Electron correlations and superconductivity in La$_3$Ni$_2$O$_7$ under pressure tuning

Zhiguang Liao,1,* Lei Chen,2,* Guijing Duan,1,* Yiming Wang,2 Changle Liu,3,‡ and Qimiao Si2,‡

1Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Renmin University of China, Beijing 100872, China
2Department of Physics & Astronomy, Rice Center for Optoelectronic Functional Materials & Micro-Nano Devices, Rice University, Houston, Texas 77005, USA
3School of Engineering, Dali University, Dali, Yunnan 671003, China
4Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
5Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China

(Received 31 August 2023; revised 5 December 2023; accepted 6 December 2023; published 28 December 2023)

Motivated by the recent discovery of superconductivity in La$_3$Ni$_2$O$_7$ under pressure, we discuss the basic ingredients of a model that captures its microscopic physics under pressure tuning. We anchor our description in terms of the spectroscopic evidence of strong correlations in this system. In a bilayer Hubbard model including the Ni 3d $x^2−y^2$ and z^2 orbitals, we show the ground state of the model crosses over from a low-spin $S = 1/2$ state to a high-spin $S = 3/2$ state. In the high-spin state, the two $x^2−y^2$ and the bonding z^2 orbitals are all close to half-filling, which promotes a strong orbital selectivity in a broad crossover regime of the phase diagram pertinent to the system. Based on these results, we construct an effective multiorbital t-J model to describe the superconductivity of the system, and find the leading pairing channel to be an intraorbital spin singlet with a competition between the extended s-wave and $d_{x^2−y^2}$ symmetries. Our results highlight the role of strong multiorbital correlation effects in driving the superconductivity of La$_3$Ni$_2$O$_7$.

DOI: 10.1103/PhysRevB.108.214522

I. INTRODUCTION

The discovery of iron-based superconductors more than a decade ago provided hope for high temperature superconductivity in a variety of transition-metal-based materials [1–3]. The recent discovery of superconductivity in the bilayer Ni-based compound La$_3$Ni$_2$O$_7$, with a transition temperature of about 80 K when the applied pressure exceeds 14 GPa [4], was soon confirmed [5] and zero resistivity was recently obtained [6]. Unlike the infinite-layer nickelate (Sr, Nd)NiO$_2$ thin films [7], which was expected to resemble the physics of the cuprates given the valence count of Ni$^{1+}$ with a d^9 electron configuration, a simple valence count gives Ni$^{2.5+}$ in the bilayer compound La$_3$Ni$_2$O$_7$, corresponding to $d^{7.5}$. These results have naturally attracted extensive interest [8–22].

Some of the key questions concern the roles of multiple orbitals and electron correlations [23] for both the normal state and superconductivity of La$_3$Ni$_2$O$_7$. The first-principles density functional theory (DFT) calculation [4] shows that the bands near the Fermi level have mainly Ni e_g orbital characters; bands with t_{2g} orbital characters are located about 2 eV below the Fermi level. It also reveals a strong interlayer hopping between the two Ni z^2 orbitals through the apical oxygen ion, which leads to the formation of bonding-antibonding molecular orbitals (MOs) as illustrated in Fig. 1(a). Considering DFT results and the simple valence count, a naive picture of the electron state is as follows: Within a two-Ni unit cell, the t_{2g} orbitals are almost fully occupied, and the four e_g molecular orbitals are occupied by three electrons. To make progress, it is important to understand the exact ground-state configuration and the low-energy electronic degrees of freedom that underlie the normal state and are responsible for the superconductivity.

In this paper, we address these important issues by studying the electron correlations in a bilayer two-orbital Hubbard model for La$_3$Ni$_2$O$_7$. Importantly, we anchor our description in terms of the spectroscopically derived experimental evidence for strong correlations [23]. One of our key findings is to show that the electron correlations drive the ground state from a low-spin $S = 1/2$ configuration to a high-spin $S = 3/2$ one. In the broad crossover regime of the phase diagram, the system exhibits strong orbital selectivity. This regime falls in the parameter range pertinent to La$_3$Ni$_2$O$_7$, as highlighted in Fig. 1(b). We clarify the nature of this crossover regime by showing that further increasing the interaction strength stabilizes an orbital-selective Mott phase (OSMP) in which the two $x^2−y^2$ orbitals are Mott localized whereas the z^2 orbitals remain itinerant: Thus, a proximity to the OSMP underlies the strong orbital selectivity seen in the crossover regime. Our results provide the natural understanding of the recent optical conductivity experiments, which provided evidence that the
FIG. 1. (a) Sketch of formation of the bonding-antibonding MO states between the Ni z^2 orbitals in the top and bottom layers. (b) Ground-state phase diagram in the U-J_θ plane of the bilayer two-orbital Hubbard model for La$_3$Ni$_2$O$_7$, calculated by the $U(1)$ slave-spin theory in the MO basis. The red line with squares shows the transition between the low-spin $S = 1/2$ state and the high-spin $S = 3/2$ state in the atomic limit. The blue regime is the orbital-selective Mott phase (OSMP) in which the $x^2 - y^2$ orbitals are Mott localized whereas the z^2 orbitals are itinerant [see Fig. 3(a)]. The dashed line with triangles characterizes the low-spin to high-spin crossover, and in the gray regime the system exhibits strong orbital selectivity (see text). Highlighted by the golden shading in the plot is the parameter region pertinent to La$_3$Ni$_2$O$_7$.

electrons’ kinetic energy is less than 0.1 of its noninteracting counterpart [23] and that the Drude peak contains two components [23]. Our results on the correlation effect, in turn, allow us to advance the low-energy physics that drives the superconductivity.

II. MODEL AND METHOD

We consider a bilayer multi-orbital Hubbard model for the two e_g orbitals of Ni: $H = H_{\text{TB}} + H_{\text{int}}$. Here, H_{TB} is a tight-binding Hamiltonian,

$$H_{\text{TB}} = \frac{1}{2} \sum_{i\alpha,\sigma} t_{\text{tb}}^{\alpha\beta} d_{i\alpha\sigma}^\dagger d_{i+\delta_{\text{nn}},\beta\sigma} + \sum_{i\alpha} (\epsilon_{\alpha} - \mu) d_{i\alpha\sigma}^\dagger d_{i\alpha\sigma},$$

where $d_{i\alpha\sigma}^\dagger$ creates an electron in orbital α ($\alpha = x, z$ denoting the two e_g orbitals, $x^2 - y^2$ and z^2, respectively) with spin σ at site i of a bilayer square lattice, δ_{nn} denotes the nth neighboring site in the same (opposite) layer, ϵ_{α} refers to the energy level associated with the crystal field splittings, and μ is the chemical potential. The tight-binding parameters $t_{\text{tb}}^{\alpha\beta}$ and ϵ_{α}, which are summarized in Table I, are obtained by fitting the calculated DFT band structure and projecting to the two-e_g-orbital basis in a unit cell including two Ni sites as described in detail in Appendix A. Note that for simplification we have used a tetragonal lattice structure in the DFT calculation, as explained in the Appendix. To avoid confusion, in band structure results, we also list names of high-symmetry points corresponding to the actual structure of the compound. We adjust the chemical potential so that the total electron density is 3 per unit cell to reflect the valence count of Ni$^{2.5+}$. The on-site interaction H_{int} reads

$$H_{\text{int}} = \frac{U}{2} \sum_{i,\alpha,\sigma} n_{i\alpha\sigma} n_{i\alpha\bar{\sigma}} + \sum_{i,\alpha<\beta,\sigma} \{U' n_{i\alpha\sigma} n_{i\beta\bar{\sigma}} + (U' - J_\theta)n_{i\alpha\sigma} n_{i\beta\sigma} - J_\theta (d_{i\alpha\sigma}^\dagger d_{i\alpha\bar{\sigma}}^\dagger d_{i\beta\sigma}^\dagger d_{i\beta\bar{\sigma}} + d_{i\alpha\sigma}^\dagger d_{i\alpha\bar{\sigma}}^\dagger d_{i\beta\sigma} d_{i\beta\bar{\sigma}})\},$$

where $n_{i\alpha\sigma} = d_{i\alpha\sigma}^\dagger d_{i\alpha\sigma}$. Here, U, U', and J_θ, respectively denote the intra- and interorbital repulsion and the Hund’s rule coupling, and $U' = U - 2J_\theta$ is used [24].

As already mentioned, the strong hopping between the two Ni z^2 orbitals in the upper and lower layers causes bonding-antibonding MO states. To examine this bonding effect, we perform a transformation from the atomic orbital basis to the bonding MO basis, namely, by defining the MO as

$$d_{i\alpha\sigma}^{b(a)} = \frac{1}{\sqrt{2}} (d_{i\alpha\sigma} \pm d_{i+\delta_{\text{nn}},\alpha\sigma}),$$

where the index $b(a)$ corresponds to the bonding (antibonding) MO, and i ($i + \delta_{\text{nn}}$) on the right-hand side refers to a site in the top (bottom) layer. Note that we define MOs for both z^2 and $x^2 - y^2$ orbitals for convenience, though the $x^2 - y^2$ orbital is expected to be largely nonbonding given the small interlayer hopping amplitude associated with this orbital as shown in Table I. We can rewrite the tight-binding and interaction Hamiltonians of Eqs. (1) and (2) in the MO basis. In particular,

$$H_{\text{int}} = H_{\text{int}}^{b\alpha} + H_{\text{int}}^{b\beta},$$

where $H_{\text{int}}^{b\alpha}$ refers to the interactions between bonding (or antibonding) states, whereas $H_{\text{int}}^{b\beta}$ refers to the interactions mixing the bonding and antibonding states. The exact forms of $H_{\text{int}}^{b\alpha}$ and $H_{\text{int}}^{b\beta}$ are presented in Appendix B. The correlation effects of the above model in the MO basis are then investigated by using a $U(1)$ slave-spin theory [25,26]. In this approach, the d-electron operators are rewritten as $d_{i\alpha\sigma} = S_{i\alpha\sigma}^+ f_{i\alpha\sigma}^\dagger$ (here we absorb the MO index in α), where $S_{i\alpha\sigma}^+$ ($f_{i\alpha\sigma}^\dagger$) is a quantum spin $S = 1/2$ spin (fermionic spinon) operator introduced to carry the electron’s charge (spin) degree of freedom, and $S_{i\alpha\sigma} = f_{i\alpha\sigma} f_{i\alpha\sigma} - 1$ is a local constraint. At the saddle-point level, we employ a Lagrange multiplier $\lambda_{\alpha\sigma}$ to handle the constraint, and decompose the

<table>
<thead>
<tr>
<th>Orbital</th>
<th>ϵ</th>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_{0c}</th>
<th>t_{1c}</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>10.8735</td>
<td>-0.4899</td>
<td>0.0670</td>
<td>-0.6000</td>
<td>0.0022</td>
<td>0.0003</td>
</tr>
<tr>
<td>zz</td>
<td>10.5142</td>
<td>-0.1159</td>
<td>-0.0109</td>
<td>-0.0187</td>
<td>-0.6363</td>
<td>0.0231</td>
</tr>
<tr>
<td>xz</td>
<td>±0.2420</td>
<td>0</td>
<td>±0.0333</td>
<td>0</td>
<td>±0.0382</td>
<td></td>
</tr>
</tbody>
</table>
slave-spin and spinon operators. In this way, the model rewritten in the slave-spin representation is solved by determining λ_σ and the quasiparticle spectral weight $Z_\sigma \propto |\langle \Delta_\sigma^2 \rangle|^2$ self-consistently [25,26].

III. LOW-SPIN TO HIGH-SPIN CROSSOVER AND ORBITAL-SELECTIVE MOTTL PHYSICS

We first diagonalize the interaction Hamiltonian of Eq. (4) in the MO basis. The ground state is either a low-spin $S = 1/2$ state at small J_H or a high-spin $S = 3/2$ state at large J_H, as shown in Appendix B. In the low-spin state, the z^2 bonding state is largely doubly occupied, whereas the antibonding state is almost empty. The $x^2 - y^2$ orbitals are near quarter filling. In the high-spin state, on the other hand, the bonding z^2 and $x^2 - y^2$ orbitals are all half filled, and the antibonding z^2 state stays empty. Either the low-spin or the high-spin configuration is fourfold degenerate. For the low-spin state, the additional degeneracy comes from the doubly degenerate $x^2 - y^2$ orbitals, which can be described by an isospin $\tau = 1/2$. The transition from the low-spin to high-spin state is shown as the red line with square symbols in Fig. 1(b). In the presence of electron hopping, this transition turns into a crossover.

To examine how this crossover takes place in the multiorbital Hubbard model, we perform slave-spin calculation in the MO basis. Note that the antibonding z^2 state has a very low electron density $n < 0.1$ at $U = 0$. Accordingly, we expect it to be only weakly affected by interactions. To simplify the calculation, we set $Z = 1$ in this MO and turn off interaction terms associated with this orbital. The results of the slave-spin calculation is summarized in the phase diagram of Fig. 1(b). In this figure, the dashed line characterizes the low-spin to high-spin crossover. Here we note that the crossover is actually a very broad regime. To see this, we define the variances of the electron density profile from that dominating the low- and high-spin states in the atomic limit:

$$\sigma^2_L = \frac{1}{2} \left[(n_{z^2(b)} - 1)^2 + (n_{z^2(a)}^L)^2 + 2(n_{x^2-y^2} - 1/2)^2 \right],$$

$$\sigma^2_H = \frac{1}{2} \left[(n_{z^2(b)} - 1/2)^2 + (n_{z^2(a)}^H)^2 + 2(n_{x^2-y^2} - 1/2)^2 \right].$$

The variances with U at $J_H/U = 0.25$ is depicted in Fig. 2. It is clearly seen that the system deviates from either the ideal low- or high-spin state within a wide range of U values. To be precise, in the phase diagram of Fig. 1(b), the low-spin to high-spin crossover is determined by the criterion $\sigma^2_H = \sigma^2_L$.

Across this crossover line with increasing U to the gray regime, the system exhibits strong orbital selectivity: As shown in Fig. 3(a), quasiparticle spectral weights and electron densities in all orbitals change drastically and $Z_{x^2-y^2} \ll Z_{z^2}$ in this regime. Further increasing U, the system undergoes an orbital-selective Mott transition (OSMT) to an OSMP at the blue line with circles. As shown in Fig. 3, in the OSMP $Z_{x^2-y^2} = 0$ and $n_{x^2-y^2} = 1/2$, but $Z_{z^2(b)} > 0$: The electrons in the $x^2 - y^2$ orbitals are Mott localized whereas those in the z^2 bonding states are still itinerant, though very close to the Mott localization.

The OSMP is associated with the high-spin state. One sees from Fig. 3(b) that in this state the electron densities of the $x^2 - y^2$ and z^2 bonding orbitals are all close to 1/2. If the antibonding state were to be completely empty, the system consisting of the other three orbitals would be exactly at half filling and would become Mott insulating when the red line of transition in Fig. 1(b) is approached. However, at finite U an OSMP is more favorable because keeping the z^2 bonding orbital itinerant reduces the kinetic energy. This naturally explains why the OSMT line almost traces the red transition line to the high-spin Mott insulator (MI), especially when J_H/U is large.

We next consider the effects of orbital-selective Mott correlations to the electronic structure. Figure 4(a) shows the bands along high-symmetry directions of the Brillouin zone at $U = 5.3$ eV compared to those at $U = 0$. Close to the OSMP, bands with the $x^2 - y^2$ and z^2 bonding orbital characters are strongly renormalized whereas the z^2 antibonding band, located topmost in energy, hardly shifts compared to the $U = 0$ case. As shown in Figs. 4(b) and 4(c), compared to the significant renormalization in the total bandwidth W from about 4 eV to about 1.5 eV, the Fermi surface only changes moderately. While the relatively small inner hole pocket centered at the M point exhibits a sizable expansion, the outer hole and electron pockets centered around the Γ point only slightly shrink and expand, respectively.

IV. AN EFFECTIVE MULTIORBITAL t-J MODEL FOR SUPERCONDUCTIVITY

The above slave-spin results set the stage to build a low-energy effective model to understand superconductivity of the system, which can be done by performing a t/U perturbation expansion when U is sizable. However, the resulting form of the effective theory depends on the low-energy manifold the perturbed Hamiltonian is projected to. For example, when projecting to the $S = 1/2$ spin sector, one ends up with an effective model that includes interactions between the total spin and isospin operators, which takes the form of the Kugel-Khomskii model [27]. On the other hand, one obtains three-orbital Heisenberg couplings for the interacting part of the Hamiltonian when projecting to the high-spin sector.
FIG. 3. Evolution of the orbital-resolved quasiparticle spectral weight Z [in (a)] and electron density n [in (b)] with increasing U at $J_{11}/U = 0.25$ of the bilayer two-orbital model in the MO basis calculated by using the $U(1)$ slave-spin theory. The blue and gray regimes correspond to OSMP and metallic state with strong orbital selectivity, respectively.

Which model is pertinent to the low-energy physics depends on the strength of the interaction.

For La$_3$Ni$_2$O$_7$, U is estimated to be within 4 to 6 eV [4,10]. According to the phase diagram in Fig. 1(b), this suggests that the system is in the regime with strong orbital selectivity near the OSMP [as highlighted in Fig. 1(b)]. Therefore, we construct the effective model by starting from the $S = 3/2$ high-spin ground state and taking into account effects of the $S = 1/2$ low-lying excitations by projecting out doubly occupied states. As a result, it takes the form of a multiorbital t-J model where the Hamiltonian reads

$$H_{\text{eff}} = \frac{1}{2} \sum_{ij} \sum_{\alpha \beta} \sqrt{Z_{\alpha} Z_{\beta}} t_{ij}^{\alpha \beta} f_i^{\dagger \alpha \sigma} f_j^{\beta \sigma} + \sum_{\alpha \sigma} (\epsilon_{\alpha} - \mu) f_i^{\dagger \alpha \sigma} f_i^{\alpha \sigma} + \sum_{ij} J_{ij}^{\alpha \beta} S_i^{\alpha} \cdot S_j^{\beta}. \quad (6)$$

Here we have employed the slave-spin method to renormalize the kinetic part of the Hamiltonian; Z_{α} is the quasiparticle spectral weight of the αth MO, and $\epsilon_{\alpha}^{\prime}$ refers to the renormalized energy level of orbital α. This is a generalization of the slave-boson theory [28] to the finite U case. $S_i^{\alpha} = \frac{1}{2} \sum_{\sigma} \sigma_i f_i^{\alpha \sigma} f_i^{\alpha \sigma}$ denotes the spin density operator at site i in the α orbital. Considering the high-spin state, the summation runs over the two $x^2 - y^2$ and the one z^2 bonding MOs. $J_{ij}^{\alpha \beta}$ refers to the orbital dependent exchange coupling which can be determined from the second-order t/U perturbation expansion, as detailed in Appendix C. Here we neglect the interlayer couplings between $x^2 - y^2$ orbitals and second-nearest and further neighboring interactions because of their small hopping amplitudes, and only consider the in-plane nearest neighboring exchange interactions J_1^{xx}, J_1^{yy}, and J_1^{zz}. We find J_1^{zz} to be negligibly small, and J_1^{xx}, J_1^{yy} are antiferromagnetic. In the following, we take the convention $J^{\alpha \beta}$ for $J_{11}^{\alpha \beta}$. To explore how the superconducting pairing evolves with
TABLE II. Superconducting pairing symmetry of the effective multi-orbital t-J model. \(\Delta (r) \) and \(\Delta (k) \) refer to gap functions in real and momentum space, respectively. Their symmetry is characterized by the corresponding irreducible representation of the tetragonal \(D_{4h} \) group. \(\eta_0 \) and \(\eta_1 \) refer to the \(2 \times 2 \) unit matrix and \(z \)-component of the Pauli matrix, respectively. \(\delta \) (\(\gamma \)) refers to unit vector along the \(x \) (\(y \)) direction.

<table>
<thead>
<tr>
<th>Orbital</th>
<th>(\Delta (r))</th>
<th>(\Delta (k))</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^2 - y^2)</td>
<td>((\Delta_1 + \Delta_2)\eta_0 + \Delta_3\eta_1 + \delta\eta_2\eta_3)</td>
<td>((\Delta_1 + \Delta_2)\eta_0 + \Delta_3\eta_1 + \delta\eta_2\eta_3)</td>
<td>(A^{1g})</td>
</tr>
<tr>
<td>(y^2 - z^2)</td>
<td>((\Delta_1 + \Delta_2)\eta_0 + \Delta_3\eta_1 + \delta\eta_2\eta_3)</td>
<td>((\Delta_1 + \Delta_2)\eta_0 + \Delta_3\eta_1 + \delta\eta_2\eta_3)</td>
<td>(B^{1g})</td>
</tr>
<tr>
<td>(z^2)</td>
<td>(\Delta_1 + \Delta_3)</td>
<td>(s_{x^2 + y^2}\eta_1 + \delta\eta_2\eta_3)</td>
<td>(A^{1g})</td>
</tr>
<tr>
<td>(\Delta_1 - \Delta_3)</td>
<td>(d_{z^2 - r^2}\eta_3)</td>
<td>(B^{2g})</td>
<td></td>
</tr>
</tbody>
</table>

orbital-selective correlations, we take \(J^{zz} = 0.025W_0 \) (with \(W_0 \) referring to the bandwidth at \(U = 0 \)), and tune the ratio \(r = J^{xx}/J^{zz} \).

V. SUPERCONDUCTING PAIRING SYMMETRY

The superconducting pairing in the model of Eq. (6) is studied by a Bogoliubov mean-field decomposition of the exchange interactions in the intraoorbital spin singlet sector:

\[
J^{aa}_k \left(\mathbf{S}_{ia} \cdot \mathbf{S}_{i+a} + \frac{1}{4} n_{ia} n_{i+a} \right)
\approx -J^{aa}_k \left(\Delta_{3a}^\dagger \Delta_{3a} + \text{H.c.} - |\Delta_{3a}|^2 \right),
\]

where \(\Delta_{3a} = f_{ia} f_{i+a} \) and \(\Delta_{3a}^\dagger = f_{ia}^\dagger f_{i+a}^\dagger \), and the gap function \(\Delta_{3a} = \langle \Delta_{3a} \rangle \). \(\text{La}_2\text{Ni}_2\text{O}_7 \) under pressure has an orthorhombic structure. But the difference between the \(a \) and \(b \) lattice constants is small (about 1%) [4]. As such, for convenience, we examine the symmetry of the gap functions by studying how they transform under the tetragonal \(D_{4h} \) group. The result is summarized in Table II. One sees that the multiorbital nature leads to six different pairing channels. We then perform a self-consistent calculation to determine the leading pairing channel [29]. As shown in Fig. 5, the leading pairing channel changes from the extended \(s \)-wave \(A^{1g} \) to \(d \)-wave \(B^{1g} \) in both \(x^2 - y^2 \) and \(z^2 \)-bonding orbitals with increasing \(J^{xx} \). In the \(A^{1g} \) dominant regime, the pairing is also strongly orbital selective, with the leading channel associated with the \(z^2 \) bonding orbital. Besides the larger pairing amplitude stabilized by \(J^{zz} \), this pairing channel is also favored by causing a full superconducting gap along the inner hole pocket centered at the \(M \) point. However, nodes along the outer hole pocket cannot be avoided by either pairing channel. To avoid nodes, it is possible that a pairing function with mixed \(s \)- and \(d \)-wave characters, such as the time-reversal breaking \(s+d \) [29] or \(s+\delta \) (given the orthorhombic lattice symmetry of the compound) [30], is stabilized in the regime where \(A^{1g} \) and \(B^{1g} \) pairing channels are in competition.

VI. DISCUSSIONS AND CONCLUSIONS

Several remarks are in order. First, the OSMP found in our model for \(\text{La}_3\text{Ni}_2\text{O}_7 \) shares some similarity to that of the iron-based superconductors [31], for which extensive evidence has come from angle-resolved photoemission [32,33] and other measurements [3]. In both systems, the OSMP is stabilized when the electron filling of each relevant orbital is either at or slightly away from half filling. This justifies the reduction from the multiorbital Hubbard model to the \(t-J \) one. Second, as shown in Fig. 3(a), very close and inside the OSMP the overall quasiparticle spectral weight is less than 0.1. This causes the system to be in proximity to an OSMP, which naturally explains the substantially suppressed Drude weight (with the renormalized electrons’ kinetic energy ratio less than 0.1) as observed in a recent optical conductivity measurement [23]. The strong orbital selectivity between the \(x^2 - y^2 \) orbitals accounts for the observed two-component contribution to the Drude weight [23]. Third, applying a pressure corresponds to increasing the hopping amplitudes, or equivalently, reducing the \(U/t \) ratio in our model. This increases the itinerary of electrons, and causes bandwidth tuning of the superconductivity. But in multiorbital systems reducing the \(U/t \) ratio has additional effects. It can trigger a high-spin to low-spin crossover, as shown in the present work. This activates the orbital degree of freedom, which makes the exchange couplings orbital dependent and may lead to strong competition of fluctuations in the antiferromagnetic spin and orbital channels, as reflected in the complicated temperature evolution of the magnetic susceptibility in \(\text{La}_3\text{Ni}_2\text{O}_7 \) at ambient pressure [34,35]. Moreover, reducing the \(U/t \) ratio also causes redistribution of the electrons among the orbitals, leading to an effect similar to either hole or electron doping a MI in each orbital. This effect resembles a multiorbital version of the physics in doping the cuprates, which is known to favor superconductivity.

In conclusion, we have studied electron correlation effects in a bilayer two-orbital Hubbard model for \(\text{La}_3\text{Ni}_2\text{O}_7 \) in the MO basis, and found a strong orbital selectivity when the interaction strength is moderate. Further increasing the interaction, an OSMP is stabilized. The OSMP is close to an \(S = 3/2 \) high-spin state, in which the \(x^2 - y^2 \) and \(z^2 \) bonding orbitals are all very close to half filling. In light of these results, we obtain an effective multiorbital \(t-J \) model for superconductivity of the system in the crossover regime towards the high-spin configuration. We show that the system exhibits orbital-selective pairing and the leading superconducting pairing channel evolves from the extended \(s \)-wave \(A^{1g} \) to \(d \)-wave \(B^{1g} \) when the intraorbital nearest-neighbor exchange coupling \(J^{xx} \) is increased. Our work paves the way for systematically
FIG. 6. (a) Band structure of La₃Ni₂O₇ along high-symmetry directions of the BZ calculated from DFT (black lines) and from the bilayer two-orbital tight-binding model (red lines). (b) The corresponding projected DoS calculated from DFT. In the calculation, we have used a simplified tetragonal structure. The corresponding names of the high-symmetry points in the actual orthorhombic structure of the compound BZ are given in brackets. Γ’ refers to the Γ point of the second BZ.

describing the pressure-induced high-T_c superconductivity of La₃Ni$_2$O$_7$.

ACKNOWLEDGMENTS

We acknowledge H. Hwang, E. M. Nica, C. Varma, M. Wang, H.-H. Wen, and W. Yu for useful discussions. This work was supported in part by the National Science Foundation of China (Grants No. 12334008 and No. 12174441). Work at Rice University was primarily supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0018197, and by the Robert A. Welch Foundation Grant No. C-1411. Q.S. acknowledges the hospitality of the Aspen Center for Physics, which is supported by NSF Grant No. PHY-2210452, during the workshop “New directions on strange metals in correlated systems.”

APPENDIX A: DETAILS ON THE TIGHT-BINDING MODEL

To include the realistic band structure at low energies to our tight-binding modeling, we first carried out band-structure calculations for La₃Ni₂O₇ within the framework of DFT. We have used the plane wave basis set as implemented in the Vienna Ab initio Simulation Package (VASP) code [36]. Projector augmented-wave potentials and the Perdew-Burke-Ernzerhof exchange-correlation functional were used in the calculations. We consider the experimental lattice parameters ($a = 5.289$ Å, $b = 5.218$ Å, $c = 19.734$ Å) [4] in the simulations. Since the difference between a and b is only about 1.3%, we use their average value ($a = b = 5.2535$ Å) in the calculations. Though this procedure has modified the space group from $Fmmm$ to $I4/mmm$, it should have little effect on the electronic structure.

As shown in Fig. 6, the bands near the Fermi energy have mainly the Ni 3d e_g orbital character. The bands associated with the t_{2g} orbitals are at least 1 eV below the Fermi level. The oxygen 2p bands are dominant at about 4 eV below the Fermi energy. Therefore, the relevant orbitals within a 2 eV energy window about the Fermi energy are the Ni e_g ones. We hence fit the Wannierized bands with a bilayer two-orbital tight-binding Hamiltonian including these e_g orbitals in the BZ corresponding to the two Ni (in the top and bottom layers) unit cells. At this step we have used projected Wannier functions; the procedure of disentanglement was performed with the maximally localized Wannier functions scheme as implemented in the wannier90 code [37]. The tight-binding parameters from the fitting are summarized in Table I.

The band structure of the bilayer two-orbital tight-binding model compared to the DFT results is shown in Fig. 6. The tight-binding model reproduces a similar band structure of DFT in the energy window of interest, from -1.5 to 2.5 eV.

APPENDIX B: THE INTERACTION HAMILTONIAN IN THE BONDBING MOLECULAR ORBITAL BASIS AND THE LOW-SPIN TO HIGH-SPIN CROSSOVER

In Eq. (3), we performed a transformation from the atomic orbital basis to the MO basis. Here we define MOs for both the z^2 and $x^2 - y^2$ orbitals is much smaller than both its intralayer counterpart and the interlayer hopping between the z^2 orbitals. We therefore expect that the $x^2 - y^2$ orbital is largely nonbonding.

In this MO basis, the interaction Hamiltonian is rewritten to

$$H_{\text{int}} = H_{\text{int}}^{b-b} + H_{\text{int}}^{b-a},$$

(B1)
where the bonding-bonding and antibonding-antibonding interactions are

\[
H_{\text{int}}^{b-b} = \frac{U}{2} \sum_{\alpha} (n_{\downarrow \alpha} n_{\downarrow \alpha} + n_{\uparrow \alpha} n_{\uparrow \alpha}) + \frac{U'}{4} \sum_{\alpha \neq \beta, \sigma \neq \sigma'} (n_{\uparrow \alpha} n_{\downarrow \beta} + n_{\downarrow \alpha} n_{\uparrow \beta})
\]

\[+ \frac{U'}{2} \sum_{\alpha \neq \beta} (n_{\uparrow \alpha} n_{\downarrow \beta} + n_{\downarrow \alpha} n_{\uparrow \beta}) - \frac{J}{2} \sum_{\alpha \neq \beta} (d_{\uparrow \alpha} d_{\uparrow \beta} + d_{\uparrow \beta} d_{\uparrow \alpha})
\]

\[+ \frac{J}{2} \sum_{\alpha \neq \beta} (d_{\uparrow \alpha} d_{\uparrow \beta} + d_{\uparrow \beta} d_{\uparrow \alpha} + d_{\uparrow \alpha} d_{\uparrow \beta} + d_{\uparrow \beta} d_{\uparrow \alpha})
\]

and the bonding-antibonding mixing interaction is

\[
H_{\text{int}}^{b-a} = \frac{U}{2} \sum_{\alpha} (n_{\downarrow \alpha} n_{\uparrow \alpha} + n_{\uparrow \alpha} n_{\downarrow \alpha}) + \frac{U'}{4} \sum_{\alpha \neq \beta, \sigma \neq \sigma'} (n_{\uparrow \alpha} n_{\downarrow \beta} + n_{\downarrow \alpha} n_{\uparrow \beta})
\]

\[+ \frac{U'}{2} \sum_{\alpha \neq \beta} (n_{\uparrow \alpha} n_{\downarrow \beta} + n_{\downarrow \alpha} n_{\uparrow \beta}) - \frac{J}{2} \sum_{\alpha \neq \beta} (d_{\uparrow \alpha} d_{\uparrow \beta} + d_{\uparrow \beta} d_{\uparrow \alpha})
\]

\[+ \frac{J}{2} \sum_{\alpha \neq \beta} (d_{\uparrow \alpha} d_{\uparrow \beta} + d_{\uparrow \beta} d_{\uparrow \alpha} + d_{\uparrow \alpha} d_{\uparrow \beta} + d_{\uparrow \beta} d_{\uparrow \alpha})
\]

Diagonalizing the interaction Hamiltonian along with the on-site potential term in the tight-binding Hamiltonian written in the MO basis, we obtain two ground states in the atomic limit. In the atomic limit, there are four degenerate low-spin configurations and two degenerate high-spin configurations. The unitary operator \(S\) that transforms from the total spin ground state to the lowest singlet ground state is determined by requiring the ground state energy to be 0, and the effective Hamiltonian for the totally spin-polarized state is given by

\[
H_{\text{eff}} = e^{iS} H e^{-iS} = H_0 + [iS, H_0] + [iS, H_1] + \ldots
\]

\[
\approx \frac{1}{2} [iS, H_1].
\]
where \vec{J}_ij is the $S = 3/2$ spin operator at the ith and jth unit cells. While this model should be well applied in the limit $U/t \to \infty$, calculations suggest the La$_3$Ni$_2$O$_7$ is close to the low-spin to high-spin crossover, where the effects of low-lying low-spin excitations are non-negligible. In practice, this would be difficult to project the effective Hamiltonian to a sector including both high- and low-spin configurations given the incompatible quantum numbers of these two states. Here we adopt an alternative way. We consider a model with three-orbital Heisenberg couplings,

$$H_{\text{eff}} = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j,$$

where \vec{S}_i is the $S = 3/2$ spin operator at the ith unit cell. While this model should be well applied in the limit $U/t \to \infty$, calculations suggest the La$_3$Ni$_2$O$_7$ is close to the low-spin to high-spin crossover, where the effects of low-lying low-spin excitations are non-negligible. In practice, it would be difficult to project the effective Hamiltonian to a sector including both the high- and low-spin configurations given the incompatible quantum numbers of these two states. Here we adopt an alternative way. We consider a model with three-orbital Heisenberg couplings,

$$H_{\text{eff}} = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j - J_{H} \sum_{i} \vec{S}_i \cdot \vec{S}_i,$$

where \vec{S}_i is an $S = 1/2$ spin operator in orbital α, and α runs over the two $x^2 - y^2$ and the bonding z^2 orbitals. J_{H} is an effective Hund’s coupling trying to align spin directions in all orbitals. The model in Eq. (C4) goes back to the one in Eq. (C3) in the limit $J_{H} \to \infty$. By reducing the value of J_{H}, the effects from more low-spin configurations are taken into account.

To precisely determine the values of the model parameters J_{H} and $J_{ij}^{\alpha\beta}$ in Eq. (C4) requires accurate knowledge of U and J_{H} in the original multiorbital Hubbard model. We note that the purpose of the present work is to capture the key features of superconductivity over a wide physical regime of model parameters. As such, we further simplify the model in Eq. (C4) by taking $J_{H} = 0$. This makes the spin of each orbital dependent, and maximally includes effects from low-spin states. In this way, we can project the effective Hamiltonian to each orbital subspace independently and determine the orbital dependent effective exchange couplings. For the in-plane nearest neighbor pair of sites, we find $J_{11}^{xx} = 158.6$ meV, $J_{11}^{yy} = 45.8$ meV, and $J_{11}^{zz} = -1.1$ meV for $U = 6$ eV and $J_{H}/U = 0.25$. The exchange couplings for a pair of sites along other directions are less than 1 meV in magnitude and are hence neglected. Note that for nearest neighbor pairs the intraorbital exchange couplings are both antiferromagnetic, whereas the interorbital one is very weakly ferromagnetic. This implies a strong competition between antiferromagnetic and ferromagnetic interorbital processes. Varying U and J_{H}/U can significantly modify the effective exchange couplings. In the calculation for superconductivity, we take $J_{11}^{xx} \approx 0.025W_0$ and leave J_{11}^{zz} as a free parameter. Here $W_0 \sim 4$ eV is the bare bandwidth at $U = 0$.
