
PHYSICAL REVIEW B 106, 195303 (2022)

Second-order topological insulator in van der Waals heterostructures of CoBr2/Pt2HgSe3/CoBr2
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The second-order topological insulator, which has (d − 2)-dimensional topological hinge or corner states, has
been observed in three-dimensional materials, but has yet not been observed in a two-dimensional system. In
this work we theoretically propose the realization of a second-order topological insulator in the van der Waals
heterostructure of CoBr2/Pt2HgSe3/CoBr2. Pt2HgSe3 is a large gap Z2 topological insulator. With an in-plane
exchange field from neighboring CoBr2, a large global band gap of above 70 meV opens up at the edge. The
corner states, which are robust against edge disorders and irregular shapes, are confirmed in the nanoflake.
We further show that the second-order topological states can also be realized in the heterostructure of the jacut-
ingaite family Z2 topological insulators. We believe that our work will be beneficial for the experimental
realization of second-order topological insulators in van der Waals layered materials.
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I. INTRODUCTION

The second-order topological insulator [1–26] is a kind of
topological state of matter that possesses zero-dimensional
(0D) corner or one-dimensional (1D) hinge states for a
two-dimensional (2D) or three-dimensional (3D) system, re-
spectively. Since it was first conceptually proposed [2,3],
second-order topological insulators have been widely studied
in the aspects of lattices [4–7], symmetries [8–14], model
constructions [15–23], and topological classifications [24,25].
Inspired by these proposals, some potential applications of
second-order topological insulators were proposed [27,28]. So
far, second-order topological insulators have only been exper-
imentally realized in 3D materials, i.e., bismuth [29], Bi4Br4

[30]. In 2D, material candidates of second-order topological
insulators are still limited [31–37], and the material realization
of second-order topological insulators in electronic systems
is still rare, which greatly limits the potential development
of this field. Therefore, it is highly desirable to explore new
material candidates and scalable methods for the 2D second-
order topological insulator.

To design a second-order topological state, breaking speci-
fied symmetry in first-order topological insulators is a scalable
scheme [22], which is believed to be easily implemented
by applying external pressure or introducing magnetization.
Recently some predictions have been made in 3D systems
such as SnTe [8], EuIn2As2 [38], and Sm-doped Bi2Se3 [39].
In the 2D system, the only prediction is made in bismuthene
deposited on a bulk magnetic insulator that provides in-plane
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magnetization as the symmetry breaking term [37]. However,
no experimental progress has been made in this material
system. Compared to the heterostructure of a bulk magnetic
substrate, the van der Waals (vdW) heterostructure [40,41]
constructed by 2D magnetic layers can avoid the cleaved
surface problem, which makes it experimentally friendly.

In this work we show the possibility of realizing the
second-order topological insulators in the vdW heterostruc-
ture of CoBr2/Pt2HgSe3/CoBr2 with large band gap and
robust corner states. In the absence of spin-orbit coupling
(SOC), the magnetic proximity effect leads to a considerable
spin splitting at valleys K and K ′. When the SOC is consid-
ered, sizable bulk and nanoribbon band gaps are opened. In the
nanoflake, one topological corner state arises at the intersec-
tion of boundaries with its eigenenergy being located inside
the energy gap of edge states (see Fig. 10 for the schematics of
the nanoribbon and nanoflake). When irregular boundary and
Anderson disorders are introduced, we show that the topolog-
ical corner states are almost unaffected. Besides Pt2HgSe3,
we find that other Z2 topological insulators of the jacutin-
gaite family can also be utilized as the candidate materials
for the realization of topological corner states. Moreover, a
low-energy effective model based on topological edge states
is constructed, demonstrating that the 1D Jackiw-Rebbi model
can be used to explain the presence of topological corner
states.

II. CALCULATION METHODS AND ATOMIC STRUCTURE

Our first-principles calculations were performed by using
the projected augmented-wave method [42] as implemented
in the Vienna ab initio simulation package (VASP) [43].
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FIG. 1. (a) and (b) Top and side views of the heterostructures of
CoBr2/Pt2HgSe3/CoBr2. (c) and (d) Binding energies along the high
symmetry lines for the respective horizontal and diagonal directions.
Here δ represents the displacement, and d1 and d2 are half the length
of the lattice constants of horizontal and diagonal directions.

The generalized gradient approximation of the Perdew-Burke-
Ernzerhof type was used to describe the exchange-correlation
interaction [44]. All atoms were allowed to relax until the
Hellmann-Feynman force on each atom is smaller than 0.01
eV/Å. The �-centered Monkhorst-Pack grid of 7×7×1 was
carried out in all our calculations. For the Co, the GGA+U
method was used with the on-site repulsion energy U =
3.67 eV [45]. The vdW interaction was treated by using the
DFT-D2 functional [46]. And the topological properties were
calculated by using maximally localized Wannier functions as
implemented in the Wannier90 package [47]. A vacuum buffer
layer of 20 Å was used to avoid interaction between adjacent
slabs. The plane-wave energy cutoff was set to be 400 eV.

Figures 1(a) and 1(b) display the heterostructure of
CoBr2/Pt2HgSe3/CoBr2, where 3D bulk Pt2HgSe3 is a dual-
topological semimetal that can be exfoliated down to a few
layers in ambient conditions [48–51], monolayer Pt2HgSe3 is
a Z2 topological insulator with a large band gap of 0.17 eV
[52,53], and monolayer CoBr2 is a ferromagnetic insulator
with an in-plane magnetic easy axis [45]. The lattice constants
are 7.35 Å for Pt2HgSe3 and 3.71 Å for the CoBr2 mono-
layer, thus we slightly compress the 2×2 CoBr2 supercell to
match the Pt2HgSe3 monolayer during the calculation. We
find that the main properties of the heterostructure are not
obviously affected by small lattice stretch or compression (see
Fig. 11).

The structural stability is strictly checked by calculating
the binding energy of Pt2HgSe3/CoBr2 heterostructure with a
series of different stacking configurations. The binding energy
can be expressed as �E = EH − EP − EC, where EH, EP, and

EC are, respectively, the total energy of the heterostructure,
Pt2HgSe3 monolayer, and CoBr2 monolayer. As shown in
Figs. 1(c) and 1(d), the calculated binding energies suggest
that the bottom Hg atoms prefer to sit on top of the Co atoms.
And the energy barrier is as large as tens of millielectron volts
as we shift the Pt2HgSe3 monolayer away from its most stable
stacking structure. Here we only discuss electronic and topo-
logical properties of the most stable configuration as shown
in Figs. 1(a) and 1(b). The possible fabrication method and
thermodynamic stability of the heterostructure are discussed
in Appendix B.

III. LOW-ENERGY EFFECTIVE MODEL
OF THE HETEROSTRUCTURE

Before demonstrating detailed first-principles calculation
results, it is necessary to clearly illustrate the underlying
physics. As reported in previous studies [52,53], Pt2HgSe3
is a Kane-Mele type topological insulator, which exhibits
two Dirac cones at K and K ′ as graphene in the absence of
SOC and opens a large band gap at the Dirac points after
considering SOC. By calculating the band structure evolution
of the heterostructure, we find that CoBr2 covering layers
provide sizable in-plane magnetization to Pt2HgSe3 but have
negligible orbital contributions around the Fermi level. To
capture the essential topological properties and band shapes
around the Fermi level, a low-energy effective model at K and
K ′ valleys is constructed as follows [52–57]:

H = H0 + Hsoc + Hm, (1)

where H0 + Hsoc describes the electronic properties of
Pt2HgSe3 with H0 = h̄vF(τzσxkx + σyky)s0 characterizing the
Dirac dispersion around K/K ′ valleys and Hsoc = λ0τzσzsz

representing the SOC. τ, σ, and s are Pauli matrices for the
valley, sublattice, and spin, respectively. Hm = m0sy repre-
sents the in-plane magnetization provided by CoBr2 layers.
The evolution properties of the low-energy effective model is
the same with the ab initio results (see Appendix C), indicat-
ing the former can capture the essential topological properties
of the heterostructure.

In the presence of in-plane magnetization, the bulk band
structure becomes split upward (downward) when the sy

eigenvalue equals +1 (−1), respectively, as displayed as
dashed lines of Fig. 2(a). When the SOC is further included,
four anticrossings occur at the bands with opposite spin direc-
tions as the SOC can mix up the sy = ±1 eigenstates.

IV. LOW-ENERGY EFFECTIVE MODEL
OF THE EDGE STATES

To clearly understand the second-order topological state,
we construct a low-energy effective model on the basis of the
topological edge states that gives the edge-corner correspon-
dence, just like the bulk-edge correspondence in first-order
topological insulators. In the following we show the details
in the establishment of the low-energy effective model of the
edge states. We mapped the bulk low-energy effective model
to the honeycomb lattice and a full numerical method was
used during the construction. The corresponding real-space
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FIG. 2. (a) The band structure of an in-plane magnetized hexago-
nal lattice without (dashed line) and with (solid line) SOC. The color
of the solid line represents the expectation value of the sy operator.
(b) The schematic diagram of spin up/down edge states and mass
term when in-plane magnetization is induced. (c) and (d) The band
structure of a zigzag nanoribbon without (c) and with (d) in-plane
magnetization, respectively. The insets in (c) and (d) show the energy
spectrums of the 0D nanoflake and the probability distribution of the
states marked in red.

Hamiltonian in the honeycomb lattice can be expressed as

H = t
∑
〈i j〉α

c†
iαc jα + iλsoc

∑
〈〈i j〉〉αβ

vi j s
z
αβc†

iαc jβ

+
∑
iαβ

m0sy
αβc†

iαciβ, (2)

where c†
iα (ciα) is the creation (annihilation) operator for an

electron on site i with spin α. vi j = d j × d i/|d j × d i|, where
d i and d j are two nearest neighbor bonds connecting the
next-nearest neighbor sites. The hopping amplitude and SOC
strength are given by t = 2√

3
h̄vF and λsoc = 1

3
√

3
λ0, respec-

tively.

A. Effective model of edge states in the absence of magnetization

We consider a zigzag nanoribbon which is periodic in x
direction and finite in y direction as shown in Fig. 3. The
Hamiltonian of the nanoribbon can be expressed as H (kx ) =
H0 + H1kx + Hm where the insignificant kn

x (n � 2) terms
have been omitted. Here we refer to H0 as the unperturbed
Hamiltonian and other terms as perturbations. Numerically
solving the eigenvalue problem of H0, we find fourfold degen-
erate edge states which can be expressed as |E1↑〉, |E1↓〉, |E2↑〉,
and |E2↓〉 with E1 (E2) corresponding to edges and arrows rep-
resenting the spin. In the absence of in-plane magnetization,
by treating H1kx as a perturbation, the effective model of the
edge E1 can be written as

HE1 =
(〈E1↑|H1kx|E1↑〉 〈E1↑|H1kx|E1↓〉

〈E1↓|H1kx|E1↑〉 〈E1↓|H1kx|E1↓〉
)

. (3)

FIG. 3. The lattice structure of the nanoribbon with its unit cell
marked in red. As the nanoribbon is periodic in x direction and finite
in y direction, zero-energy edge states exist at the two edges E1

and E2.

Numerically calculating the matrix elements, the effective
model of edge states can be expressed as

Hedge = −ηv0kxσz, (4)

with η = +1 (−1) for edges E1 and E2, respectively. The ef-
fective model shows that the spin up and spin down electrons
move along opposite directions at the edges which manifests
the nature of the Z2 topological insulator.

B. Effective model of edge states with in-plane magnetization

In the presence of in-plane magnetization, the spin up and
spin down edge states will mix with each other, thus an energy
gap will be opened. Using the perturbation method, we can
well explain the gap open mechanism. When the in-plane
magnetization is included, the perturbation term is H1kx + Hm

with Hm = m0sy. The low-energy effective model for the in-
plane magnetization term Hm can be expressed as

Hm,E1 =
(〈E1↑|Hm|E1↑〉 〈E1↑|Hm|E1↓〉

〈E1↓|Hm|E1↑〉 〈E1↓|Hm|E1↓〉
)

. (5)

Calculating the matrix elements, we find that different from
the effective model of H1kx, which only has the diagonal
terms, the effective model for the in-plane magnetization term
only has off-diagonal terms which is

Hm,E1 =
(

0 αm
α∗m 0

)
, (6)

where α is a complex number with |α| = 1 which comes from
the undetermined phase difference between edge states |E1,↑〉
and |E1,↓〉. The total effective model for edge E1 can be
expressed as

Heff,E1 =
(

v0kx αm
α∗m −v0kx

)
. (7)

By using the same way, the effective model of edge E2 can be
written as

Heff,E2 =
(−v0kx βm

β∗m v0kx

)
, (8)

where |β| = 1.
We find that the energy dispersion of the low-energy effec-

tive model is

ε±
kx

= ±
√

v2
0k2

x + m2. (9)
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FIG. 4. The edge band gap as a function of in-plane magneti-
zation coefficient m0 for the lattice model and low-energy effective
model.

The energy spectrum shows that a band gap of � = 2m is
opened by in-plane magnetization at the edges. More impor-
tantly, the low-energy effective model can well capture the
band opening process. As shown in Fig. 4, the calculated band
gaps of the lattice model and low-energy effective model have
the same values, indicating that our effective model can well
describe the edge band gap.

C. Effective mass term of edges in a 0D nanoflake

Previous results show that in-plane magnetization will in-
duce an effective mass term which can open a gap in the
energy spectrum of the edge. However, the undetermined
phase factors α and β block the determination of the mass
terms of edges. To solve this problem, we consider the edge
states in a 0D nanoflake in which the phase factors of edges
are locked.

As shown in Fig. 5(a), we plot the energy spectrum of the
nanoflake without in-plane magnetization. Because of the ex-
istence of time reversal symmetry, the eigenstates are doubly
degenerate. As the commutation relation [H0 + Hsoc, sz] = 0
is preserved, the doubly degenerate states can be separated to
spin up and spin down states which are expressed as ψ↑ and

FIG. 5. (a) The energy spectrum of the zero-dimensional
nanoflake. (b) The conducting channels of the spin up and spin down
edge states.

FIG. 6. The illustration of vector n at edges of the nanoflake.
(a) The original result gotten from the spin up and spin down wave
functions. (b) The evaluation of vector n from the phase factors
accumulation of a finite momentum k. (c) The remaining part of
vector n by eliminating the phase factors accumulation.

ψ↓, respectively. As discussed previously, the two eigenstates
move in opposite directions as illustrated in Fig. 5(b). By
using the numerical edge states ψ↑ and ψ↓, we can get the
effective mass term on every atom site. Seeing the in-plane
magnetization Hm as a perturbation, the mass term on each
atom site can be expressed as

H ′
eff,i =

(〈ψ↑,i|Hm|ψ↑,i〉 〈ψ↑,i|Hm|ψ↓,i〉
〈ψ↓,i|Hm|ψ↑,i〉 〈ψ↓,i|Hm|ψ↓,i〉

)
, (10)

with ψ↑,i and ψ↓,i representing the spin up and spin down
wave functions at site i, which are two-dimensional column
vectors. Seeing the effective mass term as a pseudospin, we
have

H ′
eff,i = n · σ, (11)

with n representing the magnitude and direction of the effec-
tive mass term. By calculating the matrix elements of H ′

eff,i,
we can get the vector n and its angle as plotted in Fig. 6(a).
Note that, vector n always stays in the xy plane as the diagonal
parts of H ′

eff,i are zero. We can see that the vector n continu-
ously evolutes along the I, IV or II, III edges while sharply
inverses its direction at the corners between I/II and III/IV
edges which indicates the sign change of the mass term across
those corners.

To see it more clearly, we separate the vector n into two
parts: (1) The phase factor from a finite momentum k [as
shown in Fig. 6(b)]. (2) The remaining part by eliminating
the continuous phase accumulation [as shown in Fig. 6(c)].
The continuous evolution of vector n origins from the phase
factors accumulated by the spin up and spin down states as
they move away from their initial positions. As the spin up and
spin down states move along opposite directions (illustrated
in Fig. 5), the phase accumulations are eikl and e−ikl , respec-
tively, where l refers to the atomic position and k represents
the finite momentum. This phase accumulation will add a
clockwise rotation to vector n with angle 2kl . Specifically, the
wave function at site i can be expressed as ψ↑,i = eiklψ↑,i0

and ψ↓,i = e−iklψ↓,i0, with ψ↑,i0, ψ↓,i0 representing the states
which do not introduce the phase accumulation. Then we have
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the relation (
nx

ny

)
=

(
cos θ sin θ

− sin θ cos θ

)(
n0x

n0y

)
, (12)

with θ = 2kl and n0 representing the effective mass term
without phase accumulation. We can find that Eq. (12) is the
clockwise rotation of the vector n0. As shown in Fig. 6(b), this
phase factor goes 2π along the boundary. In Fig. 6(c) we plot
the remaining part of vector n by eliminating the continuous
phase accumulation. Vector n is in −x direction at I, IV edges
and in +x direction at II, III edges, indicating that the effective
mass term changes its sign at the corners of these edges.

To be more clear, we summarize our main results in
Fig. 2(b). The effective model can be rewritten by taking
“edge coordinate” l that grows anticlockwisely,

Heff = iv0σz∂l + m(l )σx, (13)

where m(l ) = +m (−m) for edge II and III (I and IV). By
applying a unitary transformation U = exp(iσyπ/4), Eq. (13)
becomes

H ′
eff = −iv0σx∂l + m(l )σz, (14)

which is exactly the 1D Jackiw-Rebbi model [58]. Thus, there
always exist zero energy solutions near the domain walls,
where m changes its sign. The numerical results are consistent
with the effective model. As shown in Figs. 2(c) and 2(d), the
edge spectrum is gapped after the presence of in-plane mag-
netization. When taking the 0D nanoflake into consideration,
two zero energy states with a wave function distributed at the
corner occur.

V. BAND STRUCTURES AND SECOND-ORDER
TOPOLOGICAL PROPERTIES

The band structure evolution from first-principles calcu-
lations agrees well with our model analysis. As shown in
Fig. 7(a), the spin majority and spin minority bands are largely
separated at K/K ′ point when SOC is not included, indicating
that CoBr2 covering layers provide sizable in-plane magneti-
zation to Pt2HgSe3. In the presence of SOC, large band gaps
are opened around the band crossing points as illustrated in
Fig. 7(b). The spin projections 〈sy〉 show that the sy = +1 and
sy = −1 states are mixed by SOC which is consistent with the
results in our low-energy effective model shown in Fig. 2(a).

To explore the topological properties of the heterostructure,
the energy spectra of the 1D nanoribbon and 0D nanoflake are
calculated by using the Hamiltonian generated from the max-
imally localized Wannier functions [47]. The atomic orbitals
of Hg (s) and Pt (dxy, dyz, dx2 , dyz) are used for projection since
they contribute dominantly to the energy bands near the Fermi
level. In Figs. 7(c) and 7(d) we plot the edge states of the
1D zigzag nanoribbon by using the surface Green’s function
technique. Similar to Fig. 2(d), sizable band gaps of edge
states are opened in the heterostructure (see more detailed
analyses of the edge states band gap and the corresponding
model results in Appendix D). To verify the formation of cor-
ner states, we calculate the energy spectrum of the nanoflake
system with 40×40 unit cells. As shown in Fig. 7(e), we find
one in-gap state highlighted in red, with its probability density
distributed around one corner. When disorders are introduced

FIG. 7. (a) and (b) Band structure of CoBr2/Pt2HgSe3/CoBr2

heterostructure without and with SOC. In (a) the red (blue) repre-
sents spin up (down) states. The color of the line represents the the
expectation value of the sy operator in (b). (c) and (d) Edge states
of the zigzag nanoribbon with (c) and (d) representing the right and
left terminals, respectively. (e) and (f) Energy levels of the nanoflake.
Corner states are highlighted in red. The insets show the distribution
of the corner state. In (f) the corner state still exists with irregular
boundaries.

by introducing edge randomness, we find that the topological
corner state still exists at the irregular region [see Fig. 7(f)].

As the upper and lower edges of the 0D nanoflake are
constructed by Hg and Pt atoms, respectively (see Fig. 17),
different on-site potentials are expected at the edges. Though
unequal edge potentials can move the energy levels of the edge
states and corner states, the existence of topological corner
states are not affected. Similar results were also reported in
Sm-doped Bi2Se3 which is a 3D second-order topological
insulator [39]. See Appendix E for detailed analyses of the
influence of the edge potential.

VI. ROBUSTNESS OF THE CORNER STATES

To explore the robustness of the corner states, we add
random disorders Hd to the outermost unit cells, where Hd =
w

∑
i c†

i ci with w being uniformly distributed within an in-
terval of [−W/2,W/2]. The disorder strength is set as W =
80 meV that is approximately in the same magnitude of the
edge band gap. The local density of states (LDOS) around the
corner is introduced to characterize the existence of corner
states. The LDOS can be calculated by using retarded Green’s
function

LDOS(E , n) = − 1

π
Im

[
1

E − H + iδ

]
nn

, (15)
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FIG. 8. (a) and (b) Local density of states at Hg and Pt corners,
respectively. Insets show the local density of states at real space
for the corner, edge, and bulk states at a specific energy. (c) and
(d) The average local density of states in the presence of disorder
for Hg (c) and Pt (d) corners, respectively. Disorder strength is set as
W = 80 meV. Over 100 samples are collected.

where n represents the atomic site. Figure 8 plots the LDOS
summation of atomic sites at three unit cells around the cor-
ners with obtuse angles. In the absence of disorder, sharp
peaks occur in Figs. 8(a) and 8(b), corresponding to corner
states at Hg and Pt edges, respectively. Aside from the typ-
ical peaks, LDOS can also provide real-space distributions
of electronic states. The electronic states are predominantly
localized around the corner at the peaks of the LDOS curve,
as illustrated in the inset of Figs. 8(a) and 8(b). When the
random disorders are introduced, we plot the averaged LDOS
on 100 samples as displayed in Figs. 8(c) and 8(d). One can
see that the peaks for corner states are still visible, suggesting
that topological corner states are robust against weak disorder.

VII. CORNER STATES IN THE Pt2HgSe3 FAMILY

To explore the possibility of realizing corner states in other
heterostructures of the Pt2HgSe3 family materials [53,59,60],
we systematically study the electronic band structures and
topological properties of MZ2/Pt2XS3/MZ2 (M = Co and Ni;
Z = Br and Cl; X = Zn and Hg). As displayed in Table I,
most heterostructures have small lattice mismatch and sizable
band gaps. By calculating the energy spectrums and wave
function distributions of the nanoflake, three candidates with
topological corner states are discovered (see more details in
Appendix F).

VIII. THE DETECTION OF TOPOLOGICAL
CORNER MODES

The differential conductance spectra from the scanning
tunneling microscope (STM) experiments are proportional to

TABLE I. Structural, band, and topological properties of het-
erostructures in the Pt2HgSe3 family.

Heterostructure Lattice mismatch Band gap Second-order TI

Pt2ZnS3/CoBr2 4.01% 8.3 meV No
Pt2ZnS3/CoCl2 1.37% 29.4 meV No
Pt2ZnS3/NiBr2 1.68% 0 meV No
Pt2ZnS3/NiCl2 3.14% 24.1 meV Yes
Pt2HgS3/CoBr2 3.78% 58.0 meV Yes
Pt2HgS3/CoCl2 1.60% 88.6 meV Yes
Pt2HgS3/NiBr2 1.45% 62.9 meV No
Pt2HgS3/NiCl2 3.37% 48.9 meV No

the local density of states (LDOS) which can be used to detect
corner states. According to the energy spectrum, we know
that the corner states appear in the energy gaps of the edge
and bulk states, i.e., the bulk, edge, and corner states can be
distinguished at different bias voltages in STM experiments.
Specifically, one can compare the differential conductance
spectra of the bulk, edge, and corner. For a second-order
topological insulator, the peaks corresponding to the corner
states exist in the corner spectrum while the edge and bulk
spectra do not have these peaks. Besides, it is more efficient
to see the real space distributions of corner states by getting
the differential conductance maps around the corner at the bias
voltage around the peak in the corner spectrum (the eigenvalue
of the corner state).

Based on the LDOS map in the insets of Figs. 8(a) and
8(b), the corner states are found in several unit cells of the het-
erostructure. Thus, the corner states have different features to
the electronic states generated by the random disorder which
are mainly localized in the atomic size range. As the corner
states are topologically protected, if we cut off one corner
state, another new corner state will be generated at the newly
built corner as illustrated in Fig. 9. This property is the unique
feature of the topological corner state which distinguishes it
from the topological trivial state and it can be used as strong
evidence for confirming the corner state experimentally. Ac-
tually, the topological corner state has been experimentally
confirmed in an artificial electronic system by using STM
recently [61] suggesting the detection is achievable.

IX. SUMMARY

We demonstrate that the two-dimensional second-order
topological states can be realized in the vdW heterostructures

FIG. 9. Illustration of the unique properties of the topological
corner states. If we cut off the corner state shown in (a), a new corner
state will occur around the newly built corner as shown in (b).
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of CoBr2/Pt2HgSe3/CoBr2. CoBr2 layers proximity induce
a considerable in-plane exchange field in Pt2HgSe3, which
makes the edge states gapped. Inside the band gap we find
corner states in a nanoflake geometry that can be understood
by a 1D Jackiw-Rebbi model. We find that the corner states
can be probed by measuring the local density of states near
the corner, which is robust against the atomic randomness at
the boundaries and Anderson disorders. We show that these
topological corner states can also be realized in other can-
didate materials, e.g., MZ2/Pt2XS3/MZ2 (M = Co and Ni;
Z = Br and Cl; X = Zn and Hg). The proposed realistic ma-
terial system for a two-dimensional second-order topological
insulator should be significant to experimental realization and
inspire further investigation in this field.
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APPENDIX A: SCHEMATIC OF THE NANORIBBON
AND NONOFLAKE

In Fig. 10 we plot the schematic to illustrate the nanorib-
boin and nanoflake. The nanoribbon is periodic in one
direction while limited in another direction. The nanoflake is
diamond shaped.

APPENDIX B: THE POSSIBLE FABRICATION METHOD
AND STABILITY OF THE HETEROSTRUCTURE

We recommend to grow the heterostructure via chemical
vapor deposition or molecular-beam epitaxy method. Previ-
ous experiments have shown that the high-quality vertically
stacked heterostructure with certain stacking order, no lattice
mismatch, and no twist angles can be fabricated by the growth
method. For example, WS2/MoS2 heterostructure is epitaxi-
ally grown with 2H stacking though the initial lattice constants

FIG. 10. The schematic of the nanoribbon and nanoflake for the
model calculation (a) and CoBr2/Pt2HgSe3/CoBr2 heterostructure
(b).

FIG. 11. The band structure of CoBr2/Pt2HgSe3/CoBr2 het-
erostructures in the presence of compressive and tensile stress with
lattice parameters changing from −1.5% to 1.5%.

of the two monolayer materials are different [62,63]. Actually,
many van der Waals heterostructures have been successfully
grown [64–67].

FIG. 12. The ab initio molecular dynamics simulations of
CoBr2/Pt2HgSe3/CoBr2 heterostructure. The initial structure and
the structure after 5 ps of molecular dynamics simulations are shown
in (a) and (b), respectively. (c) and (d) The evolution of the temper-
ature and total energy during the molecular dynamics simulations of
the heterostructure, respectively.
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FIG. 13. The band structure evolutions of monolayer Pt2HgSe3

and the heterostructure with/without SOC. (a) and (b) The band
structure of Pt2HgSe3 without/with SOC, respectively. (c) and
(d) The band structure of CoBr2/Pt2HgSe3/CoBr2 without/with
SOC, respectively. (e) and (f) The orbital projections of CoBr2 and
Pt2HgSe3 on the band structure of the heterostructure.

We use the most stable configuration in our calculations
(see Fig. 1). The lattice constant is 7.35 Å for 1×1 Pt2HgSe3
and 7.41 Å for 2×2 CoBr2 which only have a small lattice
difference. During the growth process, Pt2HgSe3 and CoBr2

monolayers will slightly change their lattice constants spon-

FIG. 14. The band structure of the low-energy effective model.
(a)–(d) Band structure of H0, H0 + Hsoc, H0 + Hm, and H0 + Hsoc +
Hm. The parameters are set as h̄vF = 1.97 eV/Å, λ0 = 81.2 meV,
and m0 = 86.5 meV.

FIG. 15. The edge states of the zigzag nanoribbon and the
schematic of the position of edge states. (a) and (c) The right and
left edge states of the heterostructure. (b) and (d) The schematic of
the position of the right and left edge states. The surface states buried
in the bulk are shown as a dashed line.

taneously to match with each other. To take into account
the influence of lattice constant changes, we also calculate
the band structure of the heterostructure in the presence of
biaxial strain. The strain can be defined as a = a0(1 + α)
where α and a0 represent the strain and the lattice constant
of Pt2HgSe3, respectively. As shown in Fig. 11, we find that
the tensile/compressive strain can increase/decrease the band
gaps, whereas it does not obviously change the shape of band
structures indicating the topological properties are not altered.
As the lattice constant of 2×2 CoBr2 is larger than Pt2HgSe3,
a tensile strain stress (α > 0) is expected in this heterostruc-
ture which will increase the bulk band gap.

To verify the stability of the CoBr2/Pt2HgSe3/CoBr2 het-
erostructure, we further perform ab initio molecular dynamics
simulation as implemented in the Vienna ab initio simulation
package. The canonical ensemble (NVT) was adopted for the
simulations by using a Nose thermostat. We use a 3×3 super-
cell of CoBr2/Pt2HgSe3/CoBr2 (324 atoms) heterostructure
in the simulation (non-spin-polarized calculations are per-
formed to reduce the computational cost) with the temperature
of 300 K and the time step of 1 fs. After 5000 steps

FIG. 16. The edge states of the zigzag nanoribbon from our
model analyses. (a) The band structure of the zigzag nanoribbon with
its right and left edge states marked by blue and red. (b) and (c) The
schematic of the position of the right and left edge states.
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FIG. 17. The atomic structure of the Pt2HgSe3 nanoflake. The
top edges consist of Hg atoms and the bottom edges consist of Pt
atoms.

(5 ps) simulation, CoBr2/Pt2HgSe3/CoBr2 heterostructure
preserves its respective structure as shown in Fig. 12, indi-
cating the stability of the heterostructure.

APPENDIX C: BAND STRUCTURE EVOLUTION OF THE
HETEROSTRUCTURE AND THE LOW-ENERGY

EFFECTIVE MODEL

Figures 13(a)–13(f) display the band structure evolution of
Pt2HgSe3 and its heterostructure. We plot the atomic orbital
contributions of CoBr2 and Pt2HgSe3 as shown in Figs. 13(e)
and 13(f), respectively. One can find that the atomic orbitals
of Pt2HgSe3 contribute dominantly while the contributions of
CoBr2 is negligible around the Fermi level. Therefore, the role

FIG. 18. The energy spectrum of the zigzag nanoribbon and
zero-dimensional system without/with adding an edge potential.
(a) and (c) Without edge potential. (b) and (d) With edge potential
δ = −0.02 eV added on the left edge. The calculations are done by
using the lattice model with parameters shown in Table I.

FIG. 19. Edge control of the energy spectrum of
CoBr2/Pt2HgSe3/CoBr2 heterostructure. (a) Without edge potential,
the corner state on Pt edges is buried in bulk states. (b) With edge
potentials δ = −0.084 eV added on Pt edges, the corner state is
tuned to the global band gap.

of CoBr2 covering layers is mainly to introduce a sizable in-
plane exchange field to Pt2HgSe3.

Based on the above analyses, we find that the main physics
can be captured by the low-energy effective Hamiltonian as
shown in Eq. (1). Figures 14(a)–14(d) show the band struc-
ture evolution of the low-energy model. We can find that the
effective model and the ab initio band structures have the same
evolution properties.

APPENDIX D: ILLUSTRATION OF THE GAPPED EDGE
STATES OF THE CoBr2/Pt2HgSe3/CoBr2 NANORIBBON

As shown in Figs. 15(a) and 15(c), we find that only one
edge state is visible in the energy spectra of both right and left
terminals. This is because the band gap of edge states is larger
than the band gap of bulk states which leaves one edge state
buried in the bulk states. Using the energy level of the visible
edge states and the position of the corner state, we find that the
gap of edge states is 173 meV. The band gap of edge states is
larger than the bulk band gap (79.7 meV) which is consistent

FIG. 20. The crystal structure and energy spectrums for the
heterostructure of NiCl2/Pt2ZnS3/NiCl2. (a) The crystal structure.
(b) and (c) The bulk band structure without and with SOC, respec-
tively. (d) and (e) The energy spectrum of the left and right terminals,
respectively. (f) Energy levels of the zero-dimension nanodisk. Cor-
ner states are highlighted in red.
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FIG. 21. The crystal structure and energy spectrums for the het-
erostructure of CoCl2/Pt2HgS3/CoCl2. (a) The crystal structure.
(b) and (c) The bulk band structure without and with SOC, respec-
tively. (d) and (e) The energy spectrum of the left and right terminals,
respectively. (f) Energy levels of the zero-dimension nanodisk. Cor-
ner states are highlighted in red.

with our previous analyses. Based on the visible edge states
and the band gap of edge states, we can find the position of the
edge states is illustrated in Figs. 15(b) and 15(d). The visible
edge states are shown as a solid line and the invisible edge
states are illustrated as a dashed line.

Then we compare it with the edge spectrum of the low-
energy effective model. As shown in Fig. 16(a), we plot the
band structure of the zigzag nanoribbon. On-site potential of
−56.5 and 14.0 meV are added to the right and left terminals,
respectively, to simulate the effect of on-site potential differ-
ences in CoBr2/Pt2HgSe3/CoBr2 heterostructure. We can see
that the left and right edge bands are split up and down by the
on-site potential which is consistent with our first-principles
results. The relative positions of bulk states and edge states
are illustrated in Figs. 16(b) and 16(c).

APPENDIX E: THE INFLUENCE OF EDGE POTENTIAL

For the nanoflake of CoBr2/Pt2HgSe3/CoBr2 heterostruc-
ture, there are two kinds of boundaries in the supercell, which
are Pt edges and Hg edges, as shown in Fig. 17. Here we use
edge on-site potentials to simulate the influence of different
atomic terminals. As shown in Figs. 18(a) and 18(c), there
are no splitting of the edge states and corner states when no
edge potential is added. In this case, the corner states distribute
equally on the two corners. When edge potentials are added,
the edge states are split and the two degenerate corner states

FIG. 22. The crystal structure and energy spectrums for the het-
erostructure of CoBr2/Pt2HgS3/CoBr2. (a) The crystal structure.
(b) and (c) The bulk band structure without and with SOC, respec-
tively. (d) and (e) The energy spectrum of the left and right terminals,
respectively. (f) Energy levels of the zero-dimension nanodisk. Cor-
ner states are highlighted in red.

become nondegenerate as shown in Figs. 18(b) and 18(d). In
this case, the two corner states distribute on the left corner and
right corner, respectively. The existence of the corner state is
not affected by on-site potentials.

The corner state on the Hg edges is shown in Fig. 8(c),
while the corner state on Pt edges, which is hidden in the bulk
states, is displayed in Fig. 19(a). Adding negative potentials
to Pt edges can tune the buried corner state to the global band
gap.

APPENDIX F: OTHER MATERIAL CANDIDATES FOR
THE SECOND-ORDER TOPOLOGICAL INSULATOR

Beside CoBr2/Pt2HgSe2/CoBr2, second-order topological
states are also found in other materials in the Pt2HgSe3 fam-
ily. The electric band structures and topological properties of
MZ2/Pt2XS3/MZ2 (M = Co and Ni; Z = Br and Cl; X =
Zn and Hg) are systematically considered. Finally, we found
three material candidates for second-order topological insula-
tors which are the heterostructure of NiCl2/Pt2ZnS3/NiCl2,
CoCl2/Pt2HgS3/CoCl2, and CoBr2/Pt2HgS3/CoBr2. These
monolayer magnetic substrates considered here are reported
to be ferromagnetic semiconductors [45,68,69] and the
GGA+U method is used with U = 2.13 eV for transition
metal Ni. The second-order topological states are confirmed
by calculating the bulk band structures, edge states, and plot
the corner states of the zero-dimensional nanodisk as shown
in Figs. 20–22.
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