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Enhanced local addressability of a spin array with local exchange pulses
and global microwave driving
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We theoretically propose a strategy to address an individual spin in a large array of spin qubits with a random
distribution of g factors by employing a combination of single-qubit and SWAP gates facilitated by a global
microwave field and local exchange pulses. Consequently, only the target qubit undergoes the desired operation
and all other qubits return to their original states, even qubits that share the same Larmor frequency as the target.
Gate fidelities above 99% can thus be maintained for arrays containing tens of qubits.
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I. INTRODUCTION

Quantum computers are intrinsically capable of outper-
forming all known classical algorithms for prime factorization
[1], and there is an ongoing search for applications to more
general tasks in machine learning [2,3], deep learning [4–6],
etc. Such a prospect motivates intense industrial interest in
quantum computing, though the excitement is tempered by
uncertainty as to whether there is a practical quantum advan-
tage in such applications [7,8]. To protect qubits against noise
and build reliable quantum computers, we need quantum error
correction [9]. However, full use of error-correcting codes is
expected to require millions of physical qubits [10], which
makes scalability an inevitable step in the development of
quantum computing technologies. The spin states of electrons
in quantum dots, naturally forming two-level systems, are a
fantastic candidate for the realization of qubits owing to their
long coherence times [11], vast nanofabrication industry at
their disposal, and operational temperatures well above 1 K
[12]. An indicator of the success of the spin qubit approach
is the demonstration of high-fidelity single-qubit [12–16] and
two-qubit [15,17,18] gates in silicon quantum devices with fi-
delities above the surface code error-correction threshold [19].
Furthermore, the 10–100 nm length scale of quantum dots
allows compact quantum computing architecture which can be
mass produced [20]. However, this will make addressability of
individual qubits more challenging. Indeed, there have been
multiple techniques employed in the literature in an attempt
to address individual spins. Electron spins can be manipu-
lated by coupling an applied ac electric field to the electron
spin via spin-orbit coupling to achieve electrically driven spin
resonance [21]. Spins can then be driven locally via the gate
electrodes [22] and magnetic field gradients from proximal
micromagnets increase the coupling strength far above the
intrinsic spin-orbit coupling and also lead to different resonant
frequencies between neighboring qubits for additional distin-
guishability [23]. This approach has proven quite successful
with small numbers of qubits, although the on-chip microwave
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signals can lead to heating issues as the devices are scaled up
[24].

On the other hand, one can use an off-chip global mi-
crowave field to perform local rotation by electron spin
resonance (ESR). In this case addressability can be achieved
if each spin has a unique Larmor frequency. The Larmor
frequency depends on the microscopic environment of the
spin and there is a distribution of frequencies due to interface
roughness and charge defects [25–27]. When there are multi-
ple qubits with similar Larmor frequencies, as is inevitable in
any large array, addressability is compromised. The unwanted
rotation of qubits near resonance with the target qubit is often
referred to as crosstalk. There are protocols to avoid crosstalk
by using gate voltages to locally shift Larmor frequencies in or
out of resonance with the ESR field [28–30], but this requires
substantial tunability of the Larmor frequency, especially at
high microwave power, to avoid off-resonant rotation. These
issues were clearly discussed in a recent work by Cifuentes
et al. [31], who stated, “Strategies for qubit control need to
be designed to circumvent this variability and tolerate the
natural dispersion in qubit frequencies introduced by the oxide
interface.”

This Letter provides a control strategy that can address a
single qubit in an array of qubits using limited tunability of
the Larmor frequency by leveraging the local controllability
of the exchange coupling. In Sec. II we introduce a new pulse
sequence, and in Sec. III we show its performance versus the
system size, finding that multiqubit fidelity decreases only
linearly with the number of qubits rather than exponentially.

II. THEORETICAL MODEL

We introduce here a method to address a single spin in
a linear chain with nearest-neighbor exchange coupling. For
our model, we consider an arbitrary number of spin qubits,
each with a different resonant frequency. The system can be
described by the Hamiltonian

H =
N−1∑
i=1

JiSi · Si+1 +
N∑

i=1

giμBSi · Bi, (1)
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FIG. 1. Example of resonant frequencies of spin qubits in a
linear array. The red lines demarcate different frequency bins and
the dashed lines indicate the central frequency of that particular
frequency bin. In this example each qubit’s frequency can be tuned
up to 5 MHz in either direction (as shown by the vertical bars), so all
qubits can be tuned to a central frequency.

where Ji is the locally tunable exchange interaction between
neighboring spins Si and Si+1, and Bi = (B1 cos ωt, 0, B0) is
the magnetic field at the position of spin Si consisting of a
homogeneous in-plane dc field B0 and a perpendicular global
microwave field of amplitude B1. The resonant frequency of
each qubit depends on its g factor.

The g factor is weakly dependent on the spin-orbit coupling
[32] which in turn is affected by the random surface roughness
and can be deliberately tuned by applying electric and/or
magnetic fields [33]. The Larmor frequency of a given qubit
can thus be shifted by tuning one of the top gates that define
that dot such that its g factor is Stark shifted [26,33], which
allows for a variety of straightforward methods to address a
single qubit with global control by shifting it in and out of
resonance [11,29,34].

Electrically controlled shifts on the order of ±5 MHz at
B = 1.4 T have been demonstrated [11,35–37], but this is
not enough to neglect off-resonant effects when driving with
Rabi frequencies ∼1 MHz. Additionally, schemes that park
all idle qubits at resonance to take advantage of the en-
hanced robustness of the resulting dressed qubits [29] require
enough tunability to encompass the entire spread of the qubits’
frequency distribution, and the standard deviation of this dis-
tribution can be on the order of 60 MHz [25,31].

Figure 1 depicts an example of the resonant frequencies
of spins in an array of six qubits. We group spins according
to their resonant frequencies in frequency bins. The bin size
is chosen to match the range of electrical tunability of the
Larmor frequencies so that all qubits can be tuned to be at
the center of a frequency bin. In this way the problem of ad-
dressability breaks into two separate parts: (i) distinguishing
the target qubit from other qubits in the same bin, which now
all have identical frequencies, and (ii) suppressing crosstalk
between qubits in different bins, which now have a discrete
set of frequency differences. We will consider these two tasks
in the following subsections.

TABLE I. Evolution of the spins of Figs. 1 and 2 under the eight-
step sequence.

1 Bin 1 rotation (Xθ ) Xθ,1I2I3I4Xθ,5I6

2 SWAP qubits 1 and 2 I2Xθ,1I3I4Xθ,5I6

3 Bin 3 rotation (Yφ) I2(YφXθ )1I3Yφ,4Xθ,5I6

4 SWAP qubits 1 and 2 (YφXθ )1I2I3Yφ,4Xθ,5I6

5 Bin 1 rotation (X−θ ) (X−θYφXθ )1I2I3Yφ,4I5I6

6 SWAP qubits 1 and 2 I2(X−θYφXθ )1I3Yφ,4I5I6

7 Bin 3 rotation (Y−φ) I2(Y−φX−θYφXθ )1I3I4I5I6

8 SWAP qubits 1 and 2 (Y−φX−θYφXθ )1I2I3I4I5I6

A. Pulse sequence to address one spin in a bin

Here, we propose a series of steps involving single qubit
rotations and SWAP operations to address a single target spin.
The steps are enumerated below, starting with all exchange
couplings turned off and no microwave field.

(1) Pulse the microwave to resonantly rotate the target
qubit spin state around the x axis. All the qubits in the same
frequency bin as the target qubit also undergo a resonant
rotation.

(2) SWAP the target qubit with a qubit in a different bin
which experiences negligible crosstalk with the target bin, by
pulsing the exchange coupling links (usually it will suffice to
pulse a single exchange link to SWAP with a nearest neighbor,
but if the nearest neighbors are all in the same bin as the
target, one must sequentially SWAP the state further along the
array). The spin state of the target qubit is thus transferred to
a separately addressable bin.

(3) Pulse the microwave at the new resonant frequency of
the target state so as to rotate it about the y axis. All the qubits
in this frequency bin also undergo a resonant rotation.

(4) SWAP the qubits again to return the spin states to their
original locations.

(5) Pulse the microwave at resonance with the target qubit
as in step 1 but so as to perform the inverse rotation.

(6) SWAP the target qubit again with the same neighbor in
step 2.

(7) Pulse as in step 3 but so as to perform the inverse
rotation.

(8) SWAP the qubits back again as in step 4.
At the end of this sequence only the target qubit acquires

a net rotation, provided off-resonant rotations of qubits in one
bin due to driving at the central frequency of another bin are
negligible. In other words, by using the local exchange control
we can effectively dynamically toggle the resonant frequency
of the target qubit between values beyond the range of the
available in situ tunability, although binning also provides
substantially more power than this simple picture suggests,
as Sec. II B will make clear.

To make the logic more clear, the eight steps and the
corresponding unitary operations are tabulated in Table I for
the specific example of the g factors taken in Figs. 1 and 2 and
the target qubit being at position 1. The subscripts indicate the
initial location of each spin state for this example. Typically
we envision the SWAP being performed between the target and
its nearest neighbor, but that does not need to be the case.
The target qubit could be swapped with any qubit that is in a
different frequency bin.
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FIG. 2. Example of resonant frequencies of spin qubits in a linear
array after tuning to the central frequencies of the bins. Uniquely
addressing a given target qubit now involves distinguishing it from
the other qubits in the same bin using SWAPs as well as managing a
discrete set of off-resonance rotations.

The ultimate rotation of the target qubit is

U = Y−φX−θYφXθ , (2)

where Xθ ≡ exp(−iθX/2) and X is a Pauli operator. One can
verify that setting φ = θ produces the rotation

U = ZλXβZν, (3)

λ = −π

4
− arctan

(
sin2 θ

sin2 θ + 2 cos θ

)
, (4)

β = 2 arcsin

(√
2 sin2 θ

2
sin θ

)
, (5)

ν = π

4
− arctan

(
sin2 θ

sin2 θ + 2 cos θ

)
. (6)

On the other hand, an arbitrary rotation can be formed by the
Euler angle decomposition,

U (α, β, γ ) = ZαXβZγ , (7)

where α, β, and γ are the Euler angles. Thus, our sequence,
supplemented by additional Z rotations which can be exe-
cuted virtually (i.e., by instantaneous changes in the phase
of the rotating reference frame) [38], is capable of producing
any rotation such that |β| < 2 arcsin( 3

√
3

4
√

2
) ≈ 0.74π . Unitaries

requiring larger β can be formed from two Xπ/2 rotations
interleaved with virtual Z rotations. Thus this sequence is
universal for single-qubit gates.

We now briefly note how the SWAP operations are per-
formed. In the absence of driving, the Hamiltonian in Eq. (1)
for a given pair of neighboring qubits can be written as

H = J

4
(XX + YY + ZZ ) + �Ez

2
(IZ − ZI ) + Ez(IZ + ZI ),

(8)

where J = Ji, �Ez = μBB0(gi+1 − gi ), and Ez = μBB0

(gi+1 + gi )/2. Note that the Hamiltonian can be split into

two mutually commuting terms and belongs to an embedding
su(2) ⊕ u(1) ⊂ su(4). The u(1) part of the Hamiltonian is

Hu(1) = J

4
ZZ + Ez(IZ + ZI ) (9)

and the su(2) part of the Hamiltonian can be written as

Hsu(2) = J

2
Z̃ + �EzX̃ , (10)

where Z̃ = (XX + YY )/2 and X̃ = (IZ − ZI )/2.
A gate equivalent to SWAP (up to local z rotations) is ob-

tained by performing a ±π/2 rotation in the effective SU (2)
about Z̃ . If one can access high enough exchange coupling that
the effect of the nonzero �Ez is negligible, then the SWAP can
be done in time TSWAP = π/2J . Generally, though, one may
not be able to access high enough exchange for this direct
implementation, but one can compose the rotation with an
exchange pulse sequence [39]

R(ẑ, α) = R(sin γ x̂ + cos γ ẑ, χ )R(x̂, ϕ)R(sin γ x̂

+ cos γ ẑ, χ ), (11)

where R(n̂, χ ) = exp (−i χ

2 n̂ · �σ ) is a rotation about the axis n̂
by an angle χ . The solutions for χ and ϕ in terms of γ and
α are (rearranging expressions from Ref. [40] and noting that
J � 0 implies −π/2 � γ � π/2)

ϕ = −2 arcsin

[
tan γ sin

(
α

2

)]
, (12)

χ = sgnα arccos

[
1 −

1 −
√

cos2
(

α
2

) − 1
4 sin2 α tan2 γ

cos2
(

α
2

) + sin2
(

α
2

)
cos2 γ

]
.

(13)

In our application, the largest accessible value of exchange
determines the available γ = arctan(2�Ez/J ) and the middle
segment is performed by turning the exchange off for a time.
Note that, physically, χ must be positive and ϕ must have
the same sign as �Ez, which can be ensured by adding or
subtracting 2π to the right-hand side of Eqs. (12) and (13)
as needed. Also note that Eqs. (12) and (13) are real only if
|2�Ez/J| � | csc(α/2)|, so for any neighboring pair of qubits
where that is not the case for α = ±π/2, one can instead
use α = π/2n with the integer n chosen to ensure Eq. (12)
remains real, and the composite rotation of Eq. (11) can be
repeated n times to produce the SWAP. The total duration of
the SWAP gate is thus

TSWAP = n
2χ cos γ + ϕ cot γ

J
, n =

⌈
π

4| arcsin(J/2�Ez )|
⌉
,

(14)

which ranges from (3.5π + √
2)/J when �Ez 	 J down to

π2/2J when �Ez 
 J .
Alternatively, specific to the case J > 2�Ez, there is also

a simpler and faster composition that does not turn exchange
all the way to zero in the middle segment [41].

B. Suppressing interbin crosstalk

Consider a constant amplitude global pulse intended to
perform a resonant Xθ rotation with exchange coupling turned
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off, as in step 1 of the sequence above. “Idle,” off-resonant
qubits have a Hamiltonian of the form

H = gμBS · B = h̄

(
ω0/2 � cos ωt

� cos ωt −ω0/2

)
, (15)

where ω0 is the resonant frequency, � is the driving strength,
and ω is the driving frequency. In the rotating frame Hr =
R†HR − iR†Ṙ, with R = exp(−iωt/2 Z ), and the rotating-
wave approximation gives

Hr = h̄�

2
X + h̄mδ

2
Z (16)

and an evolution operator in the rotating frame after time T

U = e−iT (�X+mδZ )/2, (17)

where mδ = ω0 − ω is the detuning from resonance with m as
the integer difference between the index of the resonant bin
and the off-resonant bin and δ is the bin width.

While z rotations are not worrisome since they can be
absorbed into the local rotating frame (i.e., compensated by
virtual z rotations [38]), we wish to avoid rotation along
any other axis resulting from the off-resonant driving. There
is clearly no y component to the off-resonant rotation of
Eq. (17), but there is also no x component if one chooses√

�2 + (mδ)2T = 2nπ, n ∈ Z. (18)

Substituting in that one must also have

�T = θ (19)

for the driving to produce the intended resonant rotation, one
obtains a condition similar to the synchronization condition
found in [42],

� = ± mδθ√
(2nπ )2 − θ2

. (20)

The same condition also holds for resonant y rotations to have
negligible off-resonant effects. Note that to ensure real values
of � the choice of integer n must satisfy

n >
θ

2π
. (21)

Thus, by careful choice of the driving amplitude (and time),
one can completely suppress off-resonant errors at a given
detuning. However, instead of aiming for complete error sup-
pression in a given bin, we would like to minimize the overall
infidelity arising from a large set of bins, most of which will
be many bins away from the target bin. Thus we consider the
limit of large m. Note that by choosing the free integer to
be n = �m, the optimal driving strength of Eq. (20) becomes
independent of bin index for large m,

� = δθ

2�π
, � ∈ Z. (22)

In fact, although this is obtained for the large-m limit, it is
nearly optimal even for the nearest bin, m = 1, since the
denominator of Eq. (20),

√
(2�π )2 − θ2 ≈ 2�π for θ 	 2�π .

So, by driving with one of these particular strengths we sup-
press off-resonant effects across all bins. Larger values of �

produce a better approximation at the cost of longer pulse
times.

III. SEQUENCE PERFORMANCE

Now that we have established the pulse sequences to
address the target qubit and the optimal parameters for sup-
pressing off-resonant rotations, we analyze the effects of
residual off-resonant rotations on the entire sequence. We
will not include the effect of local pulse miscalibration errors
in our analysis because those errors are independent of the
addressability errors and their effect on the multiqubit fidelity
is comparatively small. Furthermore, those errors can in prin-
ciple be eliminated beforehand by local tune-up procedures.
Neither do we consider the effect of charge noise, since again
this is a separate issue whose effect on the multiqubit fidelity
is small in comparison when the total sequence time is much
less than the dephasing time T ∗

2 . In principle, even this re-
striction could be relaxed by using dynamically correction
via broadband pulses that can simultaneously invert all the
spins or by more sophisticated sequences or pulse shaping
[43]. For the present though, since a typical dephasing time is
T ∗

2 ∼ 100 µs, it is sufficient to restrict ourselves to sequences
of length ∼10 µs.

The total time for the sequence is

Ttotal = 4 × T + 4 × TSWAP, (23)

where the local rotation step time is given by Eqs. (19) and
(22) as

T = 2�π/δ. (24)

The multiqubit fidelity for one local rotation in the se-
quence (steps 1, 3, 5, or 7) at the frequency of target bin t
is given by

Floc(t ) =
∏
j 
=0

∣∣∣∣1

2
Tr(Uj )

Nt+ j

∣∣∣∣
2

, (25)

where Uj = e−iT (�X+ jδZ )/2, and Nt+ j is the number of qubits
in the (t + j)th bin.

The entire sequence for a particular configuration �N =
(N1, N2, . . . ) has a fidelity whose lower bound is the product
of the fidelities of each step of the sequence. Assuming the
fidelity of the nearest-neighbor SWAP gates, FSWAP, are inde-
pendent of the qubit frequencies, averaging over all possible
target qubits in the configuration gives a sequence fidelity of

Fseq( �N ) � F4
SWAP

∑
t

∑
k 
=t

Nt

N

Nk

N − Nt
Floc(t )2Floc(k)2, (26)

since when randomly selecting a target qubit, the probability
of it being in bin t is Nt/N and the probability that the nearest-
neighbor qubit (excluding qubits in the target bin) is in bin k
is Nk/(N − Nt ). We set FSWAP = 1 in the numerics below in
order to focus on addressability errors.

To calculate the average total fidelity of the N-qubit system
we randomly sample a large number of qubit configurations.
Each configuration is generated by randomly drawing N times
from a normal distribution of mean ω0 and standard deviation
σ . We calculate the weighted average of Eq. (26) over these
configurations,

Favg =
( ∑

�N
p( �N )

)−1 ∑
�N

p( �N )Fseq( �N ). (27)
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FIG. 3. Average N-qubit fidelity vs the number of qubits for a
single-qubit Xπ/2 rotation in a qubit array whose Larmor frequencies
are normally distributed with standard deviation σ = 60 MHz and
individually tunable by ±5 MHz. Both gates are of duration ∼10 µs.

Here the probability of a given configuration is

p( �N ) =
∞∏

j=−∞
p

Nj

j

(
N − ∑ j−1

k=−∞ Nk

Nj

)
, (28)

where

p j =
∫ ω0+( j+1/2)δ

ω0+( j−1/2)δ

1√
2πσ 2

e−(ω−ω0 )2/2σ 2
dω (29)

is the probability of a given qubit being in bin j.
For specificity, we numerically consider the case of where

one wishes to apply a local Xπ/2 rotation, although it is easy to
generalize to an arbitrary rotation. For this case, φ = θ = π/2
in Eq. (2). We take an experimentally plausible bin width
δ = 10 MHz and a distribution of width σ = 60 MHz for a
magnetic field oriented along the [110] lattice direction [31].
The rms average of �Ez is

√
2σ ≈ 85 MHz and taking a max-

imum exchange coupling of J ∼ 50 MHz, the average TSWAP ∼
0.1 µs from Eq. (14). Then the optimal driving strength for all
local rotation steps is given by Eq. (22), choosing � = 4 to
keep the total time to ∼10 µs, as � = 0.625 MHz. In that case
there is suppressed off-resonant rotation of qubits in neigh-
boring bins such that they each undergo an identity operation

with fidelities of∣∣ 1
2 Tr(U±1)

∣∣2 = 0.9994,
∣∣ 1

2 Tr(U±2)
∣∣2 = 0.99985, (30)

and so on, with higher fidelity in all further bins. As we
increased the number of configurations included in our nu-
merical computation of Eq. (27) from 103 to 105, the resulting
values of Favg only changed by ∼10−5, suggesting our nu-
merics are well converged. The results are plotted in Fig. 3,
comparing the total fidelity of the proposed pulse sequence
on the qubits after they are tuned to the central frequency of
each frequency bin to the total fidelity in the naive case of
a single, simple pulse at the resonant frequency of the target
qubit after each idle qubit frequency is shifted as far away as
possible from the target given the limited tunability of ±δ/2.
Since slower pulses are more frequency selective, we allowed
the simple pulse to use the same time as the full sequence to
make a fair comparison, so the driving strength of the simple
pulse was reduced to �simple = π/2Ttotal ≈ 0.157 MHz. The
significant advantage of our method is evident from Fig. 3
in that the decay of multiqubit fidelity with the number of
qubits is exponential for the simple pulse and only linear for
the sequence.

IV. CONCLUSION

In this Letter, we have demonstrated an effective method
for addressing a specific qubit within a large array of qubits
using a combination of global microwave pulses and compos-
ite SWAP gates. The multiqubit fidelity of a single-qubit gate
decays only linearly in the number of qubits when using our
approach, compared to exponentially with the naive approach.
For realistic parameter values, we numerically obtain a fidelity
of over 99% for a system of as large as 25 qubits.

One could also use this approach while simultaneously ad-
dressing selected multiple qubits by carrying out the sequence
in parallel with different targets, provided that the frequencies
of the two bins driven for each target (the original bin and
the bin after the SWAP) only cause non-negligible off-resonant
rotations on a certain set of bins and the sets for the different
targets are disjoint.
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