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Selection rules for quasibound states in the continuum
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Photonic crystal slabs (PCSs) are a well-studied class of devices known to support optical Fano resonances for
light normally incident to the slab, useful for narrow-band filters, modulators, and nonlinear photonic devices. In
shallow-etched PCSs the linewidth of the resonances is easily controlled by tuning the etching depth. This design
strength comes at the cost of large device footprints due to the poor in-plane localization of optical energy. In
fully-etched PCSs realized in high-index-contrast material systems, the in-plane localization is greatly improved,
but the command over linewidth suffers. This disadvantage in fully-etched PCSs, also known as high contrast
gratings (HCGs), can be overcome by accessing symmetry-protected bound states in the continuum (BICs). By
perturbing an HCG, the BIC may be excited from the free space with quality factor showing an inverse squared
dependence on the magnitude of the perturbation, while inheriting the excellent in-plane localization of their
unperturbed counterparts. Here, we report an exhaustive catalog of the selection rules (if and to which free
space polarization coupling occurs) of symmetry-protected BICs controlled by in-plane symmetry breaking in
six types of two-dimensional PCS lattices. The chosen lattices allow access to the three highest symmetry mode
classes of unperturbed square and hexagonal PCSs. The restriction to in-plane symmetry breaking allows for
manufacturing devices with simple lithographic fabrication techniques in comparison to out-of-plane symmetry
breaking, useful for practical applications. The approach reported provides a high-level road map for designing
PCSs supporting controllable sharp spectral features with minimal device footprints using a mature fabrication
platform. To demonstrate the use of the resulting alphabet of structures, we numerically demonstrate nonlocal
metasurface platforms for terahertz generation, mechanically tunable optical lifetimes, and wavefront shaping
exclusively at resonance.
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I. INTRODUCTION

Enhancement of light-matter interactions is a key capabil-
ity for improving and expanding the functionality of a wide
gamut of photonic devices. Spatially and temporally confining
light enables compact planar optical modulators with fast
switching speeds [1–4], narrow-band bandpass filters [5–9],
sensitive biological and refractive index sensors [10–12], ef-
ficient optical microelectromechanical devices [13,14], novel
lasers [15–19], and enhanced nonlinear [20–23] and quantum
optical phenomena [24,25]. This is conventionally achieved
by the introduction of an optical cavity, which circulates opti-
cal energy, affording a photon many passes through a material.

Planar diffractive optics enable uniquely compact optical
confinement in lightweight quasi-two-dimensional systems
fabricated by mature micro- and nanofabrication technolo-
gies. Traditional plasmonic materials such as gold enable
strong light-matter interaction in metasurfaces [23,26–30] but
are incompatible with standard complementary metal-oxide
semiconductor (CMOS) foundries. Alternative plasmonic ma-
terials are an active area of study [31,32] but without ex-
ception introduce substantial optical losses that reduce the
efficiency of a photonic device. These limitations motivate
exploring methods of confining optical energy without metals,
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restricting the optical materials to common dielectric materi-
als such as silicon and its oxide.

A classic example of a dielectric diffractive optical element
with enhanced light-matter interactions is the low-contrast
grating (LCG) or guided mode resonance filter [5–8]. By peri-
odically corrugating a thin slab with subwavelength periodic-
ity, a laterally propagating waveguide mode supported by the
slab may couple to normally incident light. The leakage out
of the slab interferes with the direct optical pathways (here,
the Fabry-Perot resonance), producing a well-known Fano
resonance [33–35]. Related phenomena have been studied for
over a century, beginning with Wood’s anomalies [36–38]. In
an LCG, the degree of corrugation can be easily controlled
experimentally and is a design parameter that directly controls
the linewidth of the resonant spectral feature. In particular, for
small corrugation the quality factor (Q factor) of the resonance
is known to be inversely related to the depth of the corrugation
[39]. However, this attractive design feature comes with an
inherent drawback: The long optical lifetime comes from the
long distance the guided mode travels within the device before
coupling back to free space; the device therefore needs to
be of a lateral size comparable to this characteristic travel
distance in order to observe a narrow spectral feature. In
other words, LCGs are constrained by a tradeoff between
spatial confinement (device size) and temporal confinement
(Q factor).

Another well-studied diffractive optical element is the high
contrast grating (HCG) [40–42], known to enable compact de-
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vices due to large in-plane Bragg reflection laterally confining
optical energy. Since the corrugation is deep (and, typically,
complete) in HCGs, the ease of control of the Q factor by
the method present in LCGs is lost. HCGs are best known
for their broadband spectral features for this reason. However,
HCGs are also known to support sharp spectral features in
the form of Fano resonances [42–44]. In particular, for certain
combinations of optical materials, geometries, wavelength,
angle, and polarization, the Q factor may become infinite,
a phenomenon known as a “bound state in the continuum”
(BIC) [45–48]. Operating near a BIC in the relevant mul-
tidimensional parameter space allows tuning of a resonance
with finite Q factor. Unfortunately, because of the complex
and sensitive dependence on many parameters simultaneously,
this control is not robust in comparison to the control in an
LCG.

However, HCGs can support two classes of BICs: those
excluded from coupling to free space due to symmetry con-
straints (or “symmetry-protected”) and those excluded for rea-
sons unrelated to symmetry (or “accidental” [49]). It has been
argued recently [50] that symmetry-protected BICs in HCGs
are better suited than accidental BICs for creating compact
optical devices with sharp spectral features. It is well known
that by reducing the symmetry [9,28,51–60] of an HCG or
PCS, symmetry-protected BICs become quasibound in the
continuum, at which point they are referred to as “quasi-BICs”
[61]. Quasi-BICs couple to light at normal incidence with op-
tical lifetimes controlled by the magnitude of the perturbation
that breaks the symmetry protecting them, thereby restoring a
robust design paradigm for controlling the Q factor of a sharp
spectral feature. Furthermore, it has also recently been shown
[54,60] that proper perturbation (including breaking vertical
symmetry) allows excellent control of the band structure.
Therefore, a symmetry-broken HCG inherits the benefits of
both LCGs and HCGs relevant to sharp spectral features in
compact devices.

In particular, a period doubling perturbation (a dimeriza-
tion of an HCG) allows modes previously bound [under the
light line at the edge of the first Brillouin zone (FBZ)] to be
brought into the continuum, coupling to a range of angles
near normal incidence to a degree controlled solely by the
perturbation [53–56,60,62,63]. Consequently, a “dimerized
high contrast grating” (DHCG [50]) is an excellent candidate
platform for planar optical devices with both spatial and
temporal confinement of light. Much of the study of DHCGs
has focused on simple, one-dimensional devices, enabling
control of the mode in one in-plane direction but not in the
orthogonal direction. Two-dimensional, high-index-contrast
PCSs with periodic perturbations are the natural extension
of DHCGs that solve this limitation and are the subject of
this paper. The number of symmetries in a two-dimensional
PCS is significantly greater than the simple one-dimensional
case; the wealth of modal interactions between free space and
two-dimensional PCSs with periodic perturbation therefore
requires detailed exploration.

Symmetry-protected BICs are commonly studied in
monatomic PCSs, where even/odd symmetry conditions may
preclude coupling to free space at normal incidence. The BICs
in diatomic PCSs (e.g., DHCGs) are subject to the analo-
gous even/odd symmetry conditions, so that once the period

doubling has folded the bound modes into the continuum,
they may still be left bound in the continuum. If the relevant
even/odd symmetry is broken, the symmetry-protected BICs
become quasi-BICs. Both the monatomic and diatomic ap-
proaches fall under the same category of symmetry-protected
BICs but access distinct high symmetry modes (that is, modes
with distinct periodicity and field profiles). Therefore, to fully
utilize the available perturbations and modes, we study both
monatomic and multiatomic PCSs.

We note that the simplest method of breaking the relevant
in-plane symmetries is to excite quasi-BICs with light at an
incident angle just off the substrate’s normal. However, as
argued in Ref. [50], this approach is restrictive in comparison
to breaking the symmetry by perturbing the structure. In
particular, this method works only for light with a limited
angular spread of optical momentum centered at a precise
angle (to get the target Q factor), therefore requiring devices
with large footprints and precise tilt of the device relative to
the source optics.

Lastly, while in this paper we describe quasi-BICs as
supported by all-dielectric PCSs, we note that the group
theory approach taken here is valid irrespective of materials
system, so long as the materials are isotropic. For instance,
arrays of silicon pillars are treated the same as arrays of holes
in a silicon (or even metal) slab. The choice of materials
system may be made based on the needs of the application;
an analogous set of modes (as classified by their in-plane
symmetries) obeying the selection rules derived here will
exist, albeit with widely varying field profiles and resonant
frequencies.

In this paper, we study the optical response due to in-
plane perturbations applied to high-symmetry PCS lattices.
Throughout, we assume these PCSs have cross sections in-
variant in the out-of-plane direction, and we assume any out-
of-plane symmetry introduced by the presence of a substrate
is negligible. In Sec. II A, we review quasi-BICs and how
they spatially and temporally confine light. In Sec. II B, we
review the classification in the language of group theory of
the three types of high symmetry modes supported by each
of square and hexagonal PCSs (six types of modes in total).
Section III A explores six classes of perturbed lattices chosen
to target the six high symmetry modes. To determine the
impact of these perturbations, Sec. III B derives the sym-
metry constrained coupling conditions specifying which, if
any, free space polarization couples upon perturbation. The
degenerated space groups compatible with each unperturbed
lattice are exhaustively listed, and in Sec. III C the polarization
dependence for each mode and each space group is written
down by applying group theory principles. The result is a
catalog of the selection rules for quasi-BICs describing all the
unique ways that the six highest symmetry modes of square
and hexagonal photonic crystal lattices may be accessed by
in-plane symmetry breaking. Finally, in Sec. IV we discuss
notable aspects of the catalog and sketch several example
device applications. In particular, here and in the accompa-
nying paper [64] we show how the catalog guides device
design using successive perturbations to achieve multifunc-
tional control of optical spectra and introduce a novel class of
metasurfaces that use this multifunctional control to spatially
control resonant wavefronts.
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II. BACKGROUND

A. Quasibound states in the continuum

We begin by reviewing the design process to create a
finite-sized DHCG; we explore a BIC in a diatomic lattice
artistically depicted in Fig. 1(a). Figures 1(b) and 1(c) define
the geometric parameters of the unperturbed and perturbed
lattices, respectively. The two “atoms” (here, pillars of silicon)
in the perturbed lattice are identical in height H and diameter
D and sit in a lattice of period

√
2P, where P is the period

of the unperturbed lattice. The perturbation can be quantified
as the gaps between atoms: The perturbed gap is g2 = g + δ,
where g is the unperturbed gap (g = P − D) and δ is the
perturbation. The FBZs of the unperturbed and the perturbed
lattices are shown in Figs. 1(d) and 1(e), respectively, with
high symmetry points defined and the primed coordinates
representing the perturbed lattice. The effect of the lattice
transformation (taking the period in real space from P to

√
2P

and rotating the basis vectors by 45◦) is to shrink the extent of
the FBZ and rotate it by 45◦. The states belonging to sections
of the unperturbed FBZ that lie outside of the new, perturbed
FBZ are, by Bloch’s theorem, equivalent to states within the
new FBZ. They are brought into the new FBZ by translation of
a reciprocal lattice vector (a process known as Brillouin zone
folding) as depicted graphically in Fig. 1(e) for the shaded
area near the X point. The bound modes that were at the X
point are now at the � point (that is, in the continuum) due to
the perturbation.

The new modes brought into the continuum may now cou-
ple and produce Fano-like sharp spectral features for normally
incident light. By construction, the coupling strength is related
to the magnitude of the perturbation. It has been shown [50]
that the coupling strength for small perturbations is of the
order of δ. Since the Q factor of a sharp resonance is inversely
proportional to the square of the coupling strength [39], a
symmetry-protected BIC has a Q factor governed by [50,61]

Q = C/δ2, (1)

where the constant C can vary depending on the mode, geome-
try, materials, and polarization. Figures 1(f) and 1(g) show the
mode profiles for the fundamental mode depicted in Fig. 1(a).
Figure 1(h) shows full-wave simulations of the Q factor of
the fundamental mode as a function of perturbation strength,
agreeing well with Eq. (1) with C ≈ 6.5P2. Figure 1(i) con-
tains the band diagram for the perturbed structure calculated
by the plane-wave expansion method (PWEM) using the
supercell method, with high symmetry points defined relative
to both the unperturbed and perturbed lattices. The modes
are calculated in the unperturbed structure following the red
arrows in Fig. 1(d) and then artificially folded into the FBZ.

The band structure of the perturbed PCS in Fig. 1(i) can
help predict the accuracy of Eq. (1) for finite devices. In an
infinite device, a plane wave corresponds to a single state
(for instance, a mode at the � point) and the band curvature
is irrelevant. However, a finite device excited by a Gaussian
beam will behave as some combination of responses excited
by the plane waves composing that Gaussian beam. One
simple model for predicting the behavior of a finite device
is to perform a weighted sum of the spectra corresponding
to the constitutive plane waves [50]. We model a band by

a Taylor expansion about the � point, ωres(k) = ω0 + bk2,
where ω0 is the angular frequency of the mode at k = 0
and b = 1

2
∂2ωres
∂k2 |

k=0
. A Gaussian beam with a characteristic

spread in wave vector of �k will excite a characteristic spread
of frequencies �ω = b�k2. It is natural to expect that if
this spread of frequencies is larger than the linewidth of the
resonance dω excited in an infinite device by a plane wave,
the spectral feature will be washed out, lowering the observed
Q and invalidating Eq. (1). This suggests a constraint

Q = ω0

dω
� ω0

�ω
= ω0

b�k2
. (2)

In other words, there is an upper limit on the Q factor
attainable in a finite device due to the band curvature near the
� point.

While this simple model does not account for all of the pos-
sible finite size effects (e.g., edge effects and a more complex
modal structure), the derived constraint suggests that optimiz-
ing the band flatness will tend to allow for the most compact
devices. In particular, the factor to minimize is F = |b|/ω0,
which serves as a figure of merit when designing a device by
computing its band structure. Figure 1(j) maps F as calculated
for a variety of diameters and heights (relative to the period)
of silicon pillars sitting on a silicon dioxide substrate. While
the curvature is different along �-M ′, or the kx direction,
compared to along �-X ′, or the ka direction, this band is
limited by its curvature in the kx direction; we therefore
restrict the calculation of F to the band along the kx direction.

We choose a design with the smallest F according to
Fig. 1(j) and scale its geometrical parameters by a factor
λ/λres such that the operating resonant wavelength is λ =
1.58 μm for a calculated resonant wavelength λres. Figure 1(k)
shows transmittance spectra calculated by full-wave simu-
lations of an infinitely periodic device excited by a plane
wave of either x or y polarization, demonstrating that this
coupling only occurs for y polarization. Figure 1(k) also
shows a transmittance spectrum of a device of finite size
(30 μm × 30 μm) excited by a Gaussian beam with a waist
radius of w0 = 7 μm calculated by full-wave simulations. The
spectral feature remains intact, confirming that the flat band
in Fig. 1(i) determined through the optimization shown in
Fig. 1(j) allows for compact devices with moderately high
Q ≈ 103.

Figure 1 overviews the design process of a compact optical
device (a two-dimensional DHCG) supporting a sharp spectral
feature due to a quasi-BIC. However, this process represented
just one high symmetry mode and explored the behavior as
a result of only one specific perturbation. This behavior was
shown to be weakly dependent on incident angle [Fig. 1(i)] but
strongly dependent on incident polarization [Fig. 1(k)]. The
key result of this paper is a theoretical description allowing
prediction of the polarization behavior (selection rules) of
all high symmetry modes and perturbations. With this result,
which we call the “catalog of selection rules,” the design
process overviewed in Fig. 1 can be summarized as having
three steps: (1) Choose a high symmetry mode for its real-
space properties (e.g., for its field overlap with the high
index material); (2) optimize the band structure by tuning
the parameters in unperturbed structure [as in Fig. 1(i)]; (3)
choose a proper perturbation according to the desired selec-
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FIG. 1. (a) Artistic rendering of a quasibound state in the continuum in a periodically perturbed square lattice. (b) Geometry of the
unperturbed lattice. (c) Geometry of the perturbed lattice. (d) First Brillouin zone of the unperturbed lattice, with red arrows tracing the
path used in the band diagram of (i). (e) First Brillouin zone of the perturbed lattice, showing band folding. (f),(g) Out-of-plane magnetic
field and in-plane electric field components of the fundamental mode of the perturbed lattice. (h) Dependence of the Q factor on the
perturbation, δ = g2 − g. (i) Band diagram (with target band highlighted in red) of the folded modes in a finite height PCS with D = 0.411 μm,
H = 0.295 μm, P = 0.527 μm. These parameters correspond to an operating wavelength of λ = 1.58 μm with the optimal (minimal) figure
of merit |F | as found by the parameter sweep in (j), in which |F | is mapped for varying D/P and H/P. The taller diamondlike window in
(i) represents the region of energy-momentum space where the superstrate (air) supports only a single diffractive order (m = 0); the shorter
window represents the same for the substrate (silicon dioxide). (k) Transmittance T near the fundamental mode frequency of an infinitely
periodic device excited by a plane wave at normal incidence and of a finite device (30 μm × 30 μm) with δ = 80 nm excited by a Gaussian
beam with e−2 waist radius of w0 = 7 μm. Both devices show Q ≈ 1000 and excellent resonance visibility, indicating that the performance of
the finite device is maintained despite its small footprint.
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tion rules (e.g., targeting y polarization). The catalog serves
as a comprehensive guide for step (3), clarifying the wealth
of options in conjunction with the choice in step (1) of the
desired high symmetry mode; it thereby provides a high-level
road map for this three step design process resulting in a
PCS that confines light in both space and time. This design
scheme may be further coupled with computational inverse
design techniques [65] to reduce the dimensions of the design
parameter space to be explored.

B. Classification of high symmetry modes

The first step to determining the selection rules of per-
turbed PCSs is to classify the modes present. Since the selec-
tion rules arise from symmetry breaking, a mode classification
scheme employing the symmetries of the allowed modes is the
natural choice. Although the final devices of interest are three
dimensional in nature (having a finite thickness in the out-
of-plane direction, z), it considerably simplifies the analysis
to begin with Maxwell’s equations in two dimensions. In this
case, Maxwell’s curl equations decouple into two separate sets
of three equations, each set defining modes characterized by
either the out-of-plane magnetic field Hz (referred to as TE
modes) or the out-of-plane electric field Ez (referred to as
TM modes). Each mode is then definable by this single field
component. We therefore select, review, and carry out a group
theory approach detailed in Ref. [66] to classify the modes by
in-plane symmetries of the out-of-plane field component. We
note that this group theory analysis is valid for any materials
system, for instance, an array of silicon pillars, holes in a
silicon slab, or even a metallic structure. For convenience, and
comparison to conventional metasurfaces, we first consider
arrays of silicon pillars. But the resulting selection rules are
immediately transferable to any other materials system.

Since the fields exist in a periodic lattice, they are char-
acterized by plane waves with magnitudes and directions
corresponding to high symmetry points of the reciprocal
lattice. When the index contrast is low, this characterization
is excellent; when the index contrast is large (such as a silicon
and air system), significant deviations in resonant frequencies
occur relative to the low index contrast systems, but the
symmetries of the possible modes remain unchanged. The
modes can therefore be studied with reference to the extended
zone scheme.

Figure 2(a) depicts the extended zone scheme for a square
lattice, with notable high symmetry points marked. In par-
ticular, the � points, M points, and X points are labeled by
an index pertaining to their distance from the origin, �(0).
These points have point group symmetries C4v , C2v , and C4v ,
respectively (see Appendix A for the character tables and
other relevant group theory tables), and the modes decom-
posable by plane waves corresponding to these points are
describable by these point groups. These three sets of points
are the highest symmetry points in the reciprocal lattice and
therefore correspond to the modes of interest in the square
lattice. The three analogous sets of points in the hexagonal
lattice [Fig. 2(b)] are the � points, M points, and K points.

A group theory approach [66–68] predicts the number
and nature of the modes from each set of high symmetry
points in the extended zone scheme. Figure 2(c) contains a

table summarizing the modes possible at each of the high
symmetry points in the square lattice. The degeneracy of a
set of high symmetry points N is also the number of modes
corresponding to that set. The magnitude of the wave vectors
k of the plane waves of a set will correspond to the expected
eigenfrequencies of the modes (however, as noted above,
this correspondence is poor in high-index-contrast systems).
Lastly, the irreducible representations describe the mode sym-
metries. That is, modes that “transform like” (share all the
symmetries of) each irreducible representation listed in an
extended zone will be present at that extended zone. Note that
the E irreducible representations are doubly degenerate and
so account for two modes.

Figures 3 and 4 depict the TM modes from the first four
extended zones of each high symmetry point in the square
and hexagonal lattices, respectively. An analogous set exists
for TE modes, identical in symmetries (in Hz instead of Ez) but
spatially distorted and differing in eigenfrequency. The modes
are organized by the extended zone order (columns) and
irreducible representation (rows). Reference to the relevant
character tables [Appendix A, Fig. 17(a)] shows that modes
labeled by a given irreducible representation transform the
same way as the corresponding row in the character table: A 1
in a column of this row means the mode will be symmetric
under the class of operations of that column; a −1 means
antisymmetric; a 0 means not symmetric; a magnitude of 2
signifies that the mode is degenerate.

Finally, the out-of-plane property of the modes is char-
acterized by the order n or number of antinodes per atom
of the PCS in the z direction. The inclusion of out-of-plane
characteristics captures all the relevant features of the modes
within the scope of this paper if the PCS has mirror symmetry
about an xy plane. However, two-dimensional PCSs with
a substrate are known to exhibit chiral behavior: Incident
circularly polarized light can behave in a manner depending
on the handedness [62,69]. The chiral effects of a substrate
and vertical symmetry breaking are beyond the scope of this
paper and represent a fruitful avenue for future research. We
restrict ourselves to PCSs composed of vertically extruded
two-dimensional lattices, and we find that the presence of a
low-index substrate (such as glass) generally has little practi-
cal effect of this kind (and so can be ignored).

With the in-plane and out-of-plane features of each mode
classified, we are motivated to provide a naming scheme. We
call a mode:

ψm,n
L,S , (3)

where ψ is TM or TE if the mode is characterized by Ez or Hz,
respectively, L signifies the reciprocal lattice point (e.g., �), S
is the irreducible representation (e.g., A1), m is the extended
zone order, and n is the out-of-plane order. For instance, the
mode in the B2 row and X (1) column in Fig. 3, with a single
out-of-plane antinode per unit cell of the PCS would be called
TM1,1

X,B2
, which is the lowest frequency Ez mode in this square

lattice. TE1,1
X,B2

is the mode explored in Fig. 1.
Importantly, we discuss the relationship of the two-

dimensional description of the modes and the modes of a
finite-thickness PCS, which we assume throughout this paper
is simply extruded (its cross section is invariant) in the z

035434-5



OVERVIG, MALEK, CARTER, SHRESTHA, AND YU PHYSICAL REVIEW B 102, 035434 (2020)

Group Point Irreducible 
Representa�ons

1

4

4

4

8

2

4

2

4

4

8

4

8

Group Point Irreducible 
Representa�ons

1

6

6

6

12

2

2

2

4

3

3

6

6

(a)

(c)

(b)

(d)

FIG. 2. Extended zone scheme mode classification. (a),(b) Extended zones in reciprocal space of the square and hexagonal lattices.
(c),(d) Mode classification tables for the square and hexagonal lattices detailing the point group (column labeled “Group”), extended zone
(column labeled “Point”), number of modes (column labeled “N”), characteristic wave vector of the plane wave (column labeled “k”), and the
irreducible representations (mode symmetries) present at each extended zone for each of the six high symmetry mode types.

direction. The modes depicted in Figs. 3 and 4 may be
considered as the modes traveling in the z direction in a
semi-infinite two-dimensional photonic crystal. In this case,
these eigenmodes are described by folding the eigenmodes of
an unpatterned isotropic medium (i.e., plane waves), while
in a finite PCS, as discussed in Ref. [66], the eigenmodes
are described by folding the eigenmodes of the unpatterned
slab. While the underlying bases are distinct, the resulting
modal symmetries are identical. However, polarization mixing
occurs in the PCS as a result of the finite thickness, yielding
modes that are quasi-TE and quasi-TM, rather than pure.
But due to the vertical extrusion, and for normally incident

light, the new polarization components cannot introduce or
destroy any symmetries, which are described by the point
group; that is, the TM (TE) components of the quasi-TE
(quasi-TM) modes contain equivalent symmetry properties
to the analogous pure-TE (pure-TM) modes, and therefore
have no bearing on the selection rules for normally incident
light. We refer to quasi-TE (quasi-TM) modes as simply TE
(TM) for this reason and are free to treat the PCS modes
as equivalent to their two-dimensional counterparts for the
purposes of studying the selection rules at normal incidence.

The modes of a PCS also may have additional, out-of-plane
symmetries compared to their two-dimensional counterparts.
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- - - - - - -

- - -

- - - -

FIG. 3. Modes at the high symmetry points in the square lattice, classified by in-plane symmetries (column-wise) and extended zone
(row-wise). The three tables correspond to the modes at the �, M, and X points, respectively. Modes are calculated by plane-wave expansion
method for the electric field out of plane (TM modes); an analogous set exists with magnetic field out of plane (TE modes).

If there is a xy mirror plane (at the center of the PCS), then
the point groups used here are not sufficient to describe the
modes. For instance, the modes of the hexagonal lattice are
described by the dihedral group D6h = C6v ⊗ C1h, where the
C1h group accounts for whether the modes are symmetric
or antisymmetric with respect to that xy mirror plane. This

symmetry determines, in part, the “handedness” of the Fano
resonance [39] (that is, whether the reflection peak occurs at a
redder or bluer wavelength than the reflection dip). However,
it has no bearing on the selection rules at normal incidence
and may therefore be ignored for our purposes. Furthermore,
in the most practical scenario a low-index substrate is present,

- - - - - - - -

- - - -

- - - -

FIG. 4. Modes at the high symmetry points in the hexagonal lattice, classified by in-plane symmetries (column-wise) and extended zone
(row-wise). The three tables correspond to the modes at the �, M, and K points, respectively. Modes are calculated by plane-wave expansion
method for the electric field out of plane (TM modes); an analogous set exists with magnetic field out of plane (TE modes).
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breaking this mirror symmetry and leaving only in-plane
symmetries. Since inclusion of the mirror plane needlessly
doubles the number of modal labels, we exclude it.

Instead, we use the modal index n to refer the out-of-plane
characteristics of the PCS modes. When n is odd (even), the
decay symmetry is even (odd), meaning that the mode naming
scheme in Eq. (3) contains the relevant information about
the handedness of the asymmetric lineshape (note that the
decay symmetries hold approximately even in the presence
of a low-index substrate). Consequently, there is a 1:many
correspondence between the modes of a semi-infinite pho-
tonic crystal and a PCS: Each mode in Figs. 3 and 4 has
identical in-plane symmetries to many modes in the PCS
that differ only out-of-plane according to the modal index n.
Such a relationship between accidental BICs supported by an
HCG and the vertically propagating waveguide modes of the
corresponding 1D waveguide array is described in Ref. [40],
wherein a round-trip phase condition of the vertically prop-
agating modes predicts the dispersion of the BICs; here, the
integer multiple of 2π picked up upon a round trip is the
modal index n.

Finally, we note that the K point modes in the hexagonal
lattice are more complex than the other five high symmetry
modes. In particular, the K point in the unperturbed lattice has
point symmetry of C3v , as evident in Fig. 2(b). However, there
are two identical sets of these K points; the set not pictured in
Fig. 2(b) can be obtained by reflection about the ky axis. As
demonstrated in Fig. 1, the modes only become BICs once
folded to the � point by an appropriate perturbation (depicted
in Fig. 5). For K point modes, the analogous perturbation
results in a triatomic lattice and therefore triples the number
of modes at the new � point compared to the unperturbed
monatomic lattice. At the perturbed � point, a set of modes
originating from each set of K points will mix in pairs.
The symmetries of the mixed modes are described by
the direct product group Cs ⊗ C3v , corresponding to the
relationship of the two sets of K points. This direct product
group is isomorphic to (shares the same character table as) the
group C6v , allowing the modes to be named in C6v . Naming
the modes according to C6v is inconsistent with the modes
in an unperturbed lattice at a single K point but consistent
with the modes upon folding to the � point and mixing in
the relevant perturbed lattice. Since our goal is to study these
modes in the perturbed lattice, defining the modes in C6v is
the more fruitful choice.

III. SELECTION RULES

By proper periodic perturbation, any of the six classes of
high symmetry modes can be accessed from free space if ad-
ditional symmetry constraints are satisfied. These symmetry
constraints can be treated with a group theory approach and
result in a catalog detailing how each high symmetry mode
classified above couples to free space under a given planar
perturbation. In the following, we identify six lattice types
chosen to target the six high symmetry modes (Fig. 5), list
all the degenerated space groups compatible with those lattice
types (Fig. 6), and then derive the selection rules for every
case (exemplified in Figs. 7 and 8). The resulting catalogs

(Figs. 9 and 10) can be used as a high-level road map in the
design of planar photonic devices.

A. Target space groups

The six types of high symmetry modes described above
motivate six types of lattices, each one uniquely targeting
one of the six high symmetry mode types. For each of these
lattices, an exhaustive list of lattices with lower symmetry
attainable by planar perturbation is explored. The symmetry
degeneration from higher symmetry to lower symmetry will
constrain which polarization, if any, may couple to free space
for each high symmetry mode.

The six lattice types, depicted in Fig. 5, are named based on
the modes they target and whether they begin with square or
hexagonal symmetries. For instance, the Sq� is a monatomic
photonic crystal with a square lattice where the perturbation
has periodicity equal to that of the unperturbed lattice. This
lattice is labeled by � because it supports none of the other
types of modes of interest supported by the square lattice (that
is, M and X modes) in the continuum. Figure 5 (top left)
depicts an example real space lattice, FBZ, and band diagram
for the Sq� lattice. The white region in the band diagram
is the region of the continuum of interest, wherein only the
zeroth diffractive order is allowed. We constrain ourselves
to the area near the � point of the white region, where the
symmetry-protected BICs can produce sharp spectral features
described above.

The SqM lattice (top middle of Fig. 5), on the other hand, is
a photonic crystal with perturbations with periodicity double
that of the unperturbed lattice in a single direction. This
period doubling (in the x direction in Fig. 5) halves the extent
of the FBZ in the kx direction. The shaded portion outside the
new FBZ is then translated into the FBZ by a reciprocal lattice
vector. As a result, the M point of the unperturbed lattice
overlaps with the � point, bringing the M point modes into
the continuum in an analogous way described in the example
in Fig. 1. This Brillouin zone folding also changes the shape
of the zeroth order diffraction region of the band diagram.
The � point will now have both the modes at the unperturbed
� point as well as at the unperturbed M points. The SqM
lattice is the only lattice in Fig. 5 to bring the M point modes
of a square lattice into the continuum, motivating its name.
The remaining lattices target X modes of the square lattice
(SqX , which is the lattice type explored in Fig. 1), and �, M,
and K point modes of the hexagonal lattice (Hex� , HexM ,
and HexK , respectively) in an analogous way. Notably, two
distinct regions are folded into the FBZ of the HexK lattice:
As discussed above, two sets of modes are folded to the �

point, one from each distinct K point.
We note that the six lattices chosen in Fig. 5 are not an

exhaustive set: Lattices with any number of atoms per unit
cell are possible. Ordering this list of lattices by number of
atoms per unit cell, the six chosen lattices are the lowest order
lattices uniquely targeting the six high symmetry modes of
interest. Appendix B describes three examples of higher order
lattices. The approach described in what follows may be used
to generate the catalog for any higher order lattice.

Next, the space groups of degenerated lattices that are
compatible (attainable through perturbation) with each lattice
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FIG. 5. Six lattices target six distinct high symmetry modes. They are named for their lattice family (Sq for square lattices and Hex for
hexagonal lattices) and the high symmetry mode they uniquely target (e.g., SqM folds the M point modes of a square lattice into the continuum
by a period doubling perturbation). An example unit cell with a perturbation is given with high symmetry points defined (γ , μ, ξ , and κ). The
FBZ is also given with high symmetry points defined (�, M, X , and K), dashed lines denoting the FBZ of the unperturbed lattice and solid lines
that of perturbed lattice. Lastly, an example band diagram is shown for infinitely tall PCSs for the TM polarization case, showing generally the
presence of flat bands at the � point and band folding in the relevant cases. The red arrows in the Sq� and Hex� FBZs depict a representative
path taken through the FBZ for the band diagrams. Modes in the light shaded area are bound. Modes in the white areas are in the continuum
accessible to a single diffractive order (“zeroth order diffraction”) and are the focus of this paper. Modes in the dark shaded area are higher
order diffractive modes.

are determined and reported in Fig. 6, the space group com-
patibility table. First, all 17 “wallpaper groups” are listed and
categorized by the compatible lattice family (e.g., “Rectangu-
lar”). The point group of each of these is given for reference.
Then, for each target lattice type (e.g., SqM) the space groups
compatible with the lattice class (i.e., square or hexagonal) are
listed. For instance, the space group p6mm requires hexagonal
tiling and is therefore omitted as a possibility for any Sq
lattice. Likewise, a Hex lattice cannot be perturbed into a
square lattice without distortion of the lattice vectors, but it
can be perturbed into a rectangular lattice. The space groups
of the square lattice family are therefore omitted from all
Hex lattices, but those of the rectangular lattice family are
not.

Next, the glide reflection operation (a reflection and a
translation by a fraction of a unit cell) is tested for each
type of lattice. Glide reflections are present in only some

two-dimensional space groups and are not compatible with
all of the six target lattice types. As an example, it is quickly
found by inspection that the Sq� lattice does not support glide
symmetries in directions other than along the diagonals (more
rigorously, in the language of crystallography, monatomic
PCSs are incompatible with nonsymmorphic space groups).
This excludes the space groups pg, pgg, and pmg, which
are correspondingly grayed out in the column for Sq� . For
the same reason, for the SqM lattice, glide planes along
the direction where the lattice is unperturbed (and therefore
monatomic) are incompatible (the y direction in Fig. 5).
Additionally, all diagonal glides are incompatible for the SqM
lattice because they correspond to reflection axes that are not
included in the point group of any SqM lattice. This excludes
cm, pg, and cmm for SqM , which are grayed out accordingly.
There are no such constraints for the SqX lattice, which can
be degenerated into a lattice of any space group (except the
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FIG. 6. Space group compatibility table. Different lattice fami-
lies (column 1) are compatible with various point groups (column
2), each of which can be further subdivided into the 17 “wallpaper
groups” (or two-dimensional space groups, column 3). The remain-
ing columns track the compatible space groups of each degenerated
lattice studied. A blank entry means that corresponding space group
is excluded due to a mismatch in lattice family; a grayed entry means
that it is excluded because it has an incompatible glide symmetry.

hexagonal ones). Similar arguments can be made for the Hex
lattices, and the results are reported in Fig. 6.

Finally, it must be noted that there exist multiple high
symmetry points in each real space lattice. These are given
names in Fig. 5 for each case. For instance, the Sq� lattice has
two points having the full symmetry of the C4v point group,
named γ and ξ . Both are perfectly acceptable to choose as
the reference point: In the mode naming scheme in Sec. II B,
the ξ point is the reference point, but the modes may all
be renamed according to the γ point if desired. Similarly, a
degenerated space group may choose either of these points
to have in common with the unperturbed lattice. Generally
speaking, every degenerated space group may be tried with
each of the high symmetry points in common with the unper-
turbed lattice, thereby allowing for more than a single unique
example of each space group in each lattice. For instance,
there are three distinct cmm space groups in the SqX catalog
(see Fig. 9): one with the γ point as the high symmetry
point in common, one with ξ , and the last with μ (which
is the space group of the perturbation in Fig. 1). As shown
in Fig. 9, though these have identical space groups, they do
not have identical selection rules because they are attained
through distinct perturbations. Therefore, to determine all
of the unique symmetry degenerations possible, an attempt
is made to construct each compatible space group (Fig. 6)
with each high symmetry point in common between the
unperturbed and perturbed lattices. The successful attempts

comprise the set of all degenerated lattices compatible with
those chosen in Fig. 5. This proof by exhaustion is omitted
here. For each of these degenerated lattices, the modes derived
in the previous section can be studied and their selection rules
derived. The results are tabulated in Figs. 9 and 10 following
the methods derived in Secs. III B and III C.

B. Deriving the coupling condition

To derive the selection rules reported in Figs. 9 and 10,
we study the end-fire coupling of free-space light normally
incident to a semi-infinite two-dimensional photonic crystal
supporting the modes depicted in Figs. 3 and 4. As described
in Sec. II B, there is a 1:many correspondence preserving
in-plane symmetries between the modes excited by this end-
fire coupling and the modes excited in a finite-height PCS
(under the assumptions that the cross section is invariant along
the z direction, whose substrate and superstrate are isotropic
media). At normal incidence, the two cases therefore have
identical selection rules with respect to in-plane symmetry
breaking, and so we may proceed with the simpler case
of end-fire coupling. The multiplicity of modes of the PCS
differentiated by the modal index n have identical selection
rules; it is only the in-plane symmetries that are relevant. In
particular, we determine under which conditions the end-fire
coupling coefficient γe is nonvanishing:

γe ∝
∫∫

A
[E∗

inc × Hmode + Emode × H∗
inc] · ẑ dx dy, (4)

where ẑ is the unit vector in the z direction and bold symbols
refer to vector quantities. We exclude a normalization factor
for simplicity (it does not affect whether γe vanishes) and
evaluate the integral over the area A of a unit cell. Here, we
take the incident field to be a normally incident plane wave,
with electric field

E∗
inc =

⎡
⎢⎣

Ax

Ay

0

⎤
⎥⎦ (5)

and magnetic field

H∗
inc = 1

η0

⎡
⎢⎣

Ay

Ax

0

⎤
⎥⎦, (6)

where η0 is the impedance of free space. The mode has electric
field

Emode = ei(βz−ωt )

⎡
⎢⎣

Ex

Ey

Ez

⎤
⎥⎦ (7)

and magnetic field

Hmode = ei(βz−ωt )

⎡
⎢⎣

Hx

Hy

Hz

⎤
⎥⎦, (8)

where β is the propagation constant satisfying the dispersion
relation ω = cβ. Evaluating the cross products in Eq. (4), the
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free-space coupling coefficient is written as

γe ∝
∫∫

A
[Ax(η0Hy + Ex ) + Ay(η0Hx + Ey)] dx dy. (9)

Using Maxwell’s curl equations, the in-plane components
(Ex, Ey, Hx, Hy) are replaced with the out-of-plane compo-
nents (Ez, Hz) to both simplify the equation and allow the pre-
vious mode classification scheme (based on the out-of-plane
field components) to straightforwardly apply. The resulting
form is

γe ∝
∫∫

A
[Ax(c1∂xEz + c2∂yHz )

+ Ay(c1∂yEz + c2∂xHz )] dx dy, (10)

where

c1 = 1

iβ

1 + εr (x, y)

1 − εr (x, y)
(11)

and

c2 = 2η0

iβ

1

1 − εr (x, y)
(12)

with the replacement εr (x, y) = ε(x, y)/ε0 as the relative per-
mittivity. This can be written more compactly as

γe ∝
〈[

Ax Ay
] ·

[
c1∂x c2∂y

c1∂y c2∂x

]
·
[

Ez

Hz

]〉
, (13)

where angled brackets indicate integration over a unit cell.
While it is possible to proceed with this form by considering
the symmetries of each component, it is considerably simpler
and more informative to reduce this to individual choices of
incident polarization (e.g., choose Ax = 0) and mode type
(i.e., choose either TM modes or TE modes). In this case, we
write

γe ∝
∫∫

A
c j∂iψ dx dy, (14)

where ψ is TM or TE, ∂i refers to the partial derivative in a
relevant high-symmetry direction (i = x, y, a, b), and c j is c1

when ψ is TM and c2 when ψ is TE.

C. Determining the selection rules

We now apply Eq. (14) to the modes supported by a two-
dimensional photonic crystal. The modes in the unperturbed
lattice can be described as the eigenvectors of an eigenvalue
equation

H0ψ0 = E0ψ0. (15)

where the superscript marks reference to the unperturbed
eigenvalue problem. We are interested in particular in the
ψ0 that are uncoupled to free space [i.e., ψ0 for which the
integral in Eq. (14) vanishes] due to symmetry. To proceed
we apply perturbation theory to determine any nonvanishing
terms present in the generalized eigenvalue problem of a
degenerated lattice:

Hψ = Eψ, (16)

where H = H0 + V is perturbed by the perturbation operator
V , and ψ = ψ0 + ψ1 is the perturbed field profile with ψ1 as

the first order correction. First order perturbation theory gives
the form of the nth mode ψ1

n as

ψ1
n =

∑
m 	=n

〈(
ψ0

m

)∗
V ψ0

n

〉
Em − En

ψ0
m. (17)

That is, the perturbed portion of the field is a superposition
of the unperturbed fields. [Note that Eq. (17) is the
nondegenerate form of perturbation theory, but it can be
applied to degenerate states as well if the “correct” orthogonal
linear combination of states is known ahead of time. Since
these will correspond to a high symmetry direction of the
perturbed lattice, they are easy to predict; we therefore use this
form to apply to degenerate modes.] However, inspection of
the coefficient, 〈(ψ0

m)∗V ψ0
n 〉, in front of each ψ0

m reveals that
not all ψ0

m will contribute: Many will vanish due to symmetry.
The process of determining ψ0

m that contribute can be clar-
ified and expedited in the language of group theory. Specif-
ically, if we can determine the irreducible representations of
each factor within the integrand, we can find the symmetries
of the total integrand by computing the direct product of those
irreducible representations. A direct product is an abstract way
to obtain the symmetries of the product of two functions f
and g: If h = f g, the symmetries of h may be obtained by
performing the direct product of the representations of f and
g. That is, �h = � f ⊗ �g, where �h is the representation of
h in some point group. Since the fields have been classified
already in terms of their irreducible representations, we write
the irreducible representation of ψ0

m,n as �m,n and simply refer
to Figs. 3 or 4. Then, we must determine the irreducible
representation of V , or �V , which can be achieved following
a process described below. We finally write the direct product
as �integrand = �m ⊗ �V ⊗ �n.

A necessary condition for this integral to be nonvanishing
is that this direct product must contain a component that
transforms as a constant: The sinusoidal components do
not contribute upon integration over a unit cell. Since a
constant is fully symmetric (that is, it transforms as �1,
which is the highest symmetry irreducible representation
in every point group), this condition is identical to saying
that �integrand must contain �1. Note that this condition is
necessary but not sufficient. For instance, a cosine transforms
as �1 about the origin but integrates to zero over a period.
We can therefore say that 〈(ψ0

m)∗V ψ0
n 〉 is nonvanishing only

if �m ⊗ �V ⊗ �n = �1 + ....
A direct product is easily calculated by referring to

the direct product table of the relevant point group (see
Appendix A, Fig. 18). A notable feature of these tables
is that two irreducible representations �i and � j satisfying
�i ⊗ � j = �1 + ..., also satisfy �i = � j . Consequently, we
can reframe the condition on the integrand, �m ⊗ �V ⊗ �n =
�1 + ... to be �m = �V ⊗ �n. In other words, a field ψ0

m
contributes to the perturbed field ψ1

n only if �m = �V ⊗ �n.
Since ψ1

n will transform as the components comprising it (that
is, the ψ0

m with nonvanishing integrals), we finally arrive at
the conclusion that �ψ1

n
= �V ⊗ �n. Since the index n refers

to any particular mode of interest, we may drop it:

�ψ1 = �V ⊗ �ψ0 . (18)
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FIG. 7. Graphical derivation of the selection rules for the X point
modes in the SqX lattice belonging to the cmm space group. The
modes are shown in their unperturbed form as calculated by the
plane-wave expansion method. Then, they are schematically drawn
as perturbed by the perturbation and decomposed into the unper-
turbed portion and perturbed portion. The green arrows represent the
gradient and predict coupling to a free space plane-wave excitation
if a net dipole moment is present. The black arrows represent the
corresponding free space polarization each mode couples to.

That is, the first order perturbed field profile transforms as the
direct product of the irreducible representations of the pertur-
bation operator and the unperturbed field profile in question.

Understanding the symmetries of the perturbed portion
of the wave function allows us to simplify the free-space
coupling condition, Eq. (14):

γe ∝
∫∫

A
c j∂iψ dx dy =

∫∫
A

c j∂i(ψ
0 + ψ1) dx dy. (19)

Since c j is a function of in-plane permittivity distribution of a
perturbed lattice, it is natural to expect that it has a portion
that transforms like H0, which we call cH0 , and a portion
that transforms like V , which we call cV . We can write these
portions explicitly to first order using the binomial approxi-
mation. Taking c2 = cH0 + cV , for instance, the unperturbed
portion is written

cH0 = 2η0

iβ

1

1 − ε0
r (x, y)

, (20)

and the perturbed portion is written

cV = δεr (x, y)

1 − ε0
r (x, y)

cH0 , (21)
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FIG. 8. Group theory derivation of the selection rules for the X
point modes in the SqX lattice belonging to the cmm space group.
(a) Graphical depiction (excluding the background permittivity for
simplicity) of the decomposition such that H = H0 + V for the target
degenerated SqX lattice. (b) Further decomposing V into portions
with different periods. (c) Determining the irreducible representation
of each component of V in Cv

2v (character table reproduced for
reference). (d),(e) Worksheet depicting the process of deriving the
selection rules. The first column shows the irreducible representa-
tions of the target modes; the second column shows the degenerated
irreducible representations of those modes; the third column is the
direct product of the perturbation operator and each mode; the
fourth column marks the free space polarizations matching the direct
product in column 3.

where εr (x, y) = ε0
r (x, y) + δεr (x, y) is decomposed into the

unperturbed portion, ε0
r (x, y), and perturbed portion, δεr (x, y),

of the relative permittivity. Since ε0
r (x, y) transforms as �1

by construction of the unperturbed lattices, it is evident that
cH0 transforms as �1: For an even function f (x), the function
1/(1 − f (x)) is also even. Decomposing the factors in cV , it is
clear that it transforms as �V because δεr (x, y) transforms as
�V by definition of the perturbation, and the remaining factors
in cV transform as �1 (which acts as the identity in direct prod-
ucts). A similar argument reveals the equivalent result for c1.

We therefore write γe as the sum of four terms:

γe ∝
∫∫

A
cH0∂iψ

0 dx dy +
∫∫

A
cH0∂iψ

1 dx dy

+
∫∫

A
cV ∂iψ

0 dx dy +
∫∫

A
cV ∂iψ

1 dx dy. (22)

The first term vanishes for symmetry-protected BICs. As
described above, �H0 = �1, and so, using Eq. (18), the sec-
ond term’s integrand transforms as �1 ⊗ �∂i ⊗ �V ⊗ �ψ0 =
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FIG. 9. Selection rules catalog of the three square lattice families (Sq� , SqM , and SqX ). As depicted by the legend (upper right), along the
symmetry columns each entry specifies the space group, the point group used to describe V , and the irreducible representations of the two
components of V (the first having periodicity of the unperturbed lattice, and the second of the perturbed lattice). The example column depicts
an example perturbed unit cell matching the specifications in the symmetry column. Colored squares and ovals denote points with fourfold
and twofold rotational symmetry, respectively. The remaining columns are labeled �, M, or X and report the selection rules for each high
symmetry mode at the corresponding position in the unperturbed FBZ. Rows are indexed by the legend and correspond to different irreducible
representations present at the point in the FBZ labeled by the column (example TM modes of each row and column are shown in the legend for
reference). Entries in these columns and rows refer to the free-space polarizations that excite the corresponding modes due to the perturbation
and are defined by the given axes. The polarization pertains to the free space electric field for TM modes and the magnetic field for TE modes.
A blank entry signifies a forbidden mode excitation (the mode remains a symmetry-protected BIC), and a dash indicates that the M point does
not have a fifth irreducible representation.
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FIG. 10. Selection rules catalog of the three hexagonal lattice families (Hex� , HexM , and HexK ). As depicted by the legend (upper right),
along the symmetry columns each entry specifies the space group, the point group used to describe V , and the irreducible representations of
the two components of V (the first having periodicity of the unperturbed lattice and the second of the perturbed lattice). The example column
depicts an example perturbed unit cell matching the specifications in the symmetry column. Colored stars, triangles, and ovals denote points
with sixfold, threefold, and twofold rotational symmetry, respectively. The remaining columns are labeled �, M, or K and report the selection
rules for each high symmetry mode at the corresponding position in the unperturbed FBZ. Rows are indexed by the legend and correspond
to different irreducible representations present at the point in the FBZ labeled by the column (example TM modes of each row and column
are shown in the legend for reference). Entries in these columns and rows refer to the free-space polarizations that excite the corresponding
modes due to the perturbation and are defined by the given axes. The polarization pertains to the free space electric field for TM modes and the
magnetic field for TE modes. A blank entry signifies a forbidden mode excitation (the mode remains a symmetry-protected BIC), and a dash
indicates that the M point does not have a fifth or sixth irreducible representation.
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�∂i ⊗ �V ⊗ �ψ0 . The third term’s integrand straightforwardly
transforms as �V ⊗ �∂i ⊗ �ψ0 , identical to the second term
(inspection of Appendix A, Fig. 18 shows that the direct
products in question commute). The fourth term vanishes
to first order, because it is the product of two factors of
the perturbation. We are therefore left with two generally
nonvanishing terms whose integrands transform identically.

As before, γe is nonvanishing only if the integrand has a
component that transforms like �1. We therefore arrive at the
symmetry constrained coupling condition:

�∂i = �V ⊗ �ψ0 . (23)

Since a partial derivative in the i direction transforms like
a vector in that direction, it also transforms the same as a
free space polarization i. The physical interpretation of the
coupling condition, Eq. (23), then, is that the symmetries of
the perturbed part of the field (i.e., �V ⊗ �ψ0 ) must match
the symmetries of a free space polarization (i.e., �∂i ). That
is to say, the perturbed field must have a net dipole moment to
couple to free space.

The coupling condition is equivalent to considering
whether the integral

γV ∝
∫∫

A
∂i(V ψ0) dx dy (24)

vanishes. This form justifies a convenient and insightful
graphical method [57] of determining whether γe is nonzero,
without directly determining ψ1, which is not obvious at first
glance at Eq. (17). The perturbed mode can be simply drawn
by altering the magnitude of the unperturbed field according
to the shape and sign of the perturbation. Then, this new
perturbed field is decomposed into the unperturbed portion
and the perturbed portion (corresponding to V ψ0). Taking the
derivative amounts to treating the product V ψ0 as “charges”
and the gradient as the “moment;” then, if there is a net dipole
moment, the mode couples to the corresponding free space
polarization. Figure 7 depicts this process for determining the
selection rules of the TMm,n

X,S modes in a SqX lattice with a
cmm space group (the same used in Fig. 1). The polarization
depicted corresponds to the out-of-plane field component.
That is, if ψ0 is a TE (TM) mode, the polarization depicted
describes the magnetic (electric) polarization of free space
that couples to ψ . Figure 7 therefore correctly predicts the
polarization dependence seen in Fig. 1 for TE1,1

X,B2
.

A more expedient method to generate the selection rules,
however, is to determine the irreducible representations
present in V and then employ the direct product tables [see
Appendix A, Figs. 18(a) and 18(b)] to immediately write the
selection rules for all modes present at the � point of the
perturbed lattice. This is done by (1) finding the point group in
common among V and ψ , (2) writing the irreducible represen-
tations of each factor in that point group, and then (3) deter-
mining if the direct product �V ⊗ �ψ matches the irreducible
representation of a free space polarization [which are reported
for each relevant point group in Appendix A, Fig. 18(c)].

The irreducible representations of V can be found by con-
ventional group theory methods if required but are generally
apparent by inspection. Figure 8 depicts the decomposition of
V for the same space group as Fig. 7. The process is simplified
by properly choosing H0 such that V transforms as simply as

possible. For instance, H0 is written as a circle with permittiv-
ity ε shadowing a square cross oriented in the x, y directions
with permittivity ε/2, as shown in Fig. 8(a). It is then clear to
see that the V depicted obtains H upon addition of H0.

Next, V can be decomposed into two portions, one (called
V�) with the periodicity of the unperturbed lattice, and one
(called VX , here) with the periodicity of the perturbed lattice
[Fig. 8(b)]. Importantly, Eq. (23) refers only to functions as
they exist in the unperturbed FBZ, in which modes character-
ized by the X point are orthogonal to modes characterized by
the � point. Consequently, V� contributes only to the modes
at the � point in the unperturbed lattice, while VX contributes
only to the modes at the X point in the unperturbed lattice. The
point group of both V� and VX is the same as the point group
of the space group, Cv

2v . Referring to the character table of Cv
2v

[Fig. 8(c) or Appendix A, Fig. 17(a)], it is readily apparent
that V� transforms as A1 and VX transforms as B2.

Finally, the coupling constraint [Eq. (23)] is evaluated.
However, since the modes of interest are defined in a higher
group than that of V , we must first determine how they
degenerate into the lower group. This can be done by refer-
ring to the symmetry degeneration tables [see Appendix A,
Fig. 17(c)]. Then, the direct products �V�

⊗ �ψ are taken
with reference to the direct product table for the point group
Cv

2v . Since x, y polarized plane waves transform as B1, B2

in Cv
2v , the modes for which the product �V ⊗ �ψ = B1, B2

couple to x, y polarization, respectively. Figures 8(d) and 8(e)
show a worksheet of this process. It bears repeating that
this polarization corresponds to that of the out-of-plane field
component. For example, if ψ is a Hz mode, then x refers to
the Hx component of the free space plane wave, corresponding
to y polarized light as conventionally defined by the electric
field. The resulting selection rules are in agreement with those
derived using the graphical method in Fig. 7, but derivation
required a single diagram to decompose V instead of one for
each mode and straightforwardly gave the selection rules for
the � point modes as well (for which the graphical method
would require another set of diagrams).

The method detailed throughout this section may be sum-
marized as follows. First, the unique space groups compatible
with each lattice type are determined by exhaustion. Second,
for each of these space groups, the perturbation is split into
V� and VL, where L is the high symmetry point of the
unperturbed reciprocal lattice that is folded to the � point.
Third, the irreducible representation of each portion of the
perturbation is determined. Fourth, the coupling condition,
Eq. (23), is evaluated for each mode, using V� for ψm,n

�,S and VL

for ψm,n
L,S ; the matching polarization (if any) is marked down

by reference to Fig. 18(c).
With this method, a catalog for each of the six lattice types

is generated, for each of the compatible degenerated space
groups described above. The catalogs are given in Fig. 9 for
square lattices and in Fig. 10 for hexagonal lattices. An entry
of the catalog lists the space group by name, the point group
used to describe V , the irreducible representations of V� and
VL, an example visualization of the degenerated lattice (using
the “keyhole” motif [57]), and the selection rules for all the
modes present at the � point in the perturbed lattice.

Note that the selection rules for the twofold cyclic space
group p2 in the catalog are specified by some angle, φ or θ ,
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which are ill defined relative to the lattices’ axes: The polar-
ization angle must be numerically determined, will generally
change with the magnitude of the perturbation, and may differ
between TM and TE modes of the same symmetry. However,
for small perturbations, two modes controlled by the same p2
perturbation and specified by φ will be excited by the same
polarization angle φ; θ denotes the angle orthogonal to φ.
Note that the group theory approach in Fig. 8 can only say
that some polarization couples to the mode but cannot specify
φ and θ ; for this, the diagrammatic approach in Fig. 7 is used.
The selection rules for p1 are ill defined in a similar way:
Some polarization couples with a direction unconstrained by
group theory and are therefore specified as any. The remaining
cyclic space groups, p3, p4, and p6, only allow access to
degenerate modes in a polarization independent manner and
so for simplicity are specified as x, y.

IV. DISCUSSIONS AND APPLICATIONS

The process described above lays out the derivation of
the selection rules for two-dimensional PCSs with in-plane
perturbations applied. The resulting catalog, split into Figs. 9
and 10, contains a great amount of information and warrants
further discussion and exploration. In particular, a few unique
features present in the catalog readily motivate device appli-
cations not possible in the simpler one-dimensional PCSs.

For instance, due to the two-dimensional nature of the
device, the band structure can be optimized in both in-plane
directions, allowing for full optimization of the band struc-
ture and thereby optimally compact devices. One-dimensional
structures (e.g., devices composed of rectangular grating fin-
gers, invariant in one in-plane direction) can be understood
as a special case of a subsection of the SqM lattice but with
limited to no control over the behavior along the direction
of the grating fingers. Additionally, the higher in-plane sym-
metry of two-dimensional structures means the presence of
degenerate E -type modes (“partner” modes with identical
eigenfrequencies that couple to orthogonal polarizations),
which do not exist in one-dimensional structures. This allows
for compact, polarization independent devices such as filters
and modulators to be designed. The manipulation of degener-
ate modes is therefore of considerable technological interest.
Last, we note a parent-child relationship between higher and
lower order space groups within the catalog and find that
child space groups constructed by successively adding distinct
parent space groups result in optical control with independent
degrees of freedom introduced by the parent space groups. We
show that this principle enables controlling a large number of
parameters characterizing an optical spectrum, well surpass-
ing the state of the art.

With these considerations in mind, Sec. IV A discusses
the degenerate modes that exist in monatomic and mul-
tiatomic PCSs, providing a comprehensive set of op-
tions for polarization-independent devices using the catalog.
Section IV B details a device application motivated by this
discussion, demonstrating that the degenerate fundamental
modes of HexK , as controlled by three successive pertur-
bations, are suitable for terahertz generation via four-wave
mixing. As a second application of successive perturbations
apparent from studying the entries of the catalog, Sec. IV C

shows the potential for a PCS on a stretchable substrate to en-
able mechanically tunable optical lifetimes. Finally, Sec. IV D
reports the discovery of a geometric phase associated with
circularly polarized light coupling into a p2 space group of
the SqM lattice, controllable simultaneously with the Q factor
of the resonance. We then show how spatially varying this
geometric phase enables a novel class of photonic devices
in which the outgoing Fano resonant wavefront is spatially
tailored while the nonresonant light is left unaffected.

A. Degenerate modes

We first consider the nature of degenerate modes. The
degenerate modes generally transform as partners of a de-
generate irreducible representation (e.g., E in C4v), which are
written Ex and Ey corresponding to their dipole moments.
Because of this dipole moment, the Ex and Ey modes in the
unperturbed Sq� lattice generally couple to free space (and
the E1 modes couple to free space in the unperturbed Hex�

lattice). In other words, the integral∫∫
A

cH0∂iψ
0 dx dy, (25)

which has an integrand that transforms as �1 ⊗ �∂i ⊗ �ψ0 , is
nonvanishing for E modes because �∂i = E in C4v (likewise,
�∂i = E1 in C6v). The coupling can numerically vanish for
certain combinations of angle, polarization, and optical ma-
terials, but since these are reasons unrelated to the symmetry
arguments above, they are accidental BICs; all modes other
than the ψm,n

�,E for Sq� and ψm,n
�,E1

for Hex� in the mode classi-
fication are symmetry-protected BICs. For the modes already
coupled to free space in the unperturbed lattice, the only
significant impact a perturbation has is to split the degeneracy
upon symmetry degeneration (for instance, perturbing a lattice
with C4v down to C2v). In other words, if the lattice is made
structurally birefringent, the Ex and Ey modes will degenerate
into irreducible representations in a lower order point group
with different eigenfrequencies, but the coupling rate to free
space will generally be changed to a negligible degree. For
this reason, Figs. 9 and 10 simply label the corresponding
entries x, y.

Of more interest here are the degenerate symmetry-
protected BICs. The M point modes of either square or
hexagonal lattices have no such degenerate modes because the
C2v point group has no degenerate irreducible representation
(a rectangle is not identical in the x, y directions). However,
the ψm,n

�,E2
for Hex� , ψm,n

X,E for SqX , and ψm,n
K,E1

and ψm,n
K,E2

for
HexK are degenerate symmetry-protected BICs. Therefore, a
polarization insensitive filter or modulator must use one of
these lattices in order to utilize the advantages of quasi-BICs
[that is, a Q factor controllable by Eq. (1) independent of the
band structure]. We consider the degenerate modes in each of
these three lattices in turn.

The Hex� supports the E2 modes, which are uncoupled
to free space in the absence of a perturbation (E1 ⊗ E2 =
B1 + B2 + E1, which does not contain �1 in C6v) and are
degenerate BICs. Reference to the catalog shows that reducing
the symmetry to C3v or lower may allow free-space coupling
to these modes. A polarization independent filter or modulator
with Q factor following Eq. (1) could be made utilizing the E2
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(a) (b)

(c) (d)

FIG. 11. Mode “twisting” in a SqX lattice. (a) Example p4m
lattice. (b) Example p4g lattice. The white dashed boxes in (a) and
(b) denote the perturbed unit cell, and the black dashed boxes denote
the plotting area in (c) and (d). (c) Normalized field distribution
for the TE1,1

X,Ey partner excited by a plane wave with magnetic
polarization in the x direction. (d) Normalized field distribution for
the TE1,1

X,Ex partner excited by the same polarization in (c).

modes of a Hex� lattice according to either the p31m or p3m1
entry of the catalog.

The SqX lattice supports degenerate modes that are bound
in the unperturbed lattice. Upon perturbation, they are brought
to the � point, allowing coupling to free space at normal
incidence. Several space groups in the SqX lattice leave these
modes uncoupled in the continuum, making them BICs, while
most others allow coupling, making them quasi-BICs. The
space groups with C4v and C4 leave the eigenfrequencies
degenerate, while lower order symmetry groups introduce
birefringent behavior. Therefore, a polarization independent
filter or modulator with Q factor following Eq. (1) may be
made utilizing the E modes of a SqX lattice according to any
of the p4m, p4g, or p4 entries of the catalog as reference.

An interesting feature of the catalog is the prediction of
coupling of the Ex partner of the E modes of a SqX lattice
to either x or y polarized light (equivalently, y polarized light
may couple into either the Ex or Ey partner). Compare, for in-
stance, the p4m with VX = A1 [Fig. 11(a)] and p4g with VX =
A2 [Fig. 11(b)] space groups in the SqX lattice. Figures 11(c)
and 11(d) depict, for the p4m and p4g cases, respectively,
the field profiles calculated by full-wave simulations at the
frequency of the TE1,1

X,E modes excited by y polarized light
(magnetically x polarized light). The former shows that the
magnetically x polarized plane wave couples to the E mode
with the apparent dipole in the y direction (that is, the Ey

partner, as defined in Fig. 7), while for the latter it couples
to the E mode with the apparent dipole in the x direction
(that is, the Ex partner). This mode “twisting” is written in
the catalog by writing y, x for p4m, in contrast to the entry

of x, y for p4g, and it is easily predicted by tracking how
the partners degenerate to C2v in the worksheet of Fig. 8
or by using the diagrammatic approach in Fig. 7. This is a
phenomenon that does not occur in the more often studied E
or E1 degenerate modes of the Sq� or Hex� lattices and is
thus representative of the larger range of behaviors present in
multiatomic lattices. Especially notable is that the dependence
of the polarization angle of the incident light on the in-plane
orientation of elliptical structures suggests that a geometric
phase is associated with this coupling. This will be explored
in Sec. IV D.

Next, the HexK lattice is a special case, having degenerate
modes of two distinct types. The unit cell is a trimer and
therefore contains three times the number of modes as the
unperturbed lattice. As described in Sec. II B, two sets of
modes (corresponding to K1 and K2 points in the FBZ in
Fig. 5) are folded to the � point. Because of the symmetry
of the unperturbed lattice, a mode in one of the sets has a
counterpart in the other set with equal eigenfrequency. These
pairs mix at the perturbed � point, producing a final set of
modes describable in C6v . The lattice therefore supports E1

and E2 modes newly brought to the � point by the perturba-
tion, analogous to the E1 and E2 modes in the Hex� lattice.

However, inspection of the band diagram for the HexK

lattice near the � point in Fig. 5 (bottom right) shows many
more degeneracies than explainable by the E1 and E2 modes
alone. All of the newly folded modes, in fact, are degenerate,
despite the mode classification scheme in Fig. 2 predicting the
presence of modes not describable by E irreducible represen-
tations. In particular, the fundamental modes are degenerate
(last band diagram in Fig. 5) but have irreducible representa-
tions A1 and B1. Although visibly quite different [see the K (1)

column of Fig. 4], and having distinct symmetries in C6v , they
are nonetheless identical in eigenfrequency. This degeneracy
is born of the trimerization of the lattice: A pair of modes
with the same eigenfrequency are superposed upon translation
to the � point and can be superposed either in phase or out
of phase, producing a pair of distinct modes with identical
eigenfrequency.

One consequence of this is that in the p31m HexK lattice
with point group Cd

3v , the A1 and B1 modes form a degenerate
pair that together correspond to a spectral feature that is
polarization insensitive (a similar behavior is seen in the p3
lattice where VK transforms as a partner of the E irreducible
representation: the fourth entry in the HexK lattice). This
reveals another way to consider this degeneracy: The A1 and
B1 modes are partners of the E irreducible representation of
the Cd

3v point group, defined about the κ point in the real
space lattice (as defined in the Hex� lattice in Fig. 5). Because
the γ point has the full symmetries of C6v , this description
of the modes about the κ point misses relevant symmetries;
nevertheless, the ability to describe them in Cd

3v as partners of
the E modes means their eigenfrequencies must be identical.
Upon further symmetry degeneration (for instance, to cmm,
or cm in the HexK lattice), the modes behave differently,
splitting in both eigenfrequency and polarization dependence.
This behavior is unique to the HexK lattice in Figs. 9 and 10
because it is the only lattice with more than two atoms per unit
cell. Higher order lattices, such as those shown in Fig. 19, may
exhibit similar behavior.
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FIG. 12. Terahertz generation with four-wave mixing. (a) Schematic of device excited by two (narrow-band) near-infrared pump lasers
(shown in cyan and green), producing terahertz radiation (shown radiating in red). (b) Transmittance near TE1,1

K,A1
and TE1,1

K,B1
modes, which are

degenerate in the unperturbed lattice. (c) Map of reflectance R showing control of the frequency spacing of the two resonant modes by altering
the radius of the center pillar in (e). (d) Map of the figure of merit, FoM, with a dashed contour for 1/λ4 = 1/λ1 − 1/λ2 shown. The FoM is
maximized along this contour for Terahertz generation at the coordinates (λ1, λ2), corresponding to enhancement due to both resonances. (e)
Successive perturbations to the unperturbed hexagonal lattice. V1 controls the frequency spacing between the two resonant modes in (b), V2

controls the Q factor of the B1 mode, and V3 controls the Q factors of both the A1 and B1 modes. (f),(g) Magnetic field profiles for the TE1,1
K,A1

and TE1,1
K,B1

modes normalized to the magnetic field of the incident plane wave, H0. (h) Visualization of the integrand in the FoM, calculated

using (i),(j) the Ey components of TE1,1
K,A1

and TE1,1
K,B1

normalized to the electric field of the incident plane wave, E0.

B. Application: Terahertz generation

We explore the degenerate fundamental modes of the
HexK lattice to aid in generating terahertz (THz) frequencies
through nonlinear processes enhanced by optical resonances.
Sketching the design of such a device is a useful exercise
to demonstrate the utility and an example use of the cata-
log. Figure 12(a) depicts a schematic of the device, with a
HexK lattice made of silicon pillars in the gap of a bowtie
antenna resonant to a THz frequency. Figure 12(b) shows
an example spectrum of the PCS portion of this device,
showing two closely spaced resonances at λ1 = 3.147 μm
and λ2 = 3.161 μm, both excited by y polarized light and
associated with the split degeneracy of the TE1,1

K,A1
and TE1,1

K,B1

modes. If optical power is normally incident at pump wave-
lengths λa and λb such that λa = λ1 and λb = λ2, and a
low-frequency bias (corresponding to a radio frequency with
wavelength λ3) is electrically applied across the antenna, four-
wave mixing will produce photons at a THz wavelength with
improved efficiency (compared to a bulk material) due to the
enhanced light-matter interactions from the PCS and antenna
resonances. The case shown in Fig. 12(b) corresponds to λ4 =
711 μm, but Fig. 12(c) shows that λ4 can be easily tuned by
the radius of the central pillar R1. Figure 12(d) confirms that
the figure of merit (defined below) is indeed maximal at λ4

when the pump photons have wavelengths of λ1, λ2 (1/λ3 = 0
for simplicity, here; it may generally be used to finely and
actively tune λ4).

A key advantage of using these degenerate modes is the
unique robustness of the control of both the spectral spacing
and linewidths of the resonances. Since the modes are degen-
erate in the unperturbed lattice, they are necessarily closely
spaced in a weakly perturbed lattice. Then, by controlling the
radius of one of the pillars, the frequency spacing can be finely
tuned. The spectral map in Fig. 12(c) shows the impact of
tuning the radius of the central pillar R1, depicting a classic
anticrossing behavior [39] as the resonance spacing changes.
This utilization of degenerate modes offers a considerably
more robust control of closely spaced resonances compared
to relying on controlling two unrelated resonances by tuning
geometric parameters: Fine tuning the separation of two unre-
lated resonances is highly sensitive to fabrication errors, while
the split degeneracy here is guaranteed by symmetry.

Notably, λ4 (or the spacing of the resonances) can be tuned
largely independently of the linewidths of the resonances.
This is easily understood by considering the portion of the
perturbation V1 that corresponds to changing R1. Depicted
in Fig. 12(e), a lattice perturbed by V1 alone produces a
HexK lattice with the p6mm space group; reference to the
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catalog (Fig. 10) reveals that no coupling to the target modes
is introduced by this perturbation. Tuning the radius of the
central pillar therefore does not affect the coupling to first
order. Then, the addition of V2 degenerates the space group
to cmm, which couples the TE1,1

K,B1
mode to the magnetic x

polarization but not the TE1,1
K,A1

mode. Finally, the addition of
V3 creates a lattice with the cm space group with the Cv

s point
group, allowing coupling the TE1,1

K,A1
mode to the magnetic x

polarization. Notably, if the other cm space group (with point
group Cd

s in the third table of Fig. 10) were used, the two res-
onances would be cross polarized. Tuning these three portions
of the perturbation therefore allows independent tuning of
each of the linewidths and the spacing of the two resonances
in either a co-polarized or cross-polarized fashion. The co-
polarization of the two previously degenerate resonances is
unique to the HexK lattice in the catalog, as the E1 and E2

modes of the hexagonal lattices (and E modes in the square
lattices) are only accessible in a cross-polarized fashion. Co-
polarized split degenerate states are a unique feature of lattices
with more than two atoms (such as the lattices containing
four atoms seen in, for instance, Fig. 19). In the present
application, the freedom to have the pump wavelengths be
co-polarized allows a single pulse (with bandwidth spanning
the two resonances) as the pump.

To complete the demonstration of the advantages of the
HexK lattice for terahertz generation, we compute a simple
figure of merit related to the efficiency of this conversion (see,
for instance, Refs. [22,23]):

FoM =
∣∣∣∣
∫∫

χ (3)(x, y)E∗(ω1)E (ω2)E∗(ω3)E∗(ω4) dx dy

∣∣∣∣,
(26)

where the bounds of integration are over the entire device
and χ (3)(x, y) is the spatially dependent third-order nonlinear
susceptibility and the electric fields are normalized to the
corresponding incident fields. Given the scale difference of λ3

to a unit cell (i.e., λ2
3 � A), a reasonable approximation to this

integral is that E∗(ω3) = F3 and E∗(ω4) = F4 are constants
equal to the electric field enhancement due to the bowtie
antenna. We may then integrate over a unit cell:

FoM =
∣∣∣∣χ (3)

Si F ∗
3 F ∗

4

∫∫
A

Fy(x, y) dx dy

∣∣∣∣, (27)

where Fy = E∗
y (ω1)Ey(ω2)G(x, y) and G(x, y) = 1 where

there is silicon and is 0 where there is vacuum. That is, the
figure of merit is proportional to the overlap integral of the
two pumps within the silicon portion of a unit cell.

The integrand may be calculated from the mode profiles
taken from full-wave simulations of unit cell of the de-
vice. The Hz components of the modes for the spectrum in
Fig. 12(b) are shown in Figs. 12(f) and 12(g), corresponding
to the choice in Fig. 12(c) of R1 = 0.38 μm. The integrand
of Eq. (27) is shown in Fig. 12(h), as calculated from the
Ey components of the modes [shown in Figs. 12(i) and 12(j)]
and the refractive index profile of the device. The numerical
value for this case is FoM/χ

(3)
Si ≈ 114|F3||F4|, meaning that

for a modest enhancement of |F3| = |F4| ≈ 10 by the bowtie
antenna we will have a total enhancement of FoM/χ

(3)
Si ≈ 104

in efficiency. Figure 12 therefore demonstrates a platform to

produce THz light from two infrared pumps taking advantage
of large electric field enhancement at every frequency in-
volved in the four-wave mixing process. The phase matching
condition is guaranteed by the subwavelength scale of the
device in the vertical direction, the resonance spacing is
robustly controlled by the radius of the central pillar, and the
resonant linewidths can be tuned largely independently by
the successive degeneration from C6v to C2v to Cs. We note
that there is some partial cancellation upon integration of the
integrand of Eq. (27) but not complete cancellation. Future
work could optimize the perturbations chosen such that this
cancellation is minimized.

C. Application: Mechanically tunable optical lifetimes

Next, we remark on a type of periodic perturbation
achieved by stretching or shearing a high symmetry lattice.
Since the symmetry of the lattice is reduced, the symmetry-
protected BICs may be excited. However, the condition on
coupling [that is, Eq. (23)] still applies, and therefore this
class of perturbation follows the same selection rules as the
equivalent point group degeneration entries. For instance, by
shearing an unperturbed Sq� lattice’s unit cell from a square
into a rhombus, the space group is reduced to p1 and any mode
at the � point may now couple to free space with a strength
related to the degree of shear. However, the polarization direc-
tion of the coupled plane wave will be ill defined in general,
changing, for instance, with the degree of shear. (Recall that
it is for this reason that the p1 entries are all specified as any,
because no general comment can be made.)

Of more interest is stretching along a high symmetry axis,
affording well-defined selection rules. This has been explored
in Ref. [28] for plasmonic heptamers arranged in a square lat-
tice by degenerating the symmetry of the heptamer from C6v

to C2v by stretching the substrate. Since the Fano resonance
in the plasmonic heptamer is both (1) well confined to a unit
cell of the overall lattice and (2) due to the coupling between
plasmonic modes, analysis of the point group of the unit cell
alone suffices to analyze the resonance. However, for a low
loss, high Q-factor demonstration using dielectric structures,
this analysis is insufficient because the coupling across unit
cells of the array is integral to the presence of BICs. The
catalog of selection rules derived above provides the necessary
information for proper analysis in dielectric systems.

Inspection of the catalog of the square lattices (Fig. 9)
reveals that square lattices afford no interesting cases: The
only impact of a lattice deformation along a high symmetry
axis is to split degeneracies, not introduce any new cou-
pling. This is not true for the hexagonal lattices, however.
Figure 13(a) shows a HexK lattice with p6mm space group
(one pillar of the trimer has a larger radius than the others) on
a stretchable substrate. In the unstretched case, the lattice has
C6v symmetry, and the selection rules forbid coupling to any
but the E1 modes at normal incidence. However, inspection
of the cmm space group reveals that degeneration from C6v to
C2v enables coupling to the B1 and B2 modes. Stretching the
HexK lattice with p6mm space group along the x axis also
degenerates the point group from C6v to C2v and so ought
to enable coupling to those modes to a degree controlled by
the strength of the lattice deformation. Figure 13(b) depicts
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(c) (d)

FIG. 13. Mechanically tunable optical lifetime. (a) Schematic of
a HexK lattice with a p6mm space group on a stretchable substrate.
(b) Full-wave simulations mapping the spectral reflectance R near the
wavelength λ of the TE1,1

K,B1
mode for various degrees of stretching.

(c) The unstretched lattice, with spacing P. (d) Stretched lattice, with
spacing P′ along the horizontal. Single sided arrows denote the lattice
vectors in (c) and (d).

confirmation of this prediction via full-wave simulations near
the TM1,1

K,B1
mode, showing redshift and a changing Q factor

as a function of deformation. Inspection of the HexK catalog
(or an analogous case in the Hex� lattice) therefore enables
a low-loss dielectric-based flexible device platform with me-
chanically tunable resonant lifetime.

D. Nonlocal metasurfaces

The preceding applications demonstrated the utility of the
catalog to guide device design using successive perturbations.
In other words, the key to their design came from understand-
ing how the final, lower order space group was constructed
from the higher order space groups, which together form a
parent-child relationship. In this section, we supplement the
approach in the accompanying paper [64] in which we use this
principle to demonstrate how particular p2 space groups may
be constructed from two parent space groups. We elucidate
a geometric phase that is a consequence of the parent space
groups exhibiting mode “twisting” of the sort shown in Fig. 11
and how if this geometric phase is spatially varied, we may
realize devices with anomalous reflection and refraction only
on resonance.

We begin by focusing on the relationship between three
space groups in the SqM lattice, shown in Fig. 14(a). Two
parent space groups (pmg and pmm) are shown on the left.
These two space groups share no symmetries in common
except twofold rotations at the center of the silicon pillars.
Consequently, if the perturbations are added successively, the
child space group will retain only these twofold rotations,
resulting in the p2 space group shown on the right in
Fig. 14(a). This example of a parent-child relationship be-

FIG. 14. Metaunits that introduce two factors of the geometric
phase. (a) Hierarchical relationship between a p2 (child) space group
and two higher order (parent) space groups in the SqM lattice.
(b) Schematic of a metaunit composed of ellipses etched into a
slab of silicon, excited by RCP light incident from the substrate.
(c) Reflectance map for a metaunit library constructed by varying
α and Da to keep a constant resonant frequency. (d) Amplitude and
phase responses of the LCP and RCP components of the reflected
light on resonance. (e) Amplitude and phase responses of the LCP
and RCP components of the transmitted light on resonance.

tween higher order parents and lower order children is very
general; the full hierarchy for the SqM and SqX lattice is
reported in Fig. 20. (Note: the hierarchy particular to the
multiwavelength metasurface introduced in the accompanying
paper [64] is reported in Fig. 21.)

Examining Fig. 14(a) shows that the pmm parent space
group allows for coupling to a polarization angle φ = 0◦ from
the x axis (that is, x polarization), while the pmg parent space
group allows for coupling to a polarization angle φ = 90◦
from the x axis (that is, y polarization). As seen in the inset
of Fig. 14(a), the child space group may be parameterized by
an orientation angle α that yields the pmm parent space group
when α = 0◦ and the pmg parent space group when α = 45◦.
In other words, as α varies continuously from 0◦ to 45◦, the
corresponding polarization angle must vary from 0◦ to 90◦.
The linear interpolation of this behavior is

φ = 2α. (28)

This form is highly reminiscent of the well-known geomet-
ric phase 2α, which is introduced when the handedness of

035434-20



SELECTION RULES FOR QUASIBOUND STATES IN THE … PHYSICAL REVIEW B 102, 035434 (2020)

circular polarization is flipped while light is scattered by
an anisotropic scatterer oriented along the α direction. This
similarity suggests studying a p2 space group under circularly
polarized illumination, as shown in Fig. 14(b).

In particular, upon studying the phase of circularly polar-
ized light exiting the device on both the reflection side and
transmission side, we find that this system imparts a geometric
phase to light exiting with the converted handedness [for right
circularly polarized (RCP) incidence, this is left circularly
polarized (LCP) light in transmission and RCP light in re-
flection] that is twice the conventional geometric phase. As in
conventional dichroic optical elements (e.g., a plasmonic bar
antenna), two projections of the polarization basis are required
to analyze the outgoing light, one from coupling into the
element and the second from coupling out. We will consider
each in turn.

First, only the component of free-space light that is lin-
early polarized in the φ direction completely couples to the
mode. This light, which constitutes half of the power of the
RCP incident light, is resonantly reflected, while orthogonally
polarized light (at an angle θ = φ + 90◦) is transmitted. De-
composing the incident RCP light into two linearly polarized
components, the φ component carries a phase �r

1 = φ, and
the θ component carries a phase �t

1 = φ + 90◦. Since the φ

direction is defined by the orientation angle α by Eq. (28), the
resonantly reflected light is therefore associated with a phase
�r

1 = 2α and the orthogonally polarized transmitted light has
a phase �t

1 = 2α + 90◦.
Second, the output light on resonance is linearly polarized

and can be decomposed into its constituent LCP and RCP
components. These components have a geometric phase �r

2 =
∓φ in reflection and �t

2 = ±θ in transmission, where the first
sign corresponds to LCP, and the second corresponds to RCP.
We can finally determine the total phases � = �1 + �2 of the
LCP and RCP components in reflection and transmission:

�r
LCP = 2α − 2α = 0◦ (29a)

�r
RCP = 2α + 2α = 4α (29b)

�t
LCP = (2α + 90◦) + (2α + 90◦) = 4α + 180◦ (29c)

�t
RCP = (2α + 90◦) − (2α + 90◦) = 0◦. (29d)

That is, RCP light in reflection and LCP light in trans-
mission vary as 4α, while LCP light in reflection and RCP
light in transmission are invariant to α. The two factors of
the geometric phase come from the two instances of changing
the basis for the polarization state: first from circular to linear
(coupling into a single linear state) and second from linear
to circular (decomposing into its constituent spins). In this
case, the final value is twice the conventional geometric phase
because the eigenpolarization (characterizing the projection
bases) varies as φ ≈ 2α compared to the conventional case of
φ = α (e.g., a plasmonic bar antenna oriented in-plane by an
angle α). We note that the form φ ≈ 2α is not a general rule
for quasi-BICs; for instance, the p2 space group in the HexK

lattice with a cross motif follows φ ≈ −4α for the B1 mode.
This results in a geometric phase that is −8α.

We next explore the physics and applications exploiting
this geometric phase as a new degree of freedom. Because
the geometric phase is completely controlled by α, we may

use the remaining geometric degrees of freedom of the unit
cell to maintain a spatially constant resonant frequency across
a device with a spatially varying geometric phase profile.
In other words, as in conventional metasurface approaches,
we may construct a library of geometries (“metaunits”) such
that full phase coverage and constant amplitude are achieved.
Then, by spatially arranging these metaunits, an output
wavefront with a designer phase profile may be realized at the
resonant frequency.

To confirm this approach, we construct such a metaunit li-
brary targeting wavelengths in the telecommunications range.
A metaunit, seen in Fig. 14(b), is composed of a silicon slab
with two etched ellipses, which are identical but for a 90◦
rotation. The chosen thickness of the slab is H = 250 nm, and
the lattice constant is a = 400 nm. The in-plane geometric
parameters that are varied to construct the metaunit library
are the diameters along the semimajor axis Da and semiminor
axis Db and the orientation angle α. For simplicity, we keep
Db constant and vary Da and α so as to achieve full phase
coverage with minimal shift in resonant wavelength.

A spectral map of reflectance, calculated by fullwave sim-
ulations, is shown in Fig. 14(c) illustrating a near constant
resonant wavelength across the metaunit library. The ampli-
tude and phase of the reflected (transmitted) LCP and RCP
components are recorded in Fig. 14(d) [Fig. 14(e)] at the
operating wavelength, λop = 1.52 μm. The amplitudes of the
LCP and RCP components are approximately equal (each
representing roughly one quarter of the input power) and vary
little across the metaunit library. The small inequality is due
to the presence of the substrate breaking the symmetry in
the out-of-plane direction. The phase of the component with
converted handedness (which for reflection is RCP and for
transmission is LCP) varies across 2π as α varies across 90◦
and follows closely with the predicted � = 4α dependence
[see Figs. 14(d) and 14(e)].

With the metaunit library constructed, a wavefront with
a spatially shaped phase profile within a narrow bandwidth
near λop may be realized. A common function is to linearly
vary the output phase so as to create anomalous reflection and
refraction. We may choose either to vary the phase profile
in the same direction as the dimerization [the x direction in
Fig. 14(b)] or the orthogonal direction. We will begin with
the former choice (see the accompanying paper for the latter
[64]).

Figure 15(a) shows a schematic of a device deflecting the
component with the converted handedness at the resonant
wavelength for RCP light normally incident from the sub-
strate side. Figure 15(b) depicts the electric field on reso-
nance calculated by fullwave simulations, overlaid with the
geometry of the device [Fig. 15(e)]. Figures 15(c) and 15(d)
show the output polarization states and phases of the LCP
and RCP components at the reflection side and transmission
side, respectively. In both cases, the output polarization is
approximately linear across the device. As such, the phase of
the signal with unconverted handedness is uniform while the
phase of the signal with converted handedness varies across
4π as α varies over 180◦.

Figure 15(f) confirms that the resonance of the metasurface
remains intact, despite the variance of geometry across the
metasurface. However, a noticeable blueshift has occurred
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FIG. 15. Gradient resonant metasurface. (a) Schematic depicting the device and its functionality: A thin film of silicon on top of quartz
is patterned with elliptical holes (inset shows top view of the geometry), resonantly deflecting light with converted handedness when excited
by circularly polarized light. (b) Top view of the complex field on resonance overlaid on the gradient resonant metasurface. (c),(d) Top view
of spatial distributions of the reflected and transmitted polarization states, er and et , and phase responses of Er

RCP, Et
RCP, Er

LCP, and Et
LCP. (e)

Geometrical parameters of the device in (b). (f) Transmission and reflection spectra of the device in (b). (g)–(j) Farfield angular and spectral
intensity distributions calculated from the optical near field, such as the results in (c),(d), showing deflection of light with converted handedness
only on resonance.

relative to the originally chosen λop. Nevertheless, at the
resonant peak of the device, λdev = 1.46 μm, deflection to the
second diffractive order occurs for signal with the converted
handedness [Figs. 15(g)–15(j)]. A device with identical de-
flection angle is shown in the accompanying paper [64] but
with a phase gradient applied in the orthogonal direction to
the dimerization direction. The blueshift is also present in that
case but significantly reduced.

The explanation for this blueshift comes from a unique fea-
ture of this metasurface: The deflection of light with converted
handedness is mediated by a supermode of the device. That
is, unlike conventional metasurfaces, whose metaunits scatter
light based on local resonances, this metasurface scatters light
due to a global resonance (associated with a supermode)
supported by many neighboring metaunits. To explore the
physics here, we consider the dependence of a gradient res-
onant metasurface on the incident angle of the RCP light.
Figure 16(a) schematically shows a device with a spatial phase
gradient in a direction orthogonal to the dimerization direc-
tion, with light incident from the substrate at a set of angles
θx (along the phase gradient) and θy (along the dimerization
direction). Since the deflection only occurs on resonance, the
resonant frequency follows some dispersion relation (i.e., the
band structure). Figure 16(b) depicts the resonant frequency
dispersion while varying θy from −40◦ to 40◦ (corresponding,
by Snell’s Law, to ±68.7◦ in air). This mode is concave up,
meaning that at higher in-plane momenta, a blueshift occurs.

To understand the blueshift at normal incidence, we must
consider (1) the modes supported by the device and (2) the in-
plane momentum of the resonant mode. First, these resonant
modes exist in the device with a superperiod of Px = 8a in
the phase gradient direction. We therefore consider all of

the supermodes supported by a device with this superperiod.
Because the superperiod is composed of perturbed versions of
the same PCS, the supermodes will be well approximated by
artificial Brillouin folding corresponding to period doubling
a metaunit three times. Figure 16(c) depicts such a process
for the mode in question, showing the band of the unit cell
(containing two ellipses) copied every integer multiple of the

(d)

(b)

(c)

(a)

FIG. 16. Angular dispersion of resonant metasurfaces.
(a) Schematic of a resonant metasurface excited from off normal
angles. (b) Reflectance map while varying θy, showing that the
resonance follows the dispersive concave-up band of the mode.
(c) Region of an extended zone (shaded gray) band diagram near
the resonance of the device in (a) with artificial Brillouin zone
folding; the red band corresponds to the band shifted by a k vector
equal and opposite to that introduced by the phase gradient due to
coupling into the supermode (i.e., one factor of the geometric phase).
(d) Reflectance map while varying θx , showing that the resonance
follows the band shifted by a factor of the geometric phase gradient.
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grating vector kG = 2π/Px in the kx = k0sin(θx ) direction.
The supermodes present at normal incidence are the modes
at kx = 0 in this diagram.

Second, upon coupling in, there is a spatially varying
geometric phase, corresponding to twice the local rotation
angle of the ellipses. The derivative of this spatial phase is
equivalent to a k vector,

kgeo = ∂�

∂x
= kG = 2π

Px
. (30)

In other words, the resonant supermode is the resonant mode
of an unperturbed lattice modulated by an in-plane wave
vector in the x direction. This corresponds to a supermode
that is kgeo away from the unperturbed � point, kx = 0 (the
flat part of the band). The supermode is highlighted red in
Fig. 16(c). Consequently, as seen in Fig. 16(d), as θx is varied,
the resonance follows the dispersion of the band as it existed
in the unperturbed lattice, shifted by −kgeo. Notably, this also
means that the resonant frequencies corresponding to the pair
of incident momenta kx = 0 and kx = −2kgeo are identical.
This is consistent with the requirements of reciprocity: These
two momenta are the input and output momenta of the deflec-
tion process; reversing the output must yield the original input
at all frequencies.

Finally, we comment on the achievable phase gradient
limited by this angular dispersion. As encapsulated by Eq. (2),
the component k vectors involved with the resonance must
be limited according to the linewidth and angular dispersion
of the resonance in order to maintain large resonance visi-
bility. For a resonant metasurface lens or hologram shaping
an incident plane wave, the range of output k vectors must
satisfy Eq. (2). In the cylindrical metasurface lens reported
in the accompanying paper [64], the resonance visibility is
maintained despite the range of deflection angles in the θx

direction across the device, which may be characterized by
the numerical aperture NA. We find that increasing the NA
gradually reduces the resonance visibility, but a substantial
resonance visibility (a peak reflectance of >40%) is still
maintained at a high value of NA = 0.7. This is not true for a
cylindrical lens focusing in the θy direction, where NA < 0.1
is required to retain appreciable resonance visibility, as the
angular dispersion is large in the θy direction compared to that
in the θx direction [comparing Figs. 16(b) and 16(d)]. This
is consistent with the constraint on Q factor, band flatness,
and spread in incident k vector encapsulated by Eq. (2).
In other words, it suggests that by including band structure
engineering, a fully radially focusing resonant metasurface
lens may be realized and that we must generally take care
to engineer the band structure of the unperturbed resonant
metasurfaces before applying the perturbation, as laid out in
the three-step process described in Sec. II A.

Given the lack of impact on the nonresonant light waves,
which may transmit with high efficiency irrespective of
incident angle, we anticipate these resonantly deflecting
and focusing metasurfaces to be of significant interest to
augmented reality displays, which aim to superimpose a
desired image on top of information transmitted through
the glass originating from the external world. By further
application of the principle of successive perturbations,
we show in the accompanying paper [64] that the

single-wavelength resonant metasurfaces may be extended to
multiwavelength devices with independently tunable phase
profiles. The hierarchy of the child space group constructed
from eight parents is shown in Fig. 21. The eight parents
represent eight degrees of freedom to spatially and spectrally
shape an incident wavefront: The Q factors and polarization
angles (i.e., geometric phases) of four modes with distinct
symmetries may be controlled simultaneously. Notably, these
eight degrees of freedom are in addition to the degrees of
freedom present in the unperturbed lattice, which may be used
to control the resonant frequencies and band curvatures of the
desired modes. This degree of spatial and spectral control over
an optical spectrum greatly surpasses the state of the art and
is readily apparent from careful study of the catalog in con-
junction with the design principle of successive perturbations.

V. SUMMARY

In summary, we derived the selection rules for Fano reso-
nances due to quasibound states in the continuum supported
by photonic crystal slabs. Targeting the high symmetry modes
of both square and hexagonal lattices, we explored six lattices
designed to bring each class of high symmetry mode into the
continuum. We exhaustively reported the degenerated space
groups due to in-plane perturbations that are compatible with
these six lattices and cataloged the selection rules in each case
by applying principles of group theory to determine the free
space polarization of the leaky portion of the perturbed modes.

Together with band structure engineering, the principles,
approach, and results outlined here provide a high-level guide
to designing compact photonic crystal slabs supporting sharp
resonances: devices confining light in both space and time and
manufacturable by mature fabrication technologies. Future
work will be well guided by the rational design principles con-
sidered here to reduce the search space required to optimize
a compact, resonant optical device. In particular, we showed
that the band structure may be engineered in the unperturbed
lattice before a periodic perturbation is applied to couple the
targeted mode(s) to the desired free space polarization(s). We
showed, here and in the accompanying paper [64], that in
addition to the degrees of freedom present in choosing the
unperturbed lattice, a series of successive perturbations may
realize multifunctional control of the resonances (up to eight
parameters at once). The insights of the catalog of selection
rules produced by group theory arguments have straightfor-
wardly motivated novel devices, such as polarization inde-
pendent planar optical modulators, terahertz generation in
photonic crystal slabs with lifted degeneracies, devices with
mechanically tunable optical lifetimes, and a novel class of
metasurfaces that uses two factors of a geometric phase to
spatially shape a resonant wavefront. We therefore believe
that careful understanding and examination of the patterns and
features of the selection rules represent a fruitful launching
point for future efforts.
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APPENDIX A: GROUP THEORY TABLES

For ease of reference, the character tables of all relevant
point groups are reported in Fig. 17(a). The left column of
tables in Fig. 17(a) contains the point groups compatible with
the square and rectangle lattices, and the right contains those
compatible with hexagonal lattices. Figure 17(b) summarizes
the subgroups of each of the point groups shown in Fig. 17(a).
This prescribes the necessary components of the symmetry
degeneration tables, shown in Fig. 17(c), which track how
higher symmetry modes (irreducible representations) degen-

erate into lower groups. That is, reference to the symmetry
degeneration tables provides the answers to how a higher
symmetry mode would be named in a lower order symmetry
group (for instance, B2 in C4v would be called A2 in Cv

2v).
Next, Fig. 18 provides the group theory tables helpful for

determining the selection rules through the direct product
approach. Figure 18(a) provides the direct product table for
the C6v point group, and Fig. 18(b) provides the same for
the C4v point group. The direct product tables for the lower
order point groups are a subset of these. For instance, for C2v ,
Fig. 18(b) may be used excluding the final row and column.
Lastly, Fig. 18(c) contains the irreducible representations for
the partial derivative operators relevant for direct products
such as in Eq. (23). This tracks how free space polarizations
transform in each lattice type.

APPENDIX B: ADDITIONAL LATTICES

The six lattices cataloged in Figs. 9 and 10 were chosen
because they access the six high symmetry modes in the
simplest way. For instance, the SqM lattice accesses only the
� and M (but not the X ) modes of a square lattice, while
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FIG. 18. Group theory tables for deriving the selection rules.
(a) The direct product table for C6v . (b) The direct product table for
C4v . The direct product tables for the lower order point groups are
subsets of (a) and (b). (c) The irreducible representation describing
the partial derivative operator in each direction. This describes how
free space polarizations transform in each point group.

the SqX accesses the � and X (but not the M) modes. However,
if desired, it is possible to access all three modes in a single
lattice by period doubling in both lattice directions. Figure 19
shows this lattice, called SqMX , depicting the real space and
FBZ. This lattice is a “quadromer,” having four atoms per unit
cell, and therefore has four times the modes compared to the
unperturbed case. In particular, it has the � and X modes, as
well as two copies of the M modes (one from each Mx and
My), which mix at the � point in a similar way to the K modes
of the HexK lattice.

Also pictured in Fig. 19 are the HexMMM and HexM�,
both of which are examples of quadromer lattices. HexMMM

is still of the hexagonal lattice family, while HexM� (much
like HexM) is rectangular. HexMMM contains three copies of
the M modes, which will mix at the � point. HexM�, on the
other hand, accesses a unique set of modes at the � point in
the unperturbed FBZ (see the last panel in Fig. 19), which
have the point group Cd

s (that is, they are either symmetric or
antisymmetric about the x axis).

The lattices shown in Fig. 19 are by no means the only
additional lattices that may be explored. Instead, they serve
as an example of the next few lattices in the infinite list of
lattices ordered by number of atoms in the perturbed unit cell.
The lattices in this list are generally increasingly complicated,
but the same approach outlined in Sec. III C may be applied
to determined the selection rules if desired.

APPENDIX C: SPACE GROUP HIERARCHY

A feature of the SqX lattice is that there are two points
in the unperturbed lattice with C4v about which to apply the
dimerizing perturbation. This has the consequence that there
are two p4g groups in the catalog of the SqX lattice, each with
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FIG. 19. Three additional examples of periodically perturbed
lattices. Each of these lattices is a “quadromer” lattice, with four
atoms per unit cell upon perturbation, and therefore have four times
the modes of the unperturbed lattices at the � point.

a different high symmetry point in common with the unper-
turbed lattice (likewise for the two p4m groups). Similarly,
there are two equivalent points with at least C2v symmetry that
may be chosen while perturbing to a SqM lattice (and equiva-
lently, the HexM lattice), producing an analogous set of paired
perturbations. Note that the Sq� lattice (and equivalently, the
Hex� lattice) has no such feature. The HexK lattice has no
such pairing of perturbations because there is only one point
in the unperturbed lattice with C6v symmetry.

An interesting feature of the paired sets of perturbation
is the relationship of the symmetries those members have in
common with each other. By adding the two perturbations
together, a space group of lower symmetry is created with only
those symmetries the two parent space groups had in common.
In the words of crystallography, this process is finding a
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FIG. 20. Hierarchy of space groups in the (a) SqM lattice and (b) SqX lattice, showing how lower order space groups are related to higher
order space groups.

translationengleiche subgroup in common (and finding the C4v

parent space groups is finding klassengleiche subgroups of the

FIG. 21. Complete hierarchy adding eight space groups with C2v

point symmetry and “orthogonal” selection rules to achieve a final
p1 space group with eight degrees of freedom: the Q factors and
polarization angles of four distinct modes.

unperturbed lattice). This resulting child space group must,
naturally, be a member of the catalog. Such a relationship
may be studied for all of the space groups in the lattices
with this pairing of perturbations. The resulting relationships
are seen in Fig. 20, showing complete sets of relationships
between higher and lower space groups. Note that for the SqX
lattice, one of the cmm space groups has its highest sym-
metry point in common with the C2v symmetry point of the
unperturbed lattice. It may therefore not be made by adding
higher order space groups. Likewise, it is well known to crys-
tallographers that the pmg space group has no parent (trans-
lationengleiche supergroup), and therefore also stands alone.
However, both of these “parent-less” space groups share
symmetries with the other members of the SqX lattice and
therefore may be combined to create space groups of lower
symmetry.

We note that while these relationships do not prove that
the catalog is exhaustive, the closed, consistent system is
highly suggestive that it is. Indeed, in an earlier version of
this manuscript, one of the p4g space groups of the SqX
catalog was omitted, and its existence and selection rules were
predicted while attempting constructing Fig. 20(b): A fourth
space group with C4v symmetry was needed to produce a
consistent hierarchy.

Finally, for completeness we report in Fig. 21 the entire
hierarchy enabling control of the Q factor and polarization
angle for four modes simultaneously and independently, used
in the accompanying paper [64]. The resulting lattice is SqMX
(refer to Fig. 19) constructed from two SqM lattices, one
dimerized in the x direction, whose modes are referred to as
Mx, and the other in the y direction, whose modes are referred
to as My.
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