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Extended Dicke quantum battery with interatomic interactions and driving field
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We investigate the charging process of quantum battery (QB) systems in an extended Dicke model with
both atomic interactions and an external driving field. We focus on the effects of the atomic interaction and
the external driving field on the charging performance of the QB and find that the maximum stored energy of
the QB has a critical phenomenon. We analyze the critical behavior and obtain the analytical expression of the
critical atomic interaction. The dependence of the maximum stored energy, the energy quantum fluctuations,
and the maximum charging power on the number N of the two-level systems are also discussed. In particular,
for the maximum charging power, we obtain the quantum advantage of the QB, which approximately satisfies
a superlinear scaling relation Pmax ∝ Nα , where scaling exponent α varies with the number N of the two-level
systems. In the ultrastrong coupling regime, the atomic interaction can lead to faster battery charging, and the
quantum advantage α = 1.88 can be achieved. While in the deep-strong coupling regime, the quantum advantage
of the QB’s maximum charging power is the same as that of the Dicke QB, i.e., α = 1.5.
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I. INTRODUCTION

Miniaturization of electronic devices is inevitable with the
development of industrial technology [1]. In the research field
called “quantum thermodynamics,” the thermodynamics of
small quantum systems has been considered in theoretical
and experimental works [2,3]. In this context, one of the
major issues triggered by potential technological applications
is the possibility of efficiently storing energy in small systems
exploiting quantum features and using it to provide power
supply on demand [4]. It inspires the birth of quantum bat-
teries (QBs), i.e., a quantum system that stores or supplies
energy [5–9]. The QB is based on quantum thermodynamics
fundamentally different from traditional electrochemical bat-
teries [10,11].

Previous work have shown the importance of quantum re-
sources in improving the performances of QBs, such as work
extraction [12–15], charging power [16–19], and energy fluc-
tuation [20–25]. In 2013 Alicki and Fannes first proposed that
entangling unitary controls acting globally extract in general
more work than unitary operations acting on each quantum
cell separately [5]. Entanglement generation can accelerate
the process of work extraction, thereby leading to larger deliv-
ered power, which was first demonstrated in Ref. [12]. After-
ward, two types of charging schemes were proposed [18,19]:
parallel and collective charging scheme. In the collective
charging scheme and for N � 2, the charging power of a
QB is larger than that in the parallel scheme [18,19,26]. The
collective scheme can achieve a speed-up in the charging pro-
cess of QB, named “quantum advantage” [13,15–17,26–38].
Besides, the performance of the QB in the stable charging
process [39–44], self-discharging process [30,45], dissipation
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charging process [46–50], and many-body interaction sys-
tems [31,51,52] have been investigated.

In the quest for such quantum advantage and poten-
tial experimental implementations of QBs, the QB has
been proposed in various models, such as two-level sys-
tems (TLSs) [24,27–30], three-level systems [40–42], in-
teracting spin chain model [31,51–53], Sachdev-Ye-Kitaev
model [26,38,54], and quantum cavity model [14–17,55–58].

The Dicke model, in which a collection of TLSs inter-
acts with a single-photon cavity model [59], has extensive
applications in quantum simulation, quantum sensing, quan-
tum communication, and quantum computing [60,61]. One
of the famous predictions of the original Dicke model was
enhancement of the spontaneous emission (absorption) rate by
the number of the two-level systems [59]. It has been exper-
imentally confirmed in room temperature gases without [62]
and with an optical cavity [63]. The study on dynamics of
the Dicke model has shown that the effect of disorder is
suppressed by the enhancement of the emission (absorption)
rate [64,65]. Novel findings—circuit quantum electrodynam-
ics [66] and solid-state semiconductor [67]—have allowed
the advent of the ultrastrong coupling (USC) regime [68–73]
and the deep-strong coupling (DSC) regime [74–81] in the
Dicke model. Recently, the Dicke QB has been proposed [16],
in which the collective charging scheme can achieve a

√
N

speed-up in the charging process compared to the parallel
charging scheme. In a recent experiment [82], the Dicke QB
was first implemented using an organic semiconductor as an
ensemble of TLSs coupled to a confined optical mode in a
microcavity. In addition, a two-photon Dicke QB has also
been introduced [17], constructed by coupling N TLSs with a
two-photon cavity mode. The two-photon interaction can lead
to faster charging and higher averaged charging power (pro-
portional to N instead of

√
N) compared to the conventional

Dicke QB.
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FIG. 1. Extended Dicke quantum battery. It includes a set of N
identical and two-level systems (TLSs) with a frequency ωa. TLSs
have an atom-atom interaction with a strength of η. TLSs coupled
with a single-photon cavity with a frequency of ωc and an external
driving field with a strength of �. At t = 0, each atom is in the
ground state |g〉. At the period T , the quantum is fully charged, and
the final state of atoms is |e〉⊗N .

Recently, an extended Dicke model that includes atomic
interactions and an external driving field has been established
for a Bose-Einstein condensate (BEC) inside an ultrahigh
finesse optical cavity [83]. Some exotic quantum phenom-
ena arising from these unnoticed atom-atom interactions have
been predicted or observed in theory and experiments, i.e., the
second-order phase transition from the superradiation phase to
the “Mott” phase [83]. To take another step forward, one may
naturally wonder if this extended Dicke model can further
improve the performance of QBs. In this paper we introduce
an extended Dicke model as a QB system, which includes
atomic interactions and an external driving field. Here the
battery consists of N TLSs displayed in a collective mode
during the charging process, and the charger has the cavity, the
atomic interaction, and the external driving field. We compare
with the two types of coupling in the charging process, i.e., the
USC and the DSC regimes. We investigate the dependence
of the stored energy, energy fluctuations, and the average
charging power of the battery on the atomic interaction and
external driving field. In addition, we introduce the quantum
phase transition (QPT) to analyze the critical behavior of the
maximum stored energy of the QB. We also analyze how the
number N of the TLSs influences the maximum stored energy,
energy fluctuation, and maximum charging power. Finally, we
are primarily concerned with the quantum advantage of the
maximum charging power of the QB.

The rest of the paper is organized as follows. Section II
introduces the extended Dicke QB, charging protocols, and
numerical approach. The influence of the atomic interactions
and external driving field on the stored energy, quantum fluc-
tuations, and charging power is investigated in Sec. III. In
Sec. IV we analyze the effects of the number N of TLSs on
the maximum storage energy, energy quantum fluctuation, and
maximum charging power of the quantum battery, and the
quantum advantage of the maximum charging power of QB
is discussed. Finally, we give a summary in Sec. V.

II. MODEL AND APPROACH

The QB model consists of a single-mode cavity field, N
identical two-level atoms, and an external driving field, as
shown in Fig. 1. Here we consider N TLSs with infinite-range

interactions coupled to a single cavity mode via a single-
photon coupling [83]. The total Hamiltonian of the QB system
is (hereafter we set h̄ = 1)

H (t ) = H0 + λ(t )H1, (1)

where the time-dependent parameter λ(t ) describes the charg-
ing time interval, which we assume to be given by a step
function equal to 1 for t ∈ [0, T ] and zero elsewhere. H0,1 are
the Hamiltonians of the battery and charger, respectively, and
with the following forms:

H0 = ωaĴz, (2)

H1 = Hc + Ha−c + Ha−a + Hfield

= ωcâ†â + 2ωcgĴx(â† + â) + η

N
Ĵ2

z + �Ĵx. (3)

Here â (â†) annihilates (creates) a cavity photon with
frequency ωc and Ĵα = 1

2

∑N
i σα

i , with α = x, y, z as the com-
ponents of a collective spin operator in terms of the Pauli
operators σα

i of the ith TLS. The parameters ωa, g, η, and �

denote the energy splitting between the ground |g〉 and excited
state |e〉 of each TLS, the TLS-cavity coupling strength, the
atomic interaction strength, and the driving field strength,
respectively.

We consider the charging process of the extended Dicke
QB in a closed quantum system. Here the N TLSs are prepared
in ground state |g〉 and coupled to a single-mode cavity in the
N photon Fock state |N〉. Thus, the initial state of the total
system is

|ψ (0)〉 = |N〉 ⊗ |g, . . . , g〉︸ ︷︷ ︸
N

. (4)

In our charging protocol, the QB will start charging when the
classical parameter λ is nonzero. The wave function of the
system evolves with time, i.e.,

|ψ (t )〉 = e−iHt |ψ (0)〉. (5)

The stored energy of QB can be expressed in terms of the
mean local energy of QB as follows:

E (t ) = 〈ψ (t )|H0|ψ (t )〉 − 〈ψ (0)|H0|ψ (0)〉. (6)

Notably, the stored energy E (t ) that we are interested
in does not include the Hamiltonian Ha−a because the ex-
istence of atomic interactions promote positive or negative
contributions in E (t ) and eventually lead to an uneven com-
parison [30]. The average charging power of QB is defined by

P(t ) = E (t )

t
. (7)

The stored energy and charging power are not sufficient
to fully characterize the QB. Then we consider the energy
quantum fluctuation as another useful quantifier of QB per-
formance. To do so, we analyze the fluctuations between the
initial and final time of the charging process represented by
the correlator [17,20,24]

	2(t ) = [√〈
H2

0 (t )
〉 − [〈H0(t )〉]2 −

√〈
H2

0 (0)
〉 − [〈H0(0)〉]2

]2
.

(8)

115405-2



EXTENDED DICKE QUANTUM BATTERY WITH … PHYSICAL REVIEW B 105, 115405 (2022)

We emphasize that 	(t ) is related to the inverse of the
so-called reverse quantum speed limit, which can also be used
to characterize the discharging of the QB [84]. Because of
the unitary evolution of the entire battery system during the
charging process, the energy will be transferred back and forth
between the charger and battery. Therefore, it is unnecessary
to track the stored energy, charging power, and energy quan-
tum fluctuation of QB at every moment. Usually we choose
the maximum stored energy Emax (at time tE ), maximum
charging power Pmax (at time tP), and value of energy quantum
fluctuation 	(t ) (at time tE ), to measure QB performance,

Emax ≡ max
t

[E (t )] = E [(tE )], (9)

Pmax ≡ max
t

[P(t )] = P[(tP )], (10)

	 ≡ 	(tE ). (11)

We focus on the resonance regime, i.e., ωa = ωc, to ensure
the maximum energy transfer. We take ωa as a dimensionless
parameter and let ωa = 1. Off-resonance case ωa 	= ωc will
not be discussed since they are characterized by a less efficient
energy transfer between the cavity and TLSs [17,85].

Similar to previous studies [16], we must diagonalize the
Dicke Hamiltonian exactly to evaluate the stored energy,
charging power, and energy quantum fluctuation. The reason
is that the number of photons in the extended Dicke Hamil-

tonian is not conserved, which can be clearly seen from the
interaction term 2ωcgĴx(â† + â) of Eq. (3) containing counter-
rotating terms of the â†Ĵ+, âĴ−. However, we notice that
Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z is a conserved quantity for the Hamilto-
nian in Eq. (1). A convenient basis set for representing the
Hamiltonian is |n; j, m〉 ≡ |n〉 ⊗ | j, m〉, where n indicates the
number of photons and j( j + 1) is the eigenvalue of Ĵ2. Here
m denotes the eigenvalue of Ĵz. Within this notation, the initial
state in Eq. (2) can be written as follows:

|ψ (0)〉 = |N, N/2,−N/2〉. (12)

The matrix elements of the Dicke Hamiltonian (1) in the
main text can be evaluated over the basis set |n, j, m〉 using
the following relations for the ladder operator of photons and
pseudospin [86–88]:

â†|n, j, m〉 = √
n + 1|n + 1, j, m〉, (13)

â|n, j, m〉 = √
n|n − 1, j, m〉, (14)

Ĵ±|n, j, m〉 =
√

j( j + 1) − m(m ± 1)|n, j, m ± 1〉. (15)

Notice that one can work in a subspace at fixed j = N/2 and
read that Ĵx = (Ĵ+ + Ĵ−)/2 because of the conservation of Ĵ2.
Thus we obtain

〈
n′,

N

2
,

N

2
− q′

∣∣∣∣H
∣∣∣∣n,

N

2
,

N

2
− q

〉
= h̄ωc

{[
n+ N

2
− q+ η

N

(
N

2
− q

)2]
δn′,nδq′,q + �

[
f (1)
n, N

2 , N
2 −q

δn′,nδq′,q+1 + f (2)
n, N

2 , N
2 −q

δn′,nδq′,q−1

]

+ g
[

f (3)
n, N

2 , N
2 −q

δn′,n+1δq′,q+1 + f (4)
n, N

2 , N
2 −q

δn′,n+1δq′,q−1 + f (5)
n, N

2 , N
2 −q

δn′,n−1δq′,q+1

+ f (6)
n, N

2 , N
2 −q

δn′,n−1δq′,q−1

]}
, (16)

with

f (1)
k, j,m =

√
j( j + 1) − m(m − 1), (17)

f (2)
k, j,m =

√
j( j + 1) − m(m + 1), (18)

f (3)
k, j,m =

√
(k + 1)[ j( j + 1) − m(m − 1)], (19)

f (4)
k, j,m =

√
(k + 1)[ j( j + 1) − m(m + 1)], (20)

f (5)
k, j,m =

√
k[ j( j + 1) − m(m − 1)], (21)

f (6)
k, j,m =

√
k[ j( j + 1) − m(m − 1)]. (22)

We remark that the number of photons is not conserved
by the Dicke Hamiltonian. It is also not bounded from above;
thus, it may take an arbitrarily large integer value. In practice
we need to introduce a cutoff Nph > N on the maximum
number Nph of photons within our finite-size numerical diag-
onalization. This choice allows us to select a case scenario of
large N values to calculate the stored energy without making
any significant difference. In the following we show numeri-
cal results obtained from an exact numerical diagonalization

scheme for N = 1, . . . , 30. We have examined that excellent
numerical convergence is achieved by selecting the maximum
number of photons as Nph = 4N [16,17].

III. THE CHARGING PROPERTY

In this section we discuss the charging property of the
extended Dicke QB. We will present an analysis for different
coupling strengths, ranging from the USC regime (0.1 � g <

1.0) to the DSC regime (g � 1.0). We expect faster charging
and further enhancement of the average charging power com-
pared to that observed in the single-photon Dicke QB [16].

A. Charging properties with interatomic interactions

We first analyze the charging properties of the QB only
with atomic interactions. In this case, the overall system can
be described by the following Hamiltonian:

H = ωcâ†â + ωaĴz + 2ωcgĴx(â† + â) + η

N
Ĵ2

z . (23)

Figure 2 illustrates the time evolution of the stored energy,
energy quantum fluctuations, and average charging power for
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FIG. 2. (a)–(c) The dependence of the stored energy E (t ) (in units h̄ωa), (d)–(f) energy quantum fluctuations 	(t ) (in units h̄ωa), and
(g)–(i) average charging power P(t ) (in units h̄gω2

a) as a function of ωat for the different coupling regime g. The different curves in these plots
stand for various η, as indicated in the legends, and all are for a QB with the number of TLSs N = 10. We used different timescales in the
panels to determine the maximum position of the various quantities in different cases.

various values of atomic interaction strengths in different cou-
pling regimes. The blue dash-dotted lines and red dashed lines
indicate the repulsive (η > 0) and attractive (η < 0) inter-
actions, respectively. For comparison purposes, the charging
process without atomic interaction is also depicted with black
solid lines.

When the battery system is in a weak USC regime, the
atomic interaction (whether repulsive or attractive) always has
a negative impact on the energy storage of the QB. However,
for the average charging power, different atomic interactions
have different effects, in which the repulsive interaction in-
creases and the attractive interaction decreases the maximum
charging power. As the coupling strength increases, the in-
fluence of the atomic interaction becomes weaker. When the
coupling strength increases to the DSC regime, the stored
energy and the average charging power of the QB are almost
unaffected. This represents an interesting fact of the intrinsic
competition between the atom-atom and atom-cavity field
interactions [83].

The evolution of quantum fluctuations of energy with time
and the value of energy quantum fluctuation 	(t ) at the time
tE when the maximum stored energy occurs is shown in
Figs. 2(d)–2(f) and Table I, respectively. The energy fluctu-
ations are high in all cases considered, except for the case
of the without interactions in the weak USC regime, where
a better charge is achieved, and we therefore get 	 ∼ 1.391.
As a result, the QB is not fully charged in the two coupling

regimes, i.e., the DSC and USC regimes, due to the internal
interaction between the N TLSs.

We then calculate the maximum stored energy and the
maximum charging power of the QB as a function of the
coupling strength and the atomic interaction strength shown in
Fig. 3. In the USC regime, the atomic interaction can signif-
icantly change the QB’s maximal stored energy and charging
power. However, in the DSC regime, this effect is almost
negligible. In particular, the maximum stored energy of the
QB has a critical behavior in the USC regime, i.e., the system
exists at a critical point and the maximum stored energy of the
QB changes obviously near the critical point.

To further understand the critical phenomenon, we in-
troduce the QPT [83,88–92]. In fact, this system has two
independent QPT parameters, i.e., the atomic interaction

TABLE I. Maximum stored energy E (tE ) (in units of Nωa) and
energy quantum fluctuation 	 (in units of Nωa) of the corresponding
charging time tE for the USC and DSC regimes for N = 10.

g = 0.1 g = 0.5 g = 2.0

E (tE ) 	 E (tE ) 	 E (tE ) 	

η = −2.0 1.473 2.013 6.662 3.468 6.992 3.533
η = 0 7.931 1.391 6.768 3.473 7.000 3.528
η = 2.0 5.899 2.525 6.709 3.488 6.995 3.530
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FIG. 3. (a) and (b) Contour plots of QB’s maximum stored energy Emax (in units h̄ωa) and charging power Pmax (in units h̄gω2
a) as functions

of the coupling strength g and interatomic interactions strength η. (c) Phase diagram described by 〈Sz〉/(N/2) as functions of the atomic
interaction strength η and coupling strength g. The dashed line is the critical curve of the “Mott” phase [for |〈Sz〉/(N/2)| = 0] and normal
phase [for |〈Sz〉/(N/2)| = 1]. All plots correspond to the case of N = 10.

strength η and the coupling strength g. The extended Dicke
model only with the atomic interaction has a second-order
quantum phase transition from the superradiant phase to the
Mott phase [83], and the critical value of the atomic interac-
tion strength η at the QPT point has the following expression
[dashed line in Fig. 3(c)]:

η = ωa − 4g2N

ωc
. (24)

For η = 0, the Hamiltonian (23) reduces to the Dicke model.
At the critical point g = √

ωaωc/2, the system undergoes a
well-known normal-superradiant phase transition [88]. The

phase diagram of the scaled proportional inversion of the TLS
〈Sz〉/(N/2) with respect to the independent QPT parameters
is illustrated in Fig. 3(c). The critical curve [dashed line in
Fig. 3(c)] in the phase diagram appears as the intersection
of the two phase regimes of the Mott [for |〈Sz〉/(N/2)| = 0]
and normal [for |〈Sz〉/(N/2)| = 1] phases. Correspondingly,
the maximum stored energy of the QB changes significantly
at the critical point of the QPT.

B. Charging properties with external driving field

In this section we investigate the charging properties of QB
only with an external driving field. In this case, the overall

FIG. 4. (a)–(c) The dependence of the stored energy E (t ) (in units h̄ωa), (d)–(f) energy quantum fluctuations 	(t ) (in units h̄ωa), and
(g)–(i) average charging power P(t ) (in units h̄gω2

a) as a function of ωat with the number of TLSs N = 10 for the different coupling regimes g.
The different curves in these plots stand for various �, as indicated in the legends, and all are for a QB with the number of TLSs N = 10. We
used different timescales in the panels to determine the maximum position of the various quantities in different cases.
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TABLE II. Maximum stored energy E (tE ) (in units of Nωa) and
its quantum fluctuation 	 (in units of Nωa) of the corresponding
charging time tE for the USC and DSC regimes for N = 10.

g = 0.1 g = 0.5 g = 2.0

E (tE ) 	 E (tE ) 	 E (tE ) 	

� = 0 7.931 1.391 6.768 3.473 7.000 3.528
� = 0.5 4.917 2.944 6.451 3.421 6.978 3.522
� = 2.0 8.424 1.443 5.437 3.443 6.667 3.486

system can be described by the extended Dicke Hamiltonian
as follows:

H = ωcâ†â + ωaĴz + 2ωcgĴx(â† + â) + �Ĵx. (25)

In Fig. 4 we illustrate the time evolution of the stored
energy, the energy quantum fluctuation, and the average
charging power for various value of the driving field strength
in different coupling regimes. In order to analyze the benefits
of the external driving field, we also plot the situation without
external driving field (solid black lines), corresponding to
� = 0. In the weak USC regime, the driving field increases
the stored energy of the QB. In particular, with the increase
of the driving field strength, the QB requires less time to
achieve the maximum stored energy. This also increases the
maximum charging power of the QB [see Fig. 4(g)]. However,
in the DSC regime, the advantages of the external driving field
become smaller and smaller.

As in Figs. 4(d)–4(f) and Table II, energy quantum fluctu-
ations are unavoidable and finite in all considered parameter
ranges. This result is directly related to the fact that the QB is
not fully charged, due to the interaction between the N TLSs
and the cavity mode.

To further demonstrate the impact of the external driving
field on the performance of the QB in different coupling
regimes, we calculate the maximum stored energy and charg-
ing power as a function of the coupling strength and the
external driving strength for a fixed number of TLSs N (see
Fig. 5). The external driving field increases the maximum
stored energy and charging power of the QB. Particularly, in
the USC regime, with the increase of the driving field strength,
the QB has a higher maximum charging power and a greater
maximum stored energy compared to the DSC regime. More
interestingly, the maximum stored energy of the QB always
oscillates in a fixed region. When the battery system is in the
USC regime, an external driving field brings QB closer to the
maximum stored energy. Therefore, in view of actual experi-
mental implementations, it is necessary to properly design an
extended Dicke QB driven by an external field in the USC
regime to achieve a QB with larger stored energy and higher
average charging power.

C. Charging properties with atomic interactions
and external driving field

In order to further discuss the combined effects of both
the atomic interaction and the external driving field on the
charging process, in this section we calculate the maximum
stored energy and charging power as a function of both the

FIG. 5. Contour plots of QB’s maximum stored energy and
charging power as functions of the coupling regimes g and the ex-
ternal driving strength �. (a) QB’s maximum stored energy Emax (in
units h̄ωa) and (b) maximum charging power Pmax (in units h̄gω2

a).
All plots correspond to the case of N = 10.

atomic interactions and external driving field for the various
coupling regimes as shown in Fig. 6. In the weak USC regime,
if the driving field strength is weak, the atomic interaction has
a great influence on the maximum stored energy of the QB.
However, with the increase of the driving field strength, the
maximum stored energy of the QB is largely unaffected by
the atomic interaction [see Figs. 6(a)–6(c)]. This reflects the
competition between the external driving field and the atomic
interaction. In particular, compared with the DSC regime,
the driving field strength required for the QB to obtain the
maximum stored energy in the USC regime is smaller. For
the maximum charging power, no matter what the coupling
regime is, the effect of the atomic interaction on the maximum
charging power of QB can be neglected, and the external drive
field increases the maximum charging power. In particular, the
QB in the USC regime also has a higher maximum charging
power compared to the DSC regime [see Figs. 6(d)–6(f)].

It is more interesting that, in this case, the maximum stored
energy of the QB also has a critical behavior with the weak
driving field strength. Similarly, we calculate the QPT. The
phase diagrams of the scale population inversion of the TLSs
〈Sz〉/(N/2) as functions of the atomic interaction strength and
the driving field strength in different coupling regimes are
illustrated in Fig. 7. In the USC regime, the QPT induced by
the atomic interaction always occurs, while it does not occur
within the parameter range we considered in the DSC regime.
As a result, when the system is at the QPT point, the atomic
interaction will greatly influence the maximum stored energy.

IV. ADVANTAGE OF COLLECTIVE CHARGING

For a classical battery device, a charging process can be
completed in a certain time because the electric current is
static. However, for the quantum battery, the energy transfer
depends on the devices and the charging time due to un-
dergoing the dynamical evolution [33]. We have investigated
how the charging process depends on the charging time and
internal parameters when the number of charger and batteries
(TLSs) are fixed. Let us now find out how the charging process
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FIG. 6. (a)–(c) Contour plots of QB’s maximum stored energy Emax (in units h̄ωa), (d)–(f) contour plots of QB’s maximum charging power
Pmax (in units h̄gω2

a) as functions of the atomic interaction strength η and driving field strength � for different coupling regimes g. All plots
correspond to the case of N = 10.

depends on the number of batteries (TLSs) when the charger
is fixed. We have set the initial state of the QB |ψ (0)〉 =
|n; j, m〉, which leads to the dynamical evolution of the bat-
tery involving highly entangled Dicke states and a collective
charging of the Dicke QB. We analyze the maximum stored
energy Emax in Eq. (5), the maximum charging power Pmax in
Eq. (6), and the value of the energy quantum fluctuations 	 at
maximum stored energy in Eq. (8) as a function of the number
N of the TLSs. We recall that in Ref. [16] it was shown that
the energy scales with N , whereas the average charging power
scales like P ∝ N3/2 in a single-photon Dicke QB for large
N . Therefore, we naturally expect the existence of a general
scaling relation between the charging power of the extended
Dicke QB and the number N of TLSs. We assume that the
maximum charging power takes the following form:

Pmax ∝ βNα. (26)

By taking the logarithm, we use linear fitting to obtain the
scaling exponent α,

log(Pmax) = α log(N ) + log(β ). (27)

The scaling exponent α essentially reflects the collective na-
ture of the battery in transferring energy.

A. Collective charging with atomic interactions

In Fig. 8 we display the QB’s maximum stored energy,
energy quantum fluctuations, and maximum charging power
as a function of the number N of the TLSs for different
atomic interactions [η = −3.0 (black squares), η = 1.5 (blue
up-triangles), η = 3.0 (magenta down-triangles), and η = 6.0
(olive diamonds)] in different coupling regimes. For compar-
ison purposes, the case without the atomic interaction is also
depicted with red circles (η = 0).

Similarly, in the weak USC regime the atomic interac-
tion has a great influence on the maximum stored energy
and the energy fluctuation of the QB [see Figs. 8(a)–8(f)].
Compared to the case with the atomic interaction, the QB al-
ways has a higher maximum stored energy in a small number
N of TLSs without interatomic interaction. As the coupling
strength increases, the influence of the atomic interaction be-
comes weaker. When the coupling strength increases to the

FIG. 7. Phase diagrams described by the scaled population inversion of the TLSs 〈Sz〉/(N/2) as a function of the atomic interaction strength
η and the driving field strength � for different coupling regimes: (a) g = 0.1, (b) g = 0.5, and (c) g = 2.0. Other parameters are the same as
these in Fig. 6.
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FIG. 8. (a)–(c) Maximum stored energy Emax (in units h̄ωa), (d)–(f) the value of the energy fluctuations at the maximum energy 	 (in units
h̄ωa), and (g)–(i) maximum charging power Pmax (in units h̄gω2

a) of the QB with the number N of TLSs for different coupling regimes g and
atomic interactions η. The solid lines in (g)–(i) indicate the numerical fitting of the power scaling (26) in a logarithmic scale for N ∈ [1, 30].

DSC regime, the effect of the atomic interaction can almost
be neglected, and the maximum stored energy and energy
fluctuation always increase linearly with the number N of
TLSs. We are interested in the general scaling relationship
between the maximum charging power and the number N of
TLSs. As shown in Figs. 8(g)–8(i), the logarithmic plot of the
maximum charging power Pmax gives the scaling exponent α

for the region N ∈ [1, 30], see Table III. In the weak USC
regime, the scaling exponent can be close to α → 1.88. While
as the coupling strength increases, the maximum charging
power scaling exponent of the battery decreases. When the
coupling strength increases into the DSC regime, this scaling
exponent decreases to α → 1.5, which is consistent with the
result of the Dicke QB [16]. Interestingly, with η = 1.5 as
the center, the maximum charging power scaling exponent
will increase symmetrically as η deviates from 1.5 in both
directions (see Table III).

TABLE III. Battery power scaling exponent α obtained from
numerical fitting of Eq. (26) vs the number of TLSs N for different
atomic interactions η and coupling strengths g.

g = 0.1 g = 0.5 g = 2.0

α β α β α β

η = −3.0 1.87 0.38 1.56 0.85 1.47 0.97
η = 0 1.62 0.73 1.50 0.93 1.46 0.98
η = 1.5 1.68 0.70 1.50 0.92 1.46 0.98
η = 3.0 1.62 0.73 1.50 0.93 1.46 0.98
η = 6.0 1.88 0.36 1.56 0.84 1.47 0.97

It is worth noting that in the weak USC regime, the atomic
interaction has a great influence on the maximum charging
power scaling exponent α. Figure 9 shows the scaling ex-
ponent α of the maximum charging power with respect to
the numbers of TLSs N for different atomic interactions.
Here we set the coupling strength g = 0.1 and consider the
ranges N ∈ [1, 30] and η ∈ [−10, 10]. This figure confirms
the observations in Fig. 8(g). For a fixed value of the atomic
interaction η, the slope of the upward plane indicates the
value of α. In order to further prove the effects of the atomic

FIG. 9. Logarithmic contour plot of the maximum charging
power with the number N of TLSs and atomic interaction η. It shows
different values of power scaling exponent α in different atomic
interactions. We set g = 0.1, and consider the ranges N ∈ [1, 30] and
η ∈ [−10, 10].
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FIG. 10. Contour plot of the maximum stored energy and charg-
ing power as a function of the atomic interactions η and the number
N of TLSs. (a) QB’s maximum stored energy Emax (in units h̄ωa)
and (b) the maximum charging power Pmax (in units h̄gω2

a). We set
g = 0.1 and consider the ranges N ∈ [1, 30] and η ∈ [−10, 10].

interaction and the number N of TLSs on the maximum stored
energy and the maximum charging power of the QB in the
weak USC regime. In Fig. 10 we calculate the maximum
stored energy and charging power of the QB as a function
of the atomic interaction and the number N of TLSs for fixed
coupling strength. The atomic interaction plays a negative role
in the QB’s stored energy for a small number N of TLSs.
However, for a large but finite value of the number of N , the
place where the QB’s maximum stored energy occurs shifts

from near no atomic interaction to the repulsive interaction
range, i.e., the ranges η ∈ (2.5−4.0) observed from the fig-
ure [see Fig. 10(a)]. While for the maximum charging power,
it is roughly symmetrical with respect to around η = 1.5 and
reaches the maximum value at η = 1.5.

B. Collective charging with external driving field

For the case of only external driving field, we also calculate
the maximum stored energy, the energy quantum fluctua-
tions, and the maximum charging power as a function of
the number N of TLSs for different external driving field
strengths in different coupling regimes in Fig. 11. Here the
driving field strengths is � = 0 (black squares), � = 0.1
(red circles), � = 0.5 (blue up-triangles), � = 2.0 (magenta
down-triangles), and � = 5.0 (olive diamonds). No matter
what the coupling strength is, the maximum stored energy
and energy fluctuation of the QB always increase linearly for
the number N of TLSs [see Figs. 11(a)–11(f)]. In particular,
in the USC regime, the external driving field can make QB
reach full charging. The logarithmic plot of the maximum
power Pmax gives the scaling exponent α for the number N of
TLSs, as shown in Figs. 11(g)–11(i) and Table IV. Regardless
of whether the USC regime or DSC regime, the external
driving field increases the maximum charging power of the
QB. However, with the increase of the external driving field,
the scaling exponent of the maximum charging power finally
gradually α → 1. We find that this scaling exponent becomes
α → 1 when the driving field strength is 10 times the coupling
strength, i.e., � � 10g.

FIG. 11. (a)–(c) Maximum stored energy Emax (in unit h̄ωa), (d)–(f) the value of the energy fluctuations at the maximum energy 	 (in unit
h̄ωa), and (g)–(i) the maximum charging power Pmax (in unit h̄gω2

a) of the QB with the number N of TLSs for different coupling regimes g
and external driving strengths �. The solid lines in (g)–(i) represent the numerical fitting of the power scaling (26) in a logarithmic scale for
N ∈ [1, 30].
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TABLE IV. Battery power scaling exponent α obtained from
numerical fitting of Eq. (26) with the number N of TLSs for different
coupling strengths g and external driving strengths �.

g = 0.1 g = 0.5 g = 2.0

α β α β α β

� = 0 1.56 0.78 1.50 0.93 1.46 0.98
� = 0.1 1.58 0.76 1.50 0.93 1.46 0.98
� = 0.5 1.19 1.38 1.49 0.94 1.46 0.98
� = 2.0 1.00 3.17 1.22 1.27 1.46 0.98
� = 5.0 1.00 4.76 1.00 2.15 1.36 1.10

Similarly, we further demonstrate the scaling exponent of
the maximum charging power with respect to the number N of
TLSs for different external driving fields in the USC regime
(see Fig. 12). For a fixed value of the external driving field,
the slope of the upward plane indicates the value of α. This
scaling exponent α stabilizes with the increase of the external
driving field strength gradually, and this is consistent with the
results obtained in Fig. 11(g) and Table IV. Moreover, we
also illustrate the dependence of the maximum stored energy
and maximum charging power on the external driving strength
and the number of TLSs N . The external driving field and the
number N of the TLSs increase the maximum stored energy
and the maximum charging power (see Fig. 13).

C. Collective charging with both atomic interactions
and external driving field

This section further discusses how the charging process de-
pends on the number of TLSs in the case with both the atomic
interactions and external driving fields. Figure 14 illustrates
the calculation of the maximum energy, the energy quantum
fluctuations, and the maximum charging power as a function
of the number N of TLSs in different coupling regimes.

As the previous results show, if there is only atomic inter-
action, the weak repulsive interaction leads to the maximum
charging power of the quantum battery. While if there exists

FIG. 12. Logarithmic contour plot of the maximum charging
power vs the number N of TLSs and external driving strengths �.
It shows different values of power scaling exponent α in different
external driving strengths. We set g = 0.1, and consider the ranges
N ∈ [1, 30] and � ∈ [0, 10].

FIG. 13. Contour plot of the maximum stored energy and charg-
ing power as a function of the external driving strengths � and the
number N of TLSs. (a) The QB’s maximum stored energy Emax

(in unit h̄ωa) and (b) the maximum charging power Pmax (in unit
h̄gω2

a). Here we set g = 0.1 and consider the ranges N ∈ [1, 30] and
� ∈ [1, 10].

only an external drive field, the external drive field increases
the maximum charging power of the quantum battery, and the
scaling exponent of the maximum charging power decreases
to α = 1. In order to obtain the QB with a larger stored energy,
a higher charging power, and a better scaling exponent, we
therefore select the atomic interaction strengths and driving
field strengths appropriately, i.e., we set the atomic interaction
strength η = 1.5 and the external driving strength � = 0.1,
� = 0.5, and � = 1.0.

No matter what the coupling regime is, the maximum
stored energy and the maximum charging power of the QB
increase linearly with the number N of TLS [see Figs. 14(a)–
14(f)]. For the maximum charging power, we are more
interested in the scaling exponent of the maximum charging
power. We find that the effects of the atomic interaction and
the coupling strength on the scaling exponent of the maxi-
mum charging power are different. In particular, with weak
driving field strength and coupling strength, i.e., g = 0.1, and
� = 0.1, this scaling relationship can reach α = 1.60 [see
Figs. 14(g)–14(i) and Table V], which is higher than that of
Dicke QB [16].

V. CONCLUSIONS

We have introduced the concept of an extended Dicke
quantum battery, consisting of an array of entangled two-level
systems with both atomic interactions and external driving

TABLE V. Scaling exponent α obtained from the numerical fit-
ting of Eq. (26) with the number N of TLSs for various values g and
�.

g = 0.1 g = 0.5 g = 2.0

α β α β α β

� = 0.1 1.60 0.38 1.18 0.85 1.00 0.97
� = 0.5 1.50 0.46 1.49 0.90 1.42 0.97
� = 1.0 1.46 0.73 1.46 0.93 1.46 0.98

115405-10



EXTENDED DICKE QUANTUM BATTERY WITH … PHYSICAL REVIEW B 105, 115405 (2022)

FIG. 14. (a)–(c) Maximum stored energy Emax (in unit h̄ωa), (d)–(f) the value of the energy fluctuations at the maximum of the energy
	 (in unit h̄ωa), and (g)–(i) the maximum charging power Pmax (in unit h̄gω2

a) of the QB with the number N of TLSs for different coupling
regimes g and external driving strengths �. The solid lines in (d)–(f) show the numerical fitting of the power relation (26) in logarithmic scale
for N ∈ [1, 30]. Another parameter is η = 1.5.

fields. We have analyzed the influence of atomic interactions
and external driving fields on the performance of the QB
in different coupling regimes, including the stored energy,
energy quantum fluctuations, and the average charging power.
We have demonstrated that in the weak USC regime, the
atomic interaction (whether repulsive or attractive) always has
a negative effect on the stored energy of the QB. The repulsive
interaction increases the maximum charging power, and the
attractive interaction decreases it. However, no matter what
the coupling regime is, the external driving field increases
the maximum stored energy and charging power of the QB.
Moreover, we have found that the maximum stored energy
always exists a critical behavior. The critical atomic interac-
tion and coupling strengths have been obtained analytically.
We have also investigated the effect of the number N of
TLSs on the QB’s maximum stored energy, energy quantum
fluctuations and maximum charging power in different cou-
pling regimes. No matter whether the atomic interaction or
the external driving field, the QB’s maximum stored energy
and energy quantum fluctuation increase linearly with the N
TLSs in different coupling regimes. In particular, we have
obtained the quantum advantage of the maximum charging
power of the QB, which approximately satisfies a scaling
relation Pmax ∝ Nα . In the USC regime, the atomic interac-
tion, for a finite-size system, can lead to a higher average
charging power (scaling exponent of the maximum charging
power α = 1.88) compared to the Dicke QB. While in the

DSC regime, the quantum advantage of the QBs maximum
charging power is the same as that of the Dicke QB (α = 1.5).
For the case of the external driving field, no matter what
the coupling regime is, the external driving field strength
increases the maximum charging power of the QB. Never-
theless, with the increase of the driving field strength, the
advantage of the maximum charging power becomes weak
(scaling exponent of the maximum charging power can only
reach α = 1).

Recently, experimental efforts have been devoted to quan-
tum simulations of an array of two-level cavity systems, for
example, with a BEC [90,93], a superconducting artificial
atom [94], and trapped ions [95], which could be consid-
ered as quantum battery. Our QB charging model can also
be realized physically. For instance, we can choose an ex-
perimental setup for a BEC of 87Rb atoms coupled to an
optical cavity [83,90,93]. The BEC with two levels |1〉 and
|2〉 is prepared in a time-averaged, orbiting potential magnetic
trap. After moving the BEC into an ultrahigh-finesse optical
cavity, an external controllable classical laser is applied to
produce various transitions of the atoms between |1〉 and |2〉
states, and thus the charging of the QB could be implemented
realistically.
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