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Finite-temperature quantum discordant criticality
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In quantum statistical mechanics, finite-temperature phase transitions are typically governed by classical field
theories. In this context, the role of quantum correlations is unclear: recent contributions have shown how
entanglement is typically very short-ranged, and thus uninformative about long-ranged critical correlations.
In this work, we show the existence of finite-temperature phase transitions where a broader form of quantum
correlation than entanglement, the entropic quantum discord, can display genuine signatures of critical behavior.
We consider integrable bosonic field theories in both two- and three-dimensional lattices, and show how the
two-mode Gaussian discord decays algebraically with the distance even in cases where the entanglement
negativity vanishes beyond nearest-neighbor separations. Systematically approaching the zero-temperature limit
allows us to connect discord to entanglement, drawing a generic picture of quantum correlations and critical
behavior that naturally describes the transition between entangled and discordant quantum matter.
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I. INTRODUCTION

Is there any genuine quantum mechanical effect charac-
terizing phase transitions at finite temperature? According to
Ginzburg-Landau theory, such transitions are governed by
thermal fluctuations, and the related classical critical expo-
nents: the latter predict the behavior of all thermodynamic
variables to be dictated solely by the corresponding classical
universality class. The fate of quantum correlations at ther-
mal critical points is considerably less understood. Quantum
correlations are not straightforwardly bound by the above
argument: in particular, the latter is still compatible with long-
ranged, quantum mechanical correlations, as long as they do
not compromise the correct scaling of thermodynamic vari-
ables.

A recent set of works has initiated the investigation of
entanglement, a most prominent form of nonlocal quantum
correlation [1,2], at thermal phase transitions in a broad range
of models [3–6]. Exploiting entanglement negativity [7] and
its Renyi modification [8], respectively, a computationally
convenient entanglement monotone and its finite-temperature
proxy, these studies have consistently supported the fact that,
while entanglement can indeed be finite at short range, it
inevitably dies out exponentially fast at long distances. In
particular, while negativities between neighboring degrees of
freedom could still be sensitive to phase transitions (since they
are related to expectation values of local operators), this will
be due to the presence of local entanglement at the bound-
ary between partitions, and thus not related to long-distance
physics. The corresponding physical picture thus supports the

fact that finite-temperature transitions do not host long-range
quantum correlations in the form of entanglement related to
the violation of the Peres criterion for separability [9,10].

In this work, we show that a more basic form of quantum
correlation, the entropic quantum discord (EQD), which is
defined on all quantum states, is typically nonvanishing even
on separable states, and reduces to entanglement on pure
states [11,12], can display genuine critical behavior at finite
temperature. We consider free bosonic Gaussian theories in
two- (2D) and three-dimensional (3D) hypercubic lattices [4],
both of them undergoing finite-temperature transitions from
an ordered to a disordered phase [see Figs. 1(a) and 1(b)],
described by the mean-field Ising universality class. In both
models, entanglement between two bosonic modes is short-
ranged at finite temperature: indeed, one observes sudden
death of entanglement [5,13–16], as the two-body negativity
vanishes beyond nearest neighbors. Quantum discord is short-
ranged both in the low-T and high-T phases: however, at
finite-temperature critical points, such quantum correlations
become quasi-long-ranged. In both 2D and 3D, the EQD
between distant bosonic modes displays a power-law decay, a
hallmark of critical behavior [see Fig. 1(c)]. In the 2D case, we
also observe that the EQD obeys universal scaling collapse,
which is governed by the critical exponent ν signaling that,
remarkably, such genuine quantum correlations are governed
by the same critical exponent as the correlation length. We
deem this framework quantum discordant criticality (QDC).

Before embarking in a detailed description of the results, it
is useful to provide a qualitative picture of our findings. Dif-
ferently from entanglement, the EQD characterizes the degree
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FIG. 1. Quantum discordant criticality in two-dimensional sys-
tems. (a) Schematics of the model. Gaussian bosonic variables are
defined on a square lattice: we are interested in the quantum correla-
tions between pairs of sites i, j at distance ri j . (b) Schematics of the
finite temperature phase diagram of the model in Eq. (9) [4], hosting
a ferromagnetic (FP) and a paramagnetic phase (PP). (c) Decay of the
entropic quantum discord along a cut at T = 0.2 [gray line in (b)]:
the decay is exponential away from the critical line, g �= gc, while it
is algebraic along it.

of incompatibility between classical and quantum correlation
functions, irrespective of separability criteria. This implies
that, while at a finite-temperature critical point one can typ-
ically describe the state of two distant degrees of freedom A
and B by a separable (i.e., unentangled) density matrix, yet the
latter can display a genuine quantum character: at odds with
classical correlations, the mutual information obtained by a
collective measurement of the global system AB is different
from the one obtained by measuring subsystems A and B
in sequence. Quantum discordant criticality thus emphasizes
the role of sensitivity to measurements, rather than that of
separability (which is instead pivotal in entanglement-driven
quantum phase transitions), and captures aspects comple-
mentary to other general quantum features, such as quantum
coherence [17], that depend on the choice of the local refer-
ence basis.

II. ENTROPIC QUANTUM DISCORD

We first review some general properties of quantum dis-
cord, and of the models we are considering in the present
work. In classical information theory, the amount of correla-
tions between two classical random variables X and Y can be
quantified by their mutual information, defined as

I (X : Y ) = H (X ) + H (Y ) − H (X,Y ), (1)

where H (X ) = −∑
x pX (x) log pX (x) is the classical Shan-

non entropy and H (X,Y ) is the joint entropy for X and Y .
Equivalently, we can express Eq. (1) in terms of the condi-
tional entropy H (X |Y ) as

J (X : Y ) = H (X ) − H (X |Y ). (2)

That the two quantities defined in Eqs. (1) and (2) are classi-
cally equivalent follows from Bayes rule, pX |Y = pX,Y /pY .

The situation is different for quantum systems. The quan-
tum analog of the mutual information for a bipartite quantum
system AB can be defined as

I (ρAB) = S(ρA) + S(ρB) − S(ρAB), (3)

where S(ρ) = −tr(ρ log ρ) is the von Neumann entropy of the
density matrix ρ. The quantum mutual information measures
the total (quantum and classical) amount of correlation present
in a quantum state. On the other hand, the quantum version
of J (X : Y ) is obtained by considering the conditional state
of subsystem A after a measurement is performed on sub-
system B. Let us denote by {�B

j } a positive operator-valued
measurement (POVM) describing a generalized measurement
performed on B. The quantum conditional entropy after the
measurement is given by

S�(ρA|B) =
∑

i

piS(ρA|i ), (4)

where pi = tr(ρAB�B
i ) and ρA|i = trB(ρAB�B

i )/pi. The quan-
tum version of J (X : Y ) then reads

J�(ρAB) = S(ρA) − S�(ρA|B). (5)

At variance with the classical case, in general the quantum
versions of I (ρAB) and J (ρAB) are not equivalent. Such a dif-
ference arises due to quantum effects, and can be exploited to
measure quantum correlations in the system. This difference
has been named entropic quantum discord [11,12], and is
formally defined as

D(ρAB) = I (ρAB) − max
{�B

j }
J�(ρAB)

= S(ρB) − S(ρAB) + min
{�B

j }
S�(ρA|B), (6)

whereas the classical correlation reads

C(ρAB) = S(ρA) − max
{�B

j }
S�(ρA|B), (7)

where the optimization is taken over the set of all possible
POVM measurements on subsystem B.

Quantum discord is able to measure quantum correlations
not captured by entanglement, in a sense that it can be present
even in separable mixed states. The states with vanishing
quantum discord are called classical-quantum states, and take
the form

ρcq =
∑

pi|Ai〉〈Ai| ⊗ ρBi, (8)

where {Ai} forms an orthonormal basis for subsystem A and
ρBi are generic states of subsystem B.

It is important to remark that the EQD is in general asym-
metric in A and B and as such represents the weakest and at the
same time the broadest element in the hierarchy of nonlocal
quantum correlations; indeed, while all entangled states have
necessarily nonzero discord, the opposite does not hold, as the
set of classical-quantum states forms a zero-measure subset
of the set of all separable mixed states [18]. EQD reduces
to entanglement on pure states (and thus vanishes on product
states); moreover, it vanishes identically on classical states,
thus providing a bona fide measure of quantumness.

Concerning the relation with coherence, it is immediate to
see from the definitions that a bipartite state has vanishing
discord if and only if the local reductions (reduced states of
the subsystems) are incoherent. In other words, coherence in
some local basis is a necessary and sufficient condition for a
nonvanishing bipartite discord [19,20], reflecting the intuitive

075104-2



FINITE-TEMPERATURE QUANTUM DISCORDANT … PHYSICAL REVIEW B 105, 075104 (2022)

notion that classicality is intimately related to the absence of
quantum superpositions in a specific local reference frame.

The role of the EQD in many-body systems has been
discussed in several contexts [21], and particularly for spin
systems. The first works along this line show that the
EQD exhibit signatures of quantum critical points [22,23].
For the case of thermal states, the EQD was investigated
in Refs. [24–28]. The EQD exhibits a finite-temperature
crossover with universal scaling behavior in the quantum crit-
ical fan region associated with a one-dimensional quantum
critical point [27]. Furthermore, the scaling of the two-qubit
EQD is similar to the one of two-body correlation func-
tions. For instance, it decays polynomially in gapless (critical)
ground-state systems in one dimension [29,30]. In contrast,
the pairwise concurrence [1] and the two-body negativity [4]
typically decays exponentially with the distance.

It is worth mentioning that approximated analytical expres-
sions for the EQD can be obtained for a broad class of systems
for a pair of qubits (similarly to the case of entanglement),
which emphasize the relation between EQD and two-body
correlation functions [31]. However, such expressions for the
EQD are not valid for arbitrary states, and one cannot im-
mediately determine the behavior of the EQD from two-body
correlations, even for the case of two spins [32–34]. This work
focuses on a model describing a thermal phase transition and
in which the quantum discord can be efficiently computed.

III. MODEL HAMILTONIAN AND PHASE DIAGRAM

We consider a specific model, introduced in Ref. [4], de-
scribing a ensemble of Gaussian bosonic variables (π�r, φ�r )
arranged on hypercubic lattices. The system Hamiltonian
reads

H = 1

2

∑
�r

(
π2

�r + m2φ2
�r
) + 1

2

∑
〈�r,�r′〉

K (φ�r − φ�r′ )2, (9)

defined on a d-dimensional cubic lattice of N sites with pe-
riodic boundary conditions imposed on all spatial directions.
The model can be regarded as a mean-field approximation of
the transverse-field Ising model, where the Gaussian fluctua-
tions are taken into account. It hosts a finite-temperature phase
transition in the mean-field Ising universality class, related
to the underlying Z2 symmetry φ → −φ, and it features a
physical mass inversely proportional to the correlation length
that obeys

m(g) =
{√

g − gc for g > gc√
2(gc − g) for g < gc,

(10)

where gc(T, K, m) is the critical point, that is a function of
K, m and the temperature T .

The equilibrium thermal states of the model are Gaus-
sian states, i.e., they are completely characterized by the
covariance matrix σ , that can be computed analytically from
the two-point correlation functions (See Ref. [3] and Ap-
pendix A). The two-body covariance matrix of two modes at
sites �r and �r′ in a standard form can be conveniently expressed

as

σ =

⎛
⎜⎝

a 0 c 0
0 a 0 d
c 0 a 0
0 d 0 a

⎞
⎟⎠, (11)

with a = √
σφ (0)σπ (0), c = σφ (�r − �r′)

√
σπ (0)/σφ (0) and

d = σπ (�r − �r′)
√

σφ (0)/σπ (0), where σφ(π ) are two-body
correlation function of the field φ(π ).

The entanglement properties of the model have been
characterized in Ref. [4]. Short-range entanglement is still
sensitive to the transition: in particular, the area law coeffi-
cient of the entanglement negativity is singular at the critical
point. However, this behavior can be traced back to the fact
that boundary terms are very sensitive to local correlation
functions. Most importantly, entanglement related to viola-
tions of the positive-partial transpose criterion is insensitive
to long-distance critical properties. Indeed, by considering a
suitable tripartite Renyi negativity that allows us to trace out
such local terms, it has been shown that there is no residual
long-range entanglement at the transition [4]. Similarly, the
two-body negativity is exponentially decaying (if not exactly
vanishing) as a function of the distance between the modes for
any temperature [16]. These facts illustrate how entanglement
related to violations of the positive-partial transpose criterion
is short ranged, and thus, unrelated to the long-range nature
of correlations at criticality. Similar results have also been
observed in the context of the 2D quantum Ising model [6].

IV. GAUSSIAN QUANTUM DISCORD

The evaluation of the EQD is a difficult task in general, due
to the need to optimize over the set of all possible measure-
ments. Indeed, it has been shown that computing the EQD in
a generic quantum system is NP complete [35]. On the other
hand, in the case of Gaussian states, if one restricts to gen-
eralized Gaussian measurements, the corresponding Gaussian
quantum discord is computable [36,37]. It has been shown that
the Gaussian discord is in fact optimal and thus coincides with
the exact EQD for all two-mode Gaussian states [38].

Consider then a two-mode Gaussian state ρAB, which is
completely characterized by its covariance matrix σ whose el-
ements are σi j = tr(ρAB{RiRj}+), where R = (qA, pA, qB, pB)
is the vector of the canonical quadrature operators. The co-
variance matrix can always be brought to a standard form by
means of local unitary transformations:

σ =
(

α γ

γ T β

)
, (12)

where α = diag(a, a), β = diag(b, b), and γ = diag(c, d ).
This state is fully specified by its symplectic invariants: Ã =
det α, B̃ = det β, C̃ = det γ , and D̃ = det σ [39]. Due to the
invariance of the discord under local unitaries, we can work
with σ in the standard form, and the discord can be expressed
in terms of the four symplectic invariants.

A Gaussian POVM measurement on mode B can be de-
scribed by �B(η) = π−1ŴB(η)�B

0Ŵ †
B (η),

∫
d2η�B(η) = 1,

where ŴB(η) is the Weyl operator and �B
0 is the density ma-

trix of a pure, single-mode Gaussian state, whose covariance
matrix is denoted as σ0. After the measurement described by
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FIG. 2. Behavior of (a) the quantum discord and (b) the clas-
sical correlations on a 2D lattice between two modes placed on
sites at distances r = 1, 2, 3 as a function of g − gc at T = 0.2 for
N = 1000 × 1000 sites. Behavior of the (c) quantum discord and
(d) classical correlation close to the critical point at r = 1.

�B(η), the covariance matrix of the conditional state is given
by ε = α − γ (β + σ−1

0 )γ T , which is, remarkably, indepen-
dent of the measurement outcome. Thus, the Gaussian discord
can be simply written as

D(ρAB) = f
(√

B̃
) − f (ν−) − f (ν+) + inf

σ0

f (
√

det ε), (13)

where f (x) = ( x+1
2 ) log( x+1

2 ) − ( x−1
2 ) log( x−1

2 ) and the sym-
plectic eigenvalues of σ are given by ν2

± = 1
2 (
 ±√


2 − 4D̃) with 
 = Ã + B̃ + 2C̃.

V. DISCORDANT QUANTUM CRITICALITY

We are now in a position to characterize the phase diagram
of Eq. (9) using the EQD. We will start from the 2D case, and
set K = 1 as energy unit.

A. Short-distance properties

We first focus on discord at fixed distance: this is a useful
check to understand whether the EQD is sensitive to the same
type of short-range correlations as the negativity is - a sanity
check before moving to investigate the long-range behavior.
In Fig. 2(a), we report the behavior of the EQD for intersite
distances r = 1, 2, 3 in a system of N = 106 sites: all cases
are characterized by a local maximum at g = gc, similarly to
classical correlations [Fig. 2(b)]. In Figs. 2(c) and 2(d), we
compare the approach to criticality of the quantum discord D
[Eq. (13)] and the classical correlations C [Eq. (7)] at r = 1:
while classical correlations diverge, the EQD remains finite,
scaling as D ∼ |t |, where |t | is either g − gc or T − T c. This
signals the fact that the latter carries qualitatively different
information with respect to classical correlations only. This
is confirmed further by the finite-size scaling collapse (see
Appendix C), which is reminiscent of the one found for the
negativity in Ref. [4].

FIG. 3. (a) Decay of the entropic quantum discord on a 2D
lattice at the critical point. (b) Behavior of discord length ξD near
the critical point for g(Tc = 0.4). The red dashed line is the power
law fit ξD = a±|T − Tc|−νD . We find the power law exponent to be
νD = 0.487 ± 0.017, close to ν = 1/2 for the classical correlation
length in the mean-field Ising universality class.

B. Long-distance properties

Oppositely to what happens at short distances, the long-
distance decay of the EQD is fundamentally distinct from
that of the entanglement negativity. In Fig. 1(c), we show the
decay of D versus distance for several values of g for the 2D
model.

Away from the critical point, the EQD vanishes expo-
nentially with the distance: D(r) ∼ e−r/ξD , where we have
introduced the discord length ξD which plays a similar role as
the physical correlation length. We see that the discord length
is diverging as we move towards the critical point, similarly
to the physical correlation length. At the critical point, both
2D and 3D models display a characteristic power law decay,
as shown in Fig. 3. In the same range of parameters, we
found that the two-body negativity vanishes beyond a few
sites. We point out that, in addition to the EQD, the geometric
discord, defined as a suitable distance from the set of classical-
quantum states, also displays similar signatures of the critical
behavior (see Appendix B).

We find worth commenting now on the potential generality
of QDC. Based on our results and on general considerations
applicable also to spin-1/2 systems [17,30], we envision two
likely scenarios. In the first instance, QDC is a specific prop-
erty of certain finite-temperature transitions. In the second
one, QDC is widespread and in fact applicable to all finite-
temperature transitions. Both scenarios require investigations
going beyond classical field theory, calling for the develop-
ment of a thermal field theory for phase transitions of quantum
models at finite temperature (even if, remarkably, quantum
correlations are still dictated by classically predictable crit-
ical exponents). The second scenario may potentially arise
naturally in spin-1/2 systems (and thus extend to the 2D
Ising model), the only case where the quantum discord—
like entanglement—is directly tied to correlation functions:
for instance, the EQD has been show to decay algebraically
for critical phases in the 2D XY model [17]. While, from a
many-body viewpoint, this second scenario would make the
phenomenology we describe somehow less interesting with
respect to the first one (even if it would remarkably enable
an unbiased method to distinguish a purely classical transition
from a finite-temperature transition in a quantum system), it
would anyway uncover an unexpected, generic setting where
to investigate the quantum-to-classical crossover directly at
the many-body level, under very minimal assumptions.
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FIG. 4. (a) Behavior of the geometric discord between nearest-
neighbor pairs as a function of g − gc on a 2D square lattice.
(b) Decay of geometric discord as a function of the distance.

VI. CONCLUSIONS AND OUTLOOK

We have reported evidence of genuine, operatively mean-
ingful quantum correlations at thermal quantum phase transi-
tions. In the context of Gaussian bosonic theories, we have
shown how quantum discord can feature genuine critical
behavior even in cases where stricter forms of quantum cor-
relations, most notably, entanglement, are very short-ranged.
The phenomenology we describe does not rely on the system
being at thermal equilibrium, so that it could be, in principle,
adapted to search for signatures of quantum correlations in
steady states of Liouville dynamics (where the role played by
entanglement, if any, is unclear) [40], possibly in combina-
tion with complementary aspects such as quantum coherence
[17,41].

Note added. While this manuscript was in preparation, we
became aware of a recent work by Ma and Sela [42] that

FIG. 5. Behavior of the discord length near the critical point at
T = 0.2. The red dashed line is the power law fit ξD = a±|g − gc|−νD

where the exponent is νD = 0.4785 ± 0.0045.

FIG. 6. Data collapse of the entropic quantum discord EQD with
respect to (g − gc )L1/ν .

also discusses persistence of quantum correlations at finite
temperature.
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APPENDIX A: COVARIANCE MATRIX

Our model is described by Gaussian states, which are
completely characterized by their covariance matrix. This fact
allows one to compute various quantities efficiently, including
the quantum discord. In particular, for our model, the elements
of the covariance matrix (two-point correlators) are

σφ (�r − �r′) = 2〈φ�rφ�r′ 〉 = 1

N

∑
�k

ei�k·(�r−�r′ ) 1

ω�k
coth

(
1

2
βω�k

)
,

(A1)

σπ (�r − �r′) = 2〈π�rπ�r′ 〉 = 1

N

∑
�k

ei�k·(�r−�r′ )ω�k coth

(
1

2
βω�k

)
,

(A2)

where �k = (k1, k2, · · · , kd ) = 2π
L (n1, n2, · · · , nd ) for ni =

0, 1, · · · , L − 1, and ω�k =
√

m2 + 4K
∑d

i=1 sin2( ki
2 ). Note

that for finite-size systems, at the critical point, i.e., m = 0,
the contribution of the zero mode for σφ (�r − �r′) diverges. On
the other hand, in the thermodynamic limit, σφ (�r − �r′) is finite
for d > 2 and diverges otherwise. Focusing on two modes at
sites �r and �r′ and tracing over all other modes, the covariance
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matrix reads

σ =

⎛
⎜⎝

σφ (0) 0 σφ (�r − �r′) 0
0 σπ (0) 0 σπ (�r − �r′)

σφ (�r − �r′) 0 σφ (0) 0
0 σπ (�r − �r′) 0 σπ (0)

⎞
⎟⎠.

(A3)

The previous formulation can then be brought to a standard
form by a local squeezing operation as discussed in the text.

APPENDIX B: GEOMETRIC DISCORD

Another way to measure the quantum discord is via a
geometrical approach. This measure is called the geometric
measure of quantum discord, or the geometric discord (GD)
for short. It is defined as [43],

DG(ρAB) = 1

Nd
min

σ
d (ρ, σ )2, (B1)

where the minimization is over the set of states σ with
zero quantum discord (classical-quantum states), d is a dis-
tance function on the set of quantum states, and Nd is a
normalization constant such that DG ∈ [0, 1]. It follows that
the GD vanishes on the set of classical-quantum states, as
is the case for the entropic discord, while the amount of
quantum correlations of a given state is quantified by how
“far” apart the state is from the set. Initially, the distance
most commonly used has been the Hilbert-Schmidt distance
d2(ρ, σ ) = [tr(|ρ − σ |2)]1/2 [43]. However, it turns out that
the Hilbert-Schmidt distance is not contractive under quantum
operations, a property that is necessary for physically reliable
distances [44]. Thus, the GD based on the Hilbert-Schmidt
distance is not a good measure of quantum correlations. On
the other hand, prominent examples of contractive distances
equipped with a physical and operational meaning are the
Bures and Hellinger distances, defined as [45]

dBu(ρ, σ ) = (
2 − 2

√
F (ρ, σ )

)1/2
, (B2)

dHe(ρ, σ ) = (2 − 2A(ρ, σ ))1/2, (B3)

where the Uhlmann fidelity F (ρ, σ ) and the affinity A(ρ, σ )
are given by

F (ρ, σ ) = (tr[(
√

σρ
√

σ )1/2])2, (B4)

A(ρ, σ ) = tr
√

ρ
√

σ , (B5)

respectively. Apart from being contractive, these two dis-
tances also enjoy some other desirable mathematical proper-
ties, making them the most prominent metrics used to quantify
quantum correlations (see Ref. [45] for a thorough review).

In the context of Gaussian states, the Gaussian geomet-
ric discord is defined accordingly as the minimum squared
distance between a Gaussian state and the set of classical-
quantum Gaussian states [46]. However, the set of Gaussian

FIG. 7. Decay of the entropic quantum discord EQD in 3D sys-
tems at the critical point.

states which are classical-quantum are known to consist of
only product states. Therefore, the Gaussian geometric dis-
cord measures the total (classical and quantum) correlations,
i.e., it cannot be the true geometric discord. Nevertheless, it is
still an interesting quantity since it provides an upper bound
to the true geometric discord and in terms of the Hellingere
distance it is computable for all two-mode Gaussian states
[45,47].

We thus study the behavior of the GD based on the
Hellinger metric on the same model considered in the main
text across a finite-temperature phase transition. In Fig. 4(a),
we show the behavior of the GD for nearest-neighbors in a
system of N = 106 sites. Again, the local maximum is found
at the critical point g = gc, similarly to the EQD. Concerning
the long-distance properties, Fig. 4(b) shows the decay of
the GD as a function of the distance for several values of g.
We find that away from the critical point the GD vanishes
exponentially. On the other hand, exactly at the critical point,
the GD is uniformly one at any distance, which is the largest
value DG can assume. Interestingly, we find that the discord
length corresponding to the GD is identical to that of the EQD
in our model.

APPENDIX C: DISCORD LENGTH AND
FINITE-SIZE SCALING

In Fig. 5, we show the behavior of the discord length ξQ

around the critical point g = gc at T = 0.2. It is observed
that ξQ exhibits a power-law divergent behavior, ξD ∼ |t |−νD ,
with t = g − gc. The power-law exponent is found to be νD =
0.4785 ± 0.0045. In Fig. 6, we show the finite-size scaling
collapse of the nearest-neigbor EQD.

APPENDIX D: 3D LATTICE

In the 3D case, we observe that the entropic quantum
discord EQD displays qualitatively a very similar critical be-
havior as that displayed in the 2D case. For example, the
discord length diverges at the critical point, whereas the EQD
displays a power law decay, as shown in Fig. 7.
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