

(» I}e'&Op&'& + [n+ (n+ 1)e»o]V„'0' —(n+ 2)e 4"'V~,'], (33b)
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(n —1)e"oC„",'+ [& sinh2}o —(2n+ 1) cosh 2}o]V„")+(n+ 2)e ooV",'

= 4e '""()( (n-—1)e'ooC~', + [n+ (n+1)e '"']C"' —(n+ 2)e 'oog"')

(33c)

We note that it is sufficient to find particular so-
lutions to E(ls. (3la)- (31c) and (33a)- (33c). The
solutions to the homogeneous equations will contain
an undetermined factor expressing the fact that the
potentials are known up to an arbitrary constant.
We try to find a particular solution of the form
an+ p to E(l. (31a). We obtain

Finally, the particular solution of E(l. (33c) is

O" ' = e '""e '"' ( ~ e '"'~ O(e " )).
2a2 1-a

n 2n

(39)

g(0) 2e "o e '"oX„n- (34) IV. DIPOLE MOMENTS

C„"'= [2/(3 —&)]e "o.

The solutions of Eq. (33b) then reads

(37)

Ocl= — e ""e '" (e e" +O(e'")).2h 1-&
n 2n

(38)

Replacing (34) in E(l. (31b) and identifying powers
of e"0 and e "0, we have

2"'= e '""'e '" n — '"'~ 0( "')).2' 1+&
n 2

(35)
Replacing (35) in (31c) and identifying again powers
of e"0 and e "0 we find

2&2 1+&2"'= e '""'e '"' n — e '" ~ O(e '" )).n 3 2

(36)
We go now to the transverse case. Equations

(33a)-(33c) may be solved in exactly the same way
as it was done for the longitudinal case. We find
for the particular solution of E(l. (33a):

PL =2 zvdS. (40)

On the surface g =q0 of the upper sphere we have
z = a sinh2}o/(cosh2}o —cos&), dS = a' sine da d(t)/
(cosh2}o —coen)2 and a =R sinh2}o. The surface
charge density is (E,„E,„)/4e, whe-re the normal
fields are to be expressed in terms of the poten-
tials V, and V, of E(ls. (9a) and (8). Explicitly we
can write the dipole moment

We shall calculate the electric-dipole moments
of the two spheres in the electric field. We shall
first obtain general formulas in terms of the co-
efficients A„and C„. Then, we shall calculate the
zero-, first-, and second-order dipole moments

(0) ~(0) ~(1) p(1) p(2) and p(2)
L y T t L y T & L T
First let us calculate the dipole moment of the

two spheres when the field is parallel to their
axis. In this case the x and y components of the
dipole moment vanish by symmetry and the z com-
ponent is given by

a' sinn da d(t) sinh24
}I 2

sinh2}o
h 2 2 h ~a A„sinh(n+ —

2')2}oP„(coen)2' jcoshg0 —cosa' 2(cosh' —cosa j'

+(cosh', —cosa}' ' g A„(n+-,') cohs(n +)2,2}P( csoa)—
cosh/0 —cosQ

Ea sinh2g0 sxnhQ0 ( 1/2)+
(cosh2}o —cosa)' 2(cosh'}o -cosa)' '

~ (cosnn, —coco)'s g 2 (+ ') ' nn p„(cosa))-, . ''„
n=0

(41)

We may replace the coefficients 8„ in (41) by their
expression (13) in terms of the A„. The integra-
tion over de is done easily after using the expan-
sions

sinhg
(p + —)e '(2s~)'2)'"oP (cosa}(cosh24 —cosa)'"

(42)
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sinh'q 2'"
(k+-,')(k+-,'+ cothqp)c osh7/() —cosa) 3 d,

(llss/2) )psP (cosa)

(43)

and the orthonormality of Legendre polynomials.
We find

'Ea'—g (n+ &)e """'"p(cothqp+ n+ &)

+2'na'P (n+ p)A„-8Ea g (n+ —,'}e "
n=p np

(47)

(48)

~+-,' An.

The total charge fodS on a dielectric sphere has
to be zero. Using the expression given above for
o and dS we find for the total charge fo dS an
expression similar to Eq. (41). Performing the
integration in the same way as for Eq. (41) we
find that the condition that the total charge on a
sphere is zero is equivalent to

QA„=O.

We can now write (47) as

3 3 cosh'pp + 1 cosh'pp
sinh'gp slnh pp

(44} p, = 2'~'a'Q nA„.
n j.

(49)

We can simplify (44) by introducing the geometric
progression

(2n+ & )np

2 sinhgp

and the relation obtained by differentiation,
namely,

(45)

OO cosh' 1
(2n 1)2e (2llsl)i)P )P (46)

sinh pp 2 sinhpp

We find then

When the electric field is perpendicular to the
axis of the two spheres, say along the y axis, the
only nonzero component of the dipole moment is
the y component. Calling this components p~ we
have

p~ = 2 $0'dS, (50}

where y = a sina sin(t)/(coshqp —cosa) and o and dS
are given by the same expressions as in the longi-
tudinal case. The fields E,„and E,„are given now
in terms of the potentials V, r and V, r of Eqs. (21)
and (22a). We find

a' sin'e sing SlIQlgp

2w (cosh' —cosa)' 2(cosh', —cosa)' ' C„cosh n+ ,' qp P„'(co-sa) sin(t)

+ (coshqp —cosa)'I' g C„(n+ 2) sinh(n+ 2)qp P„'(cosa) sing

Ea sine sinft) sinhgp sinh~p+
(coshqp —cosa)' 2(coshqp —cosa)'" D e '~' ""pp'(cosa j sing

~ (cocos—cosa)' 'g P, (s+ ')s ' 'i„""a„'(cosa) sing-) da ad. (51}

3 slnh gp n=p
(54)

The coefficients D„may be replaced by their ex-
pression (24) in terms of. the C„. The integration
in (51) is done easily by using the recurrence re-
lations

sina P„'(cosa) =n[P, (cosa) —cosa P„(cosa)],

(52)
(2n+1) cosa P„(cosa) = n P,(cosa)

+ (n+ 1)P„(cosa), (53)

the expansions (42) and (43) and the orthonormality
of Legendre polynomials. We obtain

= ——Es Q n(n+1)e ' ~""p
n=p

After the use of (45) and (46) we find that

p,r=2'~ a'Q n(n+1)C„.
n=l

(55)

Equations (49) and (50) give us general formulas
for the dipole moments of the two spheres in terms
of the coefficients A„and C„appearing in the po-
tentials. We have determined in Sec. III the ex-
pression of A„and C„as sums of three terms
A -A' '+ A&" + A' ) and C - C& '+C "+C' ' Wen n n n n n n n

shall now calculate explicitly the dipole moments
corresponding to each of these terms. The longi-
tudinal dipole moment corresponding to the partic-
ular solution of zero order is

~(o) 23/2 2 A(o) (56)
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Potential due
to the spheres

2l
5l

ipl
2l
5l

ipL
2l
5l

iOL

po

Oo

00

30'
3Po
30'
60
60'
60'

40(56) ~

8{9.6)
i.6(i.6)

33.6(48)
4.8(8)
i.6{i.6)
7.7(27)
2.6(4.5)
0.6(i.i)

TABLE I. Potential due to the two spheres, for L jR
= 3, the field pointing along the z axis. The potentials
do not contain the external field contribution. The val-
ues of the potential are to be multiplied by iO~C,
where C = [26/(3 —b,)]ER.

x 1 e-»0+ 0 e-4~01+4
2 (63)

In the transverse case we get from Eqs. (29) and
(38),

g ()) 27/2Egn2(3 n) Ie 4noe '200
n

1+ e»0+0 e'"01
2n

(64)

and applying the formula (55) we find, approxi-
mately,

Qsjnh g e ~0
T T 0

Applying the general formula (49} to Eq. (62) we
find, approximately,

p =Sp. +sinh g e oL L 0

~ Values in parentheses are calculated by the approxi-
mate formula V=(2~/r )cos8.

where A&0) is given by Eqs. (34) and (29) as
A(o) 27/0Eg~(3 n) &e onooe 00

n

)& [n e 200(l e 200) (] (57)

The sums in (56) are of the geometric progression
type and we find

1+ e»0+0 e '"01+6,
2

From Eqs. (28) and (36) we obtain

A&~) —27/oEgno(3 g)-(e-ooooe-0"0
n

n- e '"0+0 e '"01+&
2

Using (49), we find

(65)

(66)

y, ~&

' = [4n/(3 —/). )]ER' (58) p,"'= 8p."'4' sinh'q e '"0
L L 0

Expressing 4 in terms of e& and e„Eq. (58) may
be written

e~»0 0 e~4001+&
2

(67)

= 2[(f
&
— eo}/( e& +2 e)o] ER (58') Taking into account Eqs. (29) and (39), we have

Equation (58') illustrates an interesting point: the
dipole moment corresponding to the particular so-
lution of zero order of the difference equation is
equal to two times the dipole moment of a single
dielectric sphere in the electric field. For the
transverse case we have for the zero-order mo-
ment

Q&o) —2 / Egno(3 Q) )e 0"ooe 000

x 1+ e»0+0 e-4'}0
2n

(68)

Finally, using (55) we find the second-order trans-
verse moment

)&(0) 2)/0 0 Q ( I}C (0)

n=l
(59)

where C„&0) is obtained from Eqs. (29) and (37) as

g"' =2'/'Ega(3 —n) 'e '""&)e "o. (60)

TABLE II. Potential due to the two spheres, for l/R
= 3, the field pointing along the y axis. The potentials
do not contain the external field contribution. The val-
ues of the potential are to be multiplied by ip 3 C,
where C= [2'(3—b,))ER; Q= ~7}.

The sums in Eq. (55) are again of the geometric
progression type and we obtain the same remark-
able result as in the longitudinal case

Za'=2 ' ' Za'.4+ 6 —E.

3 —& e;+2m,
(61)

1+&x n e»0+0 e4o
2 (62)

We go now to the first-order perturbation terms.
We obtain A„'" by using Eqs. (29) and (35), namely,

A&» —27/&Eggo(3 Q)-)e 4""oe-»0
n

2l
5l

ipL
2l
5L

ipl
2L

Gl

ipL

30'
30
30'
60'
60'
60'
90'
90'
90'

Potential due
to the spheres

6i
5
i

47
7
2

40
8
2
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FIG. 1. Ratio p~"/p(I of first-order to zero-order
longitudinal dipole moments vs reduced distance l /R
between two spheres.

+(2) 8~(0)~2 sinh3~ e 990
T T 0

1 — e '"0+0 e "01 —&

2
(69)

V. DISCUSSION

We have obtained the coefficients of the potentials
and the dipole moments of two dielectric spheres
in an electric field up to zero, first, and second
order in a perturbation expansion. From the form
of the solutions at these orders we can infer that
the solutions corresponding to the second order of
the perturbation expansion and the corresponding
dipole moments are, rd'spectively, proportional
to 43e '""0 and e '"o. Hence, if the spheres are
sufficiently far apart, these contributions are

very small.
In Tables I and II we give some particular values

of the potentials at some points represented by
spherical coordinates r, 8, P. The origin of the
spherical coordinates is taken at the midpoint be-
tween the two spheres. One can use, when the
field points along the axis of the spheres, the ap-
proximate formula V= (2m/r') cose, where m rep
resents the zero-order dipole moment of a sphere.
This formula gives a rather good estimate of the
potential, as seen in Table I, especially at large
distances when the two spheres begin to behave as
point dipoles. We represent, in Tables I and II,
the potentials V, —V, from Eqs. (8} and (21}, due
only to the two polarized spheres. The potentials
Vp owing to the external fields, are, in general,
greater than the potentials V, —V,.

In Fig. 1 we have represented the variation of
the ratio g~ '/pz' ' of first-order to zero-order
longitudinal dipole moments with reduced distance
between the spheres l/R. The ratio p'r"/p, 'r" of
transverse dipole moments is obtained from Fig.
1 by the relation g'r"/g'r" = —g~ '/p~ '

The problem of two dielectric spheres in an
electric field may have several applications. One
may use the results of this problem for the deter-
mination of the second dielectric virial coefficient
as was done by Levine and McQuarrie3 in the case
of metallic spheres. Then the molecules are seen
as dielectric spheres. The problem of the calcu-
lation of the potential of two dielectric spheres is
related to the problem of the calculation of the Van
der Waals attraction between two spheres. This
last problem has applications in dyeing and wash-
ing processes, in pouring and sliding processes,
and also in problems related to colloid stability
and biological transport. If instead of dielectric
spheres one considers spherical voids in a dielec-
tric, one may foresee applications in such prob-
lems as void growth by precipitation of atomic
vacancies and the void theory of the liquid state. "
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