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Circular dichroism and Faraday and Kerr rotation in two-dimensional materials
with intrinsic Hall conductivities
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The electronic structures of two-dimensional hexagonal materials for a given spin direction can be generally
written by the Haldane model, which shows circular dichroism or valley polarization due to broken time-reversal
and inversion symmetries, respectively. By using the Kubo formula, we calculate longitudinal and transversal
(Hall) optical conductivities to obtain the absorption spectra. The absorption spectra for circularly polarized
lights are calculated by solving the Maxwell equations with a boundary conditions at the two-dimensional
material. We found that circular dichroism and valley polarization depend on the properties of the imaginary part
of the Hall conductivity, while the real part of the Hall conductivity generates large Faraday and Kerr rotations
up to a few degrees.
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I. INTRODUCTION

The emergence of graphene in 2004 [1] has paved the
way for a trend in physics due to its unusual electronic
and transport properties [2]. Research on graphene-based
and graphene-like two-dimensional (2D) materials has found
more functionalities for possible applications [3]. One of the
phenomena which is applicable for optical filters is circu-
lar dichroism (CD). Circular dichroism is a property of a
material in which the absorption probabilities of left- and
right-handed circularly polarized (LCP and RCP, respectively)
lights are not equal. Naturally, weak CD is observed in a
chiral molecule with lack of mirror symmetries [4,5]. Some
nanoscale-based structures have been proposed to enhance
CD for practical purposes, including molecule-nanoparticle
hybrid [4] and 2D metamaterials [5]. In the latter case, it
is experimentally demonstrated that CD occurs due to the
difference of the Ohmic (Joule) heating for LCP and RCP
lights in the metametarials [5].

In the context of 2D hexagonal materials, CD is ob-
served in silicene [6]. Furthermore, monolayer transition-
metal dichalcogenides (TMDs) such as MoS2 and WSe2

[7–12] exhibit valley polarization (VP), where electron at
the K (K ′) valley in the Brillouin zone absorbs only LCP
(RCP) light. It is known that CD and VP originate from
broken time-reversal (T ) and inversion (I) symmetries in
the 2D hexagonal materials, respectively [6,7], and these two
phenomena have been investigated for further advances in
optical sensors, valleytronics, and next-generation electronic
devices with low-energy consumption [6,9].

A Hamiltonian which breaks the T and I symmetries in
the honeycomb lattice is generally provided by the Haldane
model [13], which was originally proposed as a model that
exhibits quantum Hall effect without an external magnetic
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field, and the pioneering model for topological insulators
[14,15]. Hence, the Haldane model can be a starting point for
theoretical investigations of CD and VP in the 2D hexagonal
materials. Furthermore, Jotzu et al. [16] have experimentally
realized a system with the Haldane Hamiltonian using cold
atoms modulated in optical lattice. The topological Haldane
materials are also predicted to occur in Fe-based ferromag-
netic insulators [17]. A recent theoretical study of the optical
absorption in the Haldane model has been performed by
Ghalamkari et al. [18], in which they show within dipole
approximation that the Haldane material exhibits perfect CD
(i.e., the material only absorbs either LCP or RCP light),
which is independent of VP. However, the absorption spectra
generally depend on the frequency of light and angle of
incidence, which can be obtained by solving the Maxwell
equations with a boundary conditions at the 2D material,
which is the subject of this paper. Here we investigate the
roles of the intrinsic Hall conductivity in the in the optical
absorption of the Haldane model. This approach provides not
only a better understanding of CD and VP in the 2D hexagonal
materials but also the prediction of the Faraday and Kerr
rotations in the remaining transmitted and reflected lights.

A phenomenon which occurs in the transmission (reflec-
tion) of light due to the Hall conductivity is the Faraday (Kerr)
rotation. In the Faraday (Kerr) rotation, the polarization plane
of incident linearly polarized light (which is given by the
sum of LCP and RCP lights) is rotated after the transmission
(reflection), while the transmitted (reflected) light acquires
ellipticity. In the presence of an external magnetic field,
Crassee et al. [19] observe giant Faraday rotation (∼6◦) in
graphene, which is attributed to the cyclotron resonance and
inter-Landau-level transitions. Shimano et al. [20] experimen-
tally demonstrate that the quantum Hall effect in graphene
also plays a decisive role in large Faraday and Kerr rotations.
Huang et al. [21] utilize the magneto-optical Kerr effect
to detect ferromagnetism in monolayer CrI3. Theoretically,
Széchenyi et al. [22] predict that large Faraday and Kerr
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rotations (up to few degrees) can occur for bilayer graphene
in a quantum anomalous Hall state without the magnetic field.
Hence, it is meaningful to examine the Faraday and Kerr
rotations in the Haldane model as a generalized Hamiltonian
of the 2D hexagonal materials.

Here we calculate the longitudinal and transversal (Hall)
conductivities of the Haldane model as a function of the
frequency of light, which are derived from the Kubo formula.
In particular, we show that the Hall conductivity without the
external magnetic field in the Haldane model is crucial for the
absorption spectra of circularly polarized light. By obtaining
the optical conductivities, we solve the absorption probabil-
ities of LCP and RCP lights using the Maxwell equations.
We found that the imaginary part of the Hall conductivity
is responsible for the occurrence of CD and VP. We also
calculate the ellipticity and the Faraday (Kerr) angle of the
transmitted (reflected) light, in which we show that the ellip-
ticity is proportional to CD and that the real part of the Hall
conductivity generates large Faraday and Kerr rotations up to
a few degrees.

The paper is organized as follows. In Sec. II, analytical
methods for calculating the optical conductivities and the
absorption for circularly polarized lights are given. In Sec. III,
calculated results are shown. In Sec. IV, a conclusion is given.

II. CALCULATION METHODS

A. The Haldane Hamiltonian

The Hamiltonian of the Haldane model in the 2D hexago-
nal lattice can be expressed by

Ĥ = −t1
∑
〈i, j〉

c†
i c j + t2

∑
〈〈i, j〉〉

eiνi jφc†
i c j + M

∑
i

τic
†
i ci, (1)

where c†
i (ci ) is the creation (annihilation) operator of the ith

atomic site. The first term in the Hamiltonian denotes the
nearest-neighbor (NN) interactions with the hopping integral
t1 > 0. The second term is the next-nearest-neighbor (NNN)
interactions with the hopping integral t2 > 0, which breaks
the T symmetry for a nonzero phase angle φ in eiνi jφ . Here
we take νi j = +1 (−1) for clockwise (anticlockwise) NNN
hopping direction [13], as illustrated in Fig. 1(a). In the third
term, we define τi = +1 (−1) for the A (B) sublattice, which
denotes on-site energy difference for the A (+M) and B (−M)
sublattices. This breaks the I symmetry between A and B
atoms and gives rise to the band gap 2M between the valence
and conduction bands at the K and K ′ points in the Brillouin
zone, as shown in Fig. 1(b).

By performing the Fourier transform of Eq. (1), we cal-
culate the energy dispersion in the Brillouin zone. Since we
are interested in low-energy excitation, we define the effective
Hamiltonian around the K and K ′ points. The first-order
expansion of the Hamiltonian near the K and K ′ points can
be expressed in term of 2 × 2 unit matrix σ̂0 and the Pauli
matrices σ̂x, σ̂y, σ̂z as follows [15,23]:

Ĥ(q) = (−3t2 cos φ)σ̂0 + h̄vF (κqxσ̂x + qyσ̂y)

+ (M − κ3
√

3t2 sin φ)σ̂z, (2)

FIG. 1. (a) The Haldane model on the 2D hexagonal lattice with
A and B sublattices and lattice constant a0. The strength of the NN
hopping is given by t1. The complex NNN hopping is expressed
by t2e+iφ (t2e−iφ ) for the clockwise (anticlockwise) direction. The
on-site energy for A (B) sublattice is +M (−M ). (b) The Brillouin
zone of the 2D hexagonal lattice with symmetry points. (c) Phase
diagram of the Haldane model. The topological (band) insulator
phase is denoted by i and ii (iii and iv).

where q = (qx, qy) is the wave vector of electron measured
from the K and K ′ points. The valley index κ is given by
+1 (−1) for the K (K ′) point and vF is the Fermi velocity,
which is defined by vF ≡ √

3t1a0/(2h̄). It is known that the
topological phase occurs when |M/t2| < 3

√
3| sin φ|; other-

wise, the material is a band (or trivial) insulator [13–15]. In the
phase diagram of the Haldane model, the topological (band)
insulator is given in regions i and ii (iii and iv) as shown in
Fig. 1(c). By solving the energy dispersion from Eq. (2), we
calculate the optical conductivities whose properties depend
on the regions in the phase diagram of the Haldane model.

B. The Kubo formula for optical conductivity

By using the Kubo formula, the optical conductivity
σi j, (i, j = x, y) as a function of the frequency of light ω and
momentum k in the 2D systems is given by [24,25]:

σi j (k, ω) = −ie2h̄
∫

d2q
(2π )2

∑
b,b′

f [εb(q)] − f [εb′ (q + k)]

εb(q) − εb′ (q + k)

× 〈b, q|v̂i|b′, q + k〉〈b′, q + k|v̂ j |b, q〉
εb(q) − εb′ (q + k) + h̄ω + ih̄γ

, (3)

where εb(b′ ) is the electron energy of the band b(b′) which is
the eigenvalue of Eq. (2) and f [εb(b′ )] is the Fermi distribution
function. The velocity operator in the direction of i, v̂i (i =
x, y) is defined by

v̂i ≡ 1

h̄

∂Ĥ
∂qi

. (4)
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FIG. 2. The electric and magnetic fields in the system consisting
of the 2D Haldane material between two dielectric media, whose
relative permittivities are εi and εt . The angles of incidence and
transmission are given by ψ and χ , respectively. The red (blue) color
in the electric and magnetic fields depend on pm (s′

m).

Since we focus our attention for the optical transition, we
can take k → 0 measured from the K (or K ′ point). It is
also assumed that the damping constant γ → 0, which means
that the scattering due to impurity in the Haldane material is
neglected for simplicity.

C. The Maxwell boundary conditions with the Hall conductivity

In Fig. 2, we show the geometry for calculating transmis-
sion, reflection, and absorption probabilities. In the calcula-
tion, the 2D Haldane material is placed between two dielectric
media in the xy plane at z = 0, while the xz plane is the
plane of incidence for the electromagnetic wave. The relative
permittivity of the medium for the incident (transmitted) light
is denoted by εi (εt ). The incident light comes with angle
of incidence ψ and is refracted by angle χ , which satisfies
the Snell law

√
εi sin ψ = √

εt sin χ . Any electric field Em

can be written as a sum of independent electric fields with
p polarization E(p)

m and s polarization E(s)
m , as follows:

Em = E(p)
m + E(s)

m = E (p)
m p̂m + E (s)

m ŝm, (5)

where m = i, t, and r indicate the incident, transmitted, and
reflected lights, respectively, and p̂m (ŝm) is the unit vector in
the direction of the p (s) component. We can express E (p)

m =
E0 pm and E (s)

m = E0smei�m , where �m is the phase difference
between the p- and s-polarized lights. The electric field can be
represented by the Jones vector as follows:

Em = E0

(
pm

smei�m

)
= E0

(
pm

s′
m

)
, (6)

hence, the electric field amplitude is given by
E0

√|pm|2 + |s′
m|2. To make sure that the incident light

has the magnitude of E0, pi and s′
i are chosen to satisfy

|pi|2 + |s′
i|2 = 1. In particular, for incident LCP (RCP) light,

�i = +π/2 (−π/2), pi = 1/
√

2 (1/
√

2), and s′
i = +i/√

2 (−i/
√

2).
The p and s components of the magnetic fields are related

to the electric fields by the following ratios:

H (s)
m = E (p)

m

Zm
, H (p)

m = E (s)
m

Zm
, (7)

where Zm is the impedance of electromagnetic wave. Zm is
given by the relative permittivity εm as Zm = Z0/

√
εm and

Z0 = 376.73 � is the impedance of vacuum. Therefore H (s)
m

(H (p)
m ) is proportional to pm (sm). The directions of the electric

fields E(p)
m , E(s)

m and magnetic fields H(s)
m , H(p)

m are illustrated
in Fig. 2.

The boundary conditions at z = 0 are obtained from ∇ ×
E = −μ∂H/∂t and ∇ × H = J + ε∂E/∂t , where μ, ε, and
J are permeability, permittivity, and surface current density,
respectively. The boundary conditions are given by

E (p)
i cos ψ + E (p)

r cos ψ = E (p)
t cos χ, (8)

H (s)
t − [

H (s)
i − H (s)

r

] = −[
σxx(ω)E (p)

t cos χ + σxy(ω)E (s)
t

]
,

(9)

E (s)
i + E (s)

r = E (s)
t , (10)

and

− H (p)
t cos χ − [−H (p)

i cos ψ + H (p)
r cos ψ

]
= σyy(ω)E (s)

t + σyx(ω)E (p)
t cos χ. (11)

From Eqs. (8)–(11), it is noted that the s and p components of
the electric field are mixed each other for nonzero σxy and σyx.

By expressing the dependence of the electric fields E (p)
m and

E (s)
m as well as the magnetic fields H (p)

m and H (s)
m in Eqs. (8)–

(11) in terms of pm and s′
m, we have

pi cos ψ + pr cos ψ = pt cos χ, (12)

pi

Zi
− pr

Zi
= pt

[
1

Zt
+ σxx(ω) cos χ

]
+ s′

tσxy(ω), (13)

s′
i + s′

r = s′
t , (14)

and

s′
i
cos ψ

Zi
− s′

r
cos ψ

Zi
= s′

t

[
cos χ

Zt
+ σyy(ω)

]

+ ptσyx(ω) cos χ. (15)

Let us define a variable ξm as the ratio of s′
m and pm as

follows:

ξm ≡ s′
m

pm
. (16)

In the case of LCP (RCP) lights, ξm = +i (−i), while for a lin-
early polarized light, we can take ξm → 0. The transmission
and reflections probabilities, T and R, are given by

T =
1
2 Re[Et × Ht

∗] · (+z)
1
2 Re[Ei × Hi

∗] · (+z)
= |pt |2(1 + |ξt |2)

|pi|2(1 + |ξi|2)

Zi cos χ

Zt cos ψ
, (17)
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FIG. 3. An elliptically polarized light with independent basis
E(p)

m and E(s)
m . The angles of polarization rotation and ellipticity are

given by ψm and ηm, respectively.

and

R =
1
2 Re[Er × Hr

∗] · (−z)
1
2 Re[Ei × Hi

∗] · (+z)
= |pr |2(1 + |ξr |2)

|pi|2(1 + |ξi|2)
, (18)

respectively. Because of the nonzero optical conductivities, a
fraction of the light is absorbed by the 2D Haldane material.
The absorption probability A is given by

A = 1 − R − T . (19)

In Fig. 3, an elliptically polarized light is depicted as
an ellipse in the [E (p)

m , E (s)
m ] coordinate. The circular and

linear polarizations of light are the special cases of elliptical
polarization. The elliptically polarized lights are parametrized
by angles θm and ηm, which are the rotation of the polarization
plane and the ellipticity, respectively. Hence, for the linearly
p-polarized light, we have θm = 0 and ηm = 0, while for the
circularly polarized lights we have θm = 0 and ηm = +π/4
(LCP) or ηm = −π/4 (RCP). The angles θm and ηm are related
to the phase difference between E(p)

m and E(s)
m , �m [26,27], and

can be expressed as a function of ξm as follows:

tan(2θm) = 2Re[ξm]

1 − |ξm|2 , (20)

and

sin(2ηm) = 2Im[ξm]

1 + |ξm|2 . (21)

In the next section, we calculate the ellipticity of the trans-
mitted and reflected lights as well as the Faraday and Kerr
rotations by using Eqs. (20) and (21).

III. RESULTS

A. Optical conductivities of the Haldane material

The low-energy dispersion of the Haldane model [eigen-
value of Eq. (2)] is given by

ε(q) = −3t2 cos φ ∓
√

|h̄vF q|2 + (M − κ3
√

3t2 sin φ)2, (22)

where the sign − (+) corresponds to valence (conduction)
band. The energy dispersions at the valence band εv and the
conduction band εc are related by εv + 3t2 cos φ = −(εc +
3t2 cos φ), and the energy gap at the K (κ = +1) and K ′ points
(κ = −1) is given by ε (κ )

g ≡ 2|M − κ3
√

3t2 sin φ|. It is noted
that the energy gaps for the K and the K ′ points have different
values when the T and the I symmetries are simultaneously
broken (t2 �= 0, φ �= 0, and M �= 0).

By solving the eigenvectors of Eq. (2), the matrix elements
of velocity are calculated as follows:

〈v, q + k|v̂x|v, q〉 = −κvF

[
(εc + ζ )2 − �κ

2
]1/2

εc + ζ
cos

(ϕ

κ

)
= −〈c, q + k|v̂x|c, q〉, (23)

〈v, q + k|v̂y|v, q〉 = −vF

[
(εc + ζ )2 − �κ

2
]1/2

εc + ζ
sin

(ϕ

κ

)
= −〈c, q + k|v̂y|c, q〉, (24)

〈c, q + k|v̂x|v, q〉 = κvF

[
cos

(ϕ

κ

)
+ i

�κ

εc + ζ
sin

(ϕ

κ

)]

= 〈v, q|v̂x|c, q + k〉∗, (25)

and

〈c, q + k|v̂y|v, q〉 = vF

[
sin

(ϕ

κ

)
− i

�κ

εc + ζ
cos

(ϕ

κ

)]

= 〈v, q|v̂y|c, q + k〉∗, (26)

where we define ζ ≡ 3t2 cos φ, �κ ≡ M − κ3
√

3t2 sin φ, and
ϕ ≡ arctan(qy/qx ).

The optical conductivity σi j consists of intraband (Drude)
conductivity σ

(D,κ )
i j and interband conductivity σ

(E ,κ )
i j from the

K and K ′ valleys as follows:

σi j =
∑

κ=+1,−1

[
σ

(D,κ )
i j + σ

(E ,κ )
i j

]
. (27)

Hereafter, we restrict our calculations for low temperature
(T ≈ 0 K). The intraband (interband) conductivity originates
from the transition of electron within the same (between
different) band(s). In the case of the Fermi energy εF � 0, the
longitudinal and Hall intraband conductivities of the κ valley
are given by

σ (D,κ )
xx (ω) = e2

4h̄

(εF + ζ )2 − �κ
2

(εF + ζ )
δ(h̄ω)�

[
εF − ε

(κ )
c0

]

+ i
e2

4π h̄2ω

(εF + ζ )2 − �κ
2

(εF + ζ )
�

[
εF − ε

(κ )
c0

]
= σ (D,κ )

yy (ω) (28)

and

σ (D,κ )
xy (ω) = −σ (D,κ )

yx (ω) = 0, (29)

where ε
(κ )
c0 ≡ −3t2 cos φ + |M − κ3

√
3t2 sin φ| as the bottom

of the conduction band of the K or K ′ valley. Hence, σ (D,κ )
xx

has nonzero value if only εF > ε
(κ )
c0 . On the other hand,

the intraband Hall conductivity σ (D,κ )
xy is always zero even

though the T symmetry is broken, because the product
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〈b, q|v̂x|b, q + k〉〈b, q + k|v̂y|b, q〉 [see Eqs. (23) and (24)] is
an odd function ∼ cos(ϕ/κ ) sin(ϕ/κ ) with respect to ϕ.

The interband conductivities of the K or K ′ valley are given
as follows:

σ (E ,κ )
xx (ω) = e2

16h̄

[
1 + 4�κ

2

(h̄ω)2

]
�[h̄ω − 2(�κ + ζ )]

+ i
e2

16π h̄

[
1 + 4�κ

2

(h̄ω)2

]
ln

∣∣∣∣2(�κ + ζ ) − h̄ω

2(�κ + ζ ) + h̄ω

∣∣∣∣
+ i

e2

4π h̄2ω

�κ
2

(�κ + ζ )

= σ (E ,κ )
yy (ω), (30)

and

σ (E ,κ )
xy (ω) = e2

4π h̄2ω
κ�κ ln

∣∣∣∣2(�κ + ζ ) − h̄ω

2(�κ + ζ ) + h̄ω

∣∣∣∣
− i

e2

4π h̄2ω
κ�κ�[h̄ω − 2(�κ + ζ )]

= −σ (E ,κ )
yx (ω), (31)

where the function �κ ≡ max[εF , ε
(κ )
c0 ] takes the larger value

between εF and ε
(κ )
c0 . Here, the interband Hall conductiv-

ity is nonzero because the imaginary part of the product
〈b, q|v̂x|b′, q + k〉〈b′, q + k|v̂y|b, q〉 [see Eqs. (25) and (26)]
does not vanish after the integration with respect to ϕ. It
can be checked that in the case when the T and the I
symmetries are conserved (t2 = 0, φ = 0, and M = 0), the
optical conductivities of the monolayer graphene [28,29] are
recovered from Eqs. (28)–(31).

From Eq. (31), it is noted that the sign of the real and
imaginary parts of σ (E ,κ )

xy , Re[σ (E ,κ )
xy ] and Im[σ (E ,κ )

xy ], depend
on the region of the phase diagram of the Haldane model
as given by Fig. 1(c), since σ (E ,κ )

xy consists the factor κ�κ =
κM − 3

√
3t2 sin φ. In region i (ii), where the effect of the

broken T symmetry is dominant over the broken I symmetry
(|M| < 3

√
3|t2 sin φ|), Re[σ (E ,κ )

xy ] and Im[σ (E ,κ )
xy ] are positive

(negative) for both the K and K ′ valleys. On the other hand,
when the effect of the broken I symmetry is larger than
the broken T symmetry (|M| > 3

√
3|t2 sin φ|), Re[σ (E ,κ )

xy ] and
Im[σ (E ,κ )

xy ] are negative for K the valley and positive for the K ′
valley for region iii and vice versa for region iv.

Let us illustrate the dependence of the optical conductiv-
ities on t2, φ, and M for two distinct cases. In the first case
we adopt t2 = 0.05 eV, φ = π/2, and M = 0, while for the
second case we adopt t2 = 0.05 eV, φ = 0, and M = 0.5 eV.
Hereafter, we call the first and the second cases topological
and trivial cases, respectively. The topological (trivial) case
corresponds to region i (iii) in Fig. 1(c). In Fig. 4(a), we show
the energy dispersions of the topological and the trivial cases
at the K valley, where the energy gaps are ε (+1)

g = 6
√

3t2 =
0.52 eV and ε (+1)

g = 2M = 1 eV, respectively. The energy
dispersions at those of the K ′ valley are the same.

Let us calculate the optical conductivities in the Haldane
model. In Fig. 4(b), we plot σxx(ω) and σxy(ω) for the
topological case with εF = 0, where only interband transition
contributes to the optical conductivities. In the inset of
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FIG. 4. (a) The energy bands around the K point for the topo-
logical (t2 = 0.05 eV, φ = π/2, and M = 0) and the trivial (t2 =
0.05 eV, φ = 0, and M = 0.5 eV) cases. (b) The longitudinal and
Hall conductivities of the topological case (εF = 0). Inset: The
optical conductivities for electron-doped system (εF = 0.5 eV), in
which the intraband longitudinal conductivity is nonzero. (c) The
longitudinal and the Hall conductivities per valley for the trivial case
(εF = 0).

Fig. 4(b), we plot the case for the electron-doped system
(εF = 0.5 eV) to illustrate the contribution of intraband
transition. It is noted that the σxx and σxy consist of the
contributions of the electrons at the K and K ′ valleys, as
shown in Eq. (27). We observe that for εF = 0, Re[σxx] and
Im[σxy] decrease monotonically when h̄ω > ε (κ )

g = 0.52 eV,
while Im[σxx] and Re[σxy] show logarithmic singularities at
h̄ω = ε (κ )

g due to the interband transition. For εF = 0.5 eV, we
can see that the Re[σxx] peaks at h̄ω = 0 and Im[σxx] has 1/ω

dependence at small photon energy, due to the intraband tran-
sition. The effect of the electron doping also shifts the singular
points of σxx and σxy from h̄ω = ε (κ )

g to h̄ω = 2εF = 1 eV.
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In Fig. 4(c), we plot the optical conductivities per valley
σ

(κ )
i j (ω) ≡ σ

(D,κ )
i j (ω) + σ

(E ,κ )
i j (ω) for the trivial case (εF = 0)

with εF = 0. We can see that σ (κ )
xx does not have valley

dependence, while the Hall conductivities of electron at the
K valley σ (+1)

xy has equal magnitude but opposite sign of
that at the K ′ valley, σ (−1)

xy . The singularities in the Hall
conductivities occur when the light energy match to the energy
gap h̄ω = ε (κ )

g = 1 eV.
We shall show that the properties of the optical conductiv-

ities in the topological and the trivial cases correspond to CD
and VP, respectively, by calculating the optical absorptions for
the circularly polarized lights, which is discussed in the next
subsection.

B. Optical absorptions in the 2D Haldane material

The variable ξm in Eq. (16) for m = t (r) can be obtained by
eliminating pr (pt ) in Eqs. (12) and (13) and s′

r (s′
t ) in Eqs. (14)

and (15) as follows:

ξt = ξi�p + ZiZtσxy cos χ

�s − ξiZiZtσxy cos ψ
, (32)

and

ξr = ξi
�p + ZiZt cos ψσxyξt

�′
p − ZiZt cos ψσxyξt

�′
s + ZiZt cos χσxy/ξt

�s − ZiZt cos χσxy/ξt
, (33)

where �p, �s, �′
p, and �′

s depend on the longitudinal con-
ductivity σxx(ω) which are defined as follows:

�p ≡ Zt cos χ + Zi cos ψ + ZiZt cos ψ cos χσxx, (34)

�s ≡ Zt cos ψ + Zi cos χ + ZiZtσxx, (35)

�′
p ≡ Zt cos χ − Zi cos ψ − ZiZt cos ψ cos χσxx, (36)

and

�′
s ≡ Zt cos ψ − Zi cos χ − ZiZtσxx. (37)

For a given ψ and ξi, the absorption probability A can be
calculated by substituting Eqs. (32) and (33) into Eqs. (17)–
(19). For circularly polarized lights (pi = 1, si = ±1, ξi =
±i), A is the sum of one-half absorption for p-polarized light
Ap and one-half absorption for s-polarized light As, as follows:

A = 1

2
Ap + 1

2
As, (38)

where Ap and As are given by

Ap = 4ZiZt
2 cos ψ cos χRe[σxx cos χ + ξtσxy]

|�p + ξt ZiZt cos ψσxy|2 (39)

and

As = 4ZiZt
2 cos ψRe[σxx − σxy cos χ/ξt ]

|�s − ZiZtσxy cos χ/ξt |2 . (40)

In the case of normal incidence (ψ = 0), we get that �p =
�s and �′

p = �′
s, and from Eqs. (32) and (33), ξt = ξr = ξi,

which means that the transmitted and reflected lights remain
circularly polarized. In such case that Ap = As, A reduces to

0 0.5 1 1.5 2
h
_
ω [eV]

0

1

2

3

4

A
 [%

]
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σ=−1

K

σ=−1σ=+1

K'

K+K'
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Trivial
or

^

^
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FIG. 5. The optical absorptions of LCP and RCP lights in the
topological (t2 = 0.05 eV, φ = π/2, and M = 0) and the trivial (t2 =
0.05 eV, φ = 0, and M = 0.5 eV) Haldane materials with εF = 0.
The former (later) exhibits CD (VP).

Ac, which is given as follows:

Ac = 4ZiZt
2Re(σxx + iσ̂ σxy)

|Zi + Zt + ZiZt (σxx + iσ̂ σxy)|2

= 4ZiZt
2[Re(σxx ) − σ̂ Im(σxy)]

|Zi + Zt + ZiZt (σxx + iσ̂ σxy)|2 , (41)

where σ̂ = +1 (σ̂ = −1) for LCP (RCP) light. Therefore,
for the normal incident, the absorption spectra for circularly
polarized lights are proportional to Re[σxx] and Im[σxy].

In Fig. 5, we plot the absorption spectra of LCP and
RCP lights for the two cases of the Haldane model discussed
above. Here we choose εF = 0, ψ = 0, and εi = εt = 1. The
absorptions for the topological case (t2 = 0.05 eV, φ = π/2,
and M = 0) are shown by the dashed line. We can see that
at h̄ω = ε (κ )

g = 0.52 eV, the material only absorbs the RCP
light (σ̂ = −1). This corresponds to the perfect CD in the
topological Haldane material, which is consistent with the
previous result [18]. However, it should be emphasized that
even though perfect CD for RCP occurs, the absorption prob-
ability for RCP remains low (∼4.4%). When the light energy
h̄ω increases, the absorption for RCP (LCP) light monotoni-
cally decreases (increases), and thus CD almost disappears for
h̄ω � 2 eV. It is also noted that in the case of φ = −π/2, the
absorption spectra of RCP and LCP are reversed, because the
sign of Im[σ (2)

xy ] changes to negative.
The optical absorption for the trivial case (t2 = 0.05 eV,

φ = 0, and M = 0.5 eV) is shown by the dashed-and-dotted
line in Fig. 5. Here LCP and RCP lights are absorbed at the K
and the K ′ valleys, respectively, when h̄ω � ε (κ )

g = 1 eV. This
absorption spectrum indicates the occurrence of VP, which
can be reversed (i.e., LCP and RCP are absorbed at the K ′
and the K valleys, respectively) by choosing M < 0, because
the imaginary part of the Hall conductivity is positive for
the K valley and negative for the K ′ valley. In general, the
positive (negative) Im[σ (E ,κ )

xy ] corresponds to larger absorption
for RCP (LCP), which is shown by Eq. (41).
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Before continuing the discussion, let us interpret the
macroscopic meaning of CD. In a study by Harada et al. [30],
it is shown that A in a thin conductor is proportional to the
Joule heat,

Q = 1
2 Re[J · E∗

h], (42)

where J and Eh are the electric field and surface current
density on the conductor material, respectively. By referring
to Fig. 2, Eh and J are given as follows:

J = [
σxxE (p)

t cos χ + σxyE (s)
t

]
x̂ + [

σyxE (p)
t cos χ + σyyE (s)

t

]
ŷ,

(43)

and

Eh = cos ψ
[
E (p)

i + E (p)
r

]
x̂ + [

E (s)
i + E (s)

r

]
ŷ. (44)

In the case of ψ = 0 and ξi = ±i, the Joule heat is given by

Q = 2Zt
2[Re(σxx ) − σ̂ Im(σxy)]

|Zi + Zt + ZiZt (σxx + iσ̂ σxy)|2 E0
2. (45)

By comparing Eq. (45) with Eq. (41), we can see Ac =
2ZiQ/E0

2, which means that the absorption probability is
proportional to the Joule heat in the 2D Haldane material.
Therefore, the perfect CD for RCP [as shown by Fig. 5(c) for
the topological case] corresponds to the absence of the Joule
heat for LCP and vice versa. We have shown that the broken T
symmetry is macroscopically manifested in the difference of
Q for LCP and RCP lights (due to σxy), which is the origin of
CD. This phenomenon can be compared with the case of the
2D metamaterials. Khanikaev et al. [5] observe that LCP and
RCP lights generate different amount of the Joule heat in the
asymmetric 2D metamaterial, which is attributed to the origin
of CD.

C. Application of the Haldane model in silicene
and monolayer TMDs

In this subsection, we will apply the Haldane model to
explain CD and VP in silicene and monolayer TMDs. We shall
show that by simply changing the Haldane parameters t2, φ,
and M, we are able to calculate the optical conductivities and
absorption for a given electronic state in the 2D hexagonal
materials.

Silicene is a 2D material in which Si atoms are arranged in
honeycomb lattice or, in another words, a silicone analog of
graphene. However, silicene has a buckled structure, in which
the sublattices A and B are separated vertically by a distance
2� (� = 0.23 Å) [6,31]. By applying an external electric field
perpendicular to the silicene plane Ez, a staggered potential
between A and B sublattices is generated. Furthermore, Si
atom is heavier than C atom, thus, the spin-orbit coupling
in silicene (λSO = 3.9 meV) [6,32] is significantly larger
compared with that of graphene (λSO = 1.3 μeV) [32] and
should be included in the Hamiltonian. The energy dispersion
of silicene around the K and K ′ points [33] is given by

ε(q) = ∓
√

|h̄vF q|2 + (e�Ez − κsλSO)2, (46)

where vF = √
3a0t1/(2h̄), a0 = 3.86 Å, t1 = 1.6 eV [6]. The

spin index s is +1 (−1) for spin-up (spin-down) electron.

By substituting t2 = λSO/3
√

3, M = e�Ez, and φ = +π/2
(φ = −π/2) in the energy dispersion of the Haldane model
[Eq. (22)], the state of spin-up (spin-down) electron in silicene
as given by Eq. (46) is reproduced. This is similar to the
Kane-Mele model in the case of M = 0, which takes account
the spin-orbit interaction in graphene [14,23,34,35]. From
Eq. (46), it can be seen that the energy gap in silicene can
be tuned by Ez, which also determines whether silicene is a
topological or a band insulator [6]. The transition from the
topological phase to the band insulator phase occurs at critical
electric field Ecr = λSO/e� [6]. In other words, silicene is a
topological (band) insulator when Ez is less (greater) than
Ecr. Hereafter, the two cases are referred as the topological
and insulating cases, respectively. Ezawa [6] has proposed a
method to detect the phase transition in silicene by the optical
absorption. Within the dipole approximation, it was shown
that the absorption spectra in the topological and the insulating
silicene obey different spin and valley selection rules. Here
we demonstrate that such a phenomenon can be explained by
the role of the Hall conductivity in the optical absorption. We
can calculate Hall conductivity of silicene per spin and the
absorption of circularly polarized lights using Eqs. (28)–(31)
and Eq. (41).

First, let us consider the topological silicene by setting
Ez = λSO/2e� < Ecr. In Fig. 6(a), we plot the energy disper-
sion at the K and K ′ valleys for both s = +1 and s = −1.
At the K (K ′) valley, the electronic band gap for spin-up is
smaller (greater) than that of spin-down. In Fig. 6(b), we plot
the real and imaginary parts of σxx(ω), which does not depend
on the spin index. In the spectra of Re[σxx] and Im[σxx],
there are two peaks at different photon energies h̄ω. The
lower-energy peak corresponds to the interband transitions
of spin-up electron at the K valley and spin-down electron
at the K ′ valley. The higher energy peak corresponds to the
transitions of spin-down electron at the K valley and spin-up
electron at the K ′ valley. In Fig. 6(c), we plot the real and
imaginary parts of σxy(ω) for each spin direction, where the
signs of Re[σxy] and Im[σxy] are positive for s = +1 and
negative for s = −1. The states s = +1 and s = −1 belong
to regions i and ii in Fig. 1(c), respectively. In Fig. 6(d)
we plot the absorption spectra of LCP (σ̂ = +1) and RCP
(σ̂ = −1) lights for both s = +1 and s = −1, where we can
distinguish the two spectra. The absorption spectra for RCP
light of spin-up and spin-down are given by a solid line and
a dashed line, respectively. Here the absorption of spin-up
is larger than that of spin-down. In the case of LCP light,
the absorption of a given spin is opposite to the RCP light,
where the absorption of spin-down (solid line) is higher than
that of spin-up (dashed-line). Therefore, the absorption of the
circularly polarized light in this case is only determined by
the spin index and does not depend on the valley degree of
freedom. This phenomenon is known as the spin-selective
CD [6]. It is important to note that CD does not occur in
the topological silicene, in the sense that the material absorbs
RCP and LCP lights with the equal intensity. In other words,
the topological silicene is a combination of the topological
Haldane phases in region i (for spin-up) and region ii (for spin-
down) in the phase diagram of the Haldane model. However,
the occurrence of CD in the topological silicene is possible if
the number of spin-up and spin-down electrons are not equal.
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FIG. 6. (a) The electronic energy dispersion of the topological
silicene (e�Ez = λSO/2 = 1.95 meV) at the K and K ′ valleys. The
real and imaginary parts of (b) σxx (s = ±1) and (c) σxy (s = +1 and
s = −1) with the given parameters. (d) The optical absorptions of
LCP (σ̂ = +1) and RCP (σ̂ = −1) lights in the topological silicene
(εF = 0, ψ = 0, εi = εt = 1).

Theoretically, this condition can be realized by introducing
magnetic impurities in the system [14,36]. In fact, Kim et al.
[17] suggested that the topological Haldane material can be

synthesized in the form of Fe-based ferromagnetic insulators
in a honeycomb lattice, in which electrons in occupied bands
are fully polarized in one spin direction owing to the strong
Hund coupling in Fe.

Next, we consider the insulating silicene by choosing Ez =
2λSO/e� > Ecr. In Fig. 7(a), we plot the electronic energy dis-
persions of the spin-up and spin-down electrons at the K and
K ′ valleys, which are similar to that of the topological silicene.
The real and imaginary parts of σxx(ω) are plotted in Fig. 7(b).
Here again, we can see two singular peaks of Re[σxx] and
Im[σxx] originate from the interband transitions of electrons.
In Fig. 7(c), we plot the real and imaginary parts of σxy(ω) for
s = +1 and s = −1, where the signs of Re[σxy] and Im[σxy] of
each spin direction are opposite at two singular points. For the
spin-up electron, Re[σxy] and Im[σxy] are negative (positive)
at the first (second) excitation energy, which are opposite sign
in the case of the spin-down electron. This can be understood
by the fact that the first and second peaks correspond to the
excitation of the spin-up (spin-down) electrons at the K and K ′
(K ′ and K) valleys, respectively. This condition corresponds
to region iii in Fig. 1(c), as previously discussed. In Fig. 6(d)
we plot the absorption spectra of LCP (σ̂ = +1) and RCP
(σ̂ = −1) lights for each spin. The dashed line in Fig. 7(d)
corresponds to the absorption of LCP light by the spin-up
electron (at the K valley) or RCP light by the spin-down
electron (at the K ′ valley), while the solid line corresponds
to the absorption of RCP light by the spin-up electron (at the
K ′ valley) or LCP light by the spin-down electron (at the K
valley). Hence the absorption of the circularly polarized lights
is only determined by the valley index and not by the spin
direction, which indicates the occurrence of VP.

In the case of monolayer TMDs such as MoS2 and WSe2,
we have a direct band gap due to the broken I symmetry,
since the unit cell consists of one transition-metal atom and
two chalcogenide atoms [7,8]. The d orbital of the metal
contributes to the spin-orbit interaction, which leads to a
strong valley-spin coupling [8]. The energy dispersion at the
K and K ′ valleys is given by [9,37]:

ε(q) = κsλTMD

2
∓

√
|h̄vF q|2 +

(
�

2
− κsλTMD

2

)2

. (47)

In particular, for monolayer MoS2 the Fermi velocity of
electron vF = a0t1/h̄, with a0 = 3.193 Å and t1 = 1.1 eV.
The energy band gap between valence and conduction bands
are � = 1.66 eV, and the spin-splitting of energy band at the
top of valence band is given by 2λTMD = 0.15 eV. By adjust-
ing t2 = λTMD/3

√
3, M = �/2, and φ = +5π/6 (−π/6) in

Eq. (22), we reproduce the electronic state of MoS2 [Eq. (47)]
for s = +1 (s = −1) at the K valley. Similarly for the electron
at the K ′ valley, we choose φ = +π/6 (−5π/6) to reproduce
s = +1 (s = −1). Therefore, as in the case of silicene, an
electronic state in the monolayer MoS2 can be represented by
a particular phase angle in the Haldane model φ.

In Fig. 8(a) we plot the energy dispersion of spin-up and
spin-down electrons at the K and K ′ valleys. We can see
the splitting of energy band between spin-up and spin-down
electrons at the valence bands. At the K valley, the upper
(lower) valence band is occupied by spin-up (spin-down)
electrons, which is the opposite of that of the K ′ valley.
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FIG. 7. (a) The electronic energy dispersion of the insulating
silicene (e�Ez = 2λSO = 7.8 meV) at the K and K ′ valleys. The real
and imaginary parts of (b) σxx (s = ±1) and (c) σxy (s = +1 and
s = −1) with the given parameters. (d) The optical absorption of
LCP (σ̂ = +1) and RCP (σ̂ = −1) lights in the insulating silicene
(εF = 0, ψ = 0, εi = εt = 1).

The conduction bands are degenerate at the both valleys. In
Fig. 8(b), the real and imaginary parts σxx(ω) are shown.
Here the two singular points are separated by h̄ω = 2λTMD.
In Fig. 8(c), we show Re[σxy] and Im[σxy] for each spin which
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FIG. 8. (a) The electronic energy dispersion of monolayer MoS2

at the K and K ′ valleys. The real and imaginary parts of (b) σxx

(s = ±1) and (c) σxy (s = +1 and s = −1) with the given parameters.
(d) The optical absorption of LCP (σ̂ = +1) and RCP (σ̂ = −1)
lights in the monolayer MoS2 (εF = 0, ψ = 0, εi = εt = 1).

change signs at the two different singular points, as in the case
of the insulating silicene. In Fig. 8(d) we plot the absorption
spectra for LCP (σ̂ = +1) and RCP (σ̂ = −1) lights for each
spin. The RCP light is absorbed by the spin-down and the
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FIG. 9. The absorption probability A for LCP (σ̂ = +1) and RCP (σ̂ = −1) lights in the 2D Haldane material (t2 = 0.05 eV, M = 0, and
φ = π/2) as a function h̄ω for several incident angles ψ = 0◦, 10◦, 20◦, 30◦, and 30.42◦ (εi = 3.9, εt = 1).

spin-up electrons at the K ′ valley, while the LCP light is
absorbed by the spin-up and the spin-down electrons at the
K valley. The absorption spectra are given by the dashed and
solid lines, which correspond to the excitations of electrons
from the upper and the lower valence bands to the conduc-
tion bands, respectively. These spectra show the occurrence
of VP.

We have demonstrated that the occurrences of CD and VP
in the 2D hexagonal materials can be reproduced by using
the Haldane model and show the roles of the intrinsic Hall
conductivity in generating both phenomena. Thus, we have
provided general formulas of the optical conductivities and
absorption of circularly polarized lights in the 2D hexagonal
materials with the broken T and I symmetries.

D. The Faraday and Kerr rotations
in the topological Haldane material

In this subsection, we demonstrate the occurrence of the
Faraday and Kerr rotations in the topological Haldane ma-
terial. Unless otherwise specified, it is assumed that the 2D
Haldane material with the parameters t2 = 0.05 eV, M = 0,
and φ = π/2 is placed between a substrate (εi = 3.9) and vac-
uum (εt = 1). The introduction of the substrate is important to
enhance the reflection probability [27]. In this system, the crit-
ical angle for incident light is ψc = arcsin(

√
1/3.9) = 30.42◦,

above which the total internal reflection occurs (ψ � ψc). We
consider the incident light is linearly p polarized by putting
ξi → 0 in Eqs. (32) and (33). First, we calculate ξt and ξr as a
function of the photon energy h̄ω and the incident angle ψ . By
using Eqs. (20) and (21), the Faraday and Kerr rotations are
calculated. Hereafter, we adopt notations θt = θF and θr = θK

to denote the Faraday and Kerr rotations, respectively.
Before discussing the Faraday and Kerr rotations, it is

useful to recall the fact that linearly polarized incident light
comprises the same number of left-handed and right-handed
photons. Here we show CD as a function of ψ provides
explanations of some results which shall be discussed. In
Fig. 9, we separately plot the absorption probabilities of LCP
and RCP lights for ψ = 0◦, 10◦, 20◦, 30◦, and 30.42◦.
The perfect CD occurs at h̄ω = 0.52 eV [corresponds to

the energy gap of the topological Haldane material ε (κ )
g , see

Fig. 4(a)] for ψ = 0◦ to ψ = 20◦. When the perfect CD
occurs, ∼4% of RCP (σ̂ = −1) light is absorbed and no
absorption for the LCP light (σ̂ = +1). At the angle ψ = 30◦
partial CD is observed, because the absorption probability for
LCP and RCP light are ∼1% and ∼3%, respectively. At the
critical angle of incident (ψ = 30.42◦), CD vanishes, because
LCP and RCP are absorbed equally by the Haldane material
(A ∼ 2.6%).

The phenomenon shown in Fig. 9 can be explained
by Eqs. (38)–(40), in which the absorption probability
A consists of Ap ∝ cos χ [cos ψRe(σxx cos χ + ξtσxy)] and
As ∝ [cos ψRe(σxx − σxy cos χ/ξt )]. At small incident angles
(ψ = 0◦ to ψ = 20◦), Ap ≈ As ≈ [Re(σxx ) − σ̂ Im(σxy)] [see
Eq. (41)] in which perfect CD occurs. As ψ increases, χ

becomes larger by the Snell law. Consequently, the contri-
bution of the Ap term decreases. From Fig. 9, it is noted
that for ψ = 0◦ − 20◦, the change of A is not pronounced
for both LCP and RCP lights, because the cos χ does not
vary significantly. At the critical angle, we have χ = 90◦, and
thus Ap = 0 and As ∝ [cos ψRe(σxx )]. This means that A for
both LCP and RCP lights only depend on the longitudinal
conductivity σxx(ω) and not on the Hall conductivity σxy(ω).
Since Im[σxy] is essential for CD, at the critical angle of
incident CD can not occur.

In Fig. 10(a) we plot the Faraday rotation θF as a function
of h̄ω for ψ = 0◦, 10◦, 20◦, 30◦, and 30.42◦. In the figure,
it is observed that the Faraday rotation has a singular point
at h̄ω = ε (κ )

g = 0.52 eV. In Fig. 10(b) the ellipticity of the
transmitted light ηt = ηF for the corresponding ψs are shown.
Here the ellipticity suddenly increases when h̄ω � ε (κ )

g and
decreases for the higher photon energy. The origin of the
singularities in θF and ηF can be explained by referring to
Eq. (32). In the limit ξi → 0, ξt = ξF reduces to

lim
ξi→0

ξF = ZiZtσxy cos χ

�s
. (48)

By substituting Eq. (48) into Eqs. (20) and (21), we have
proportional relations θF ∝ Re[σxy] and ηF ∝ Im[σxy]. There-
fore, the singularities in θF and ηF originate from the singular
points in the real and imaginary parts of σxy(ω), respectively,
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FIG. 10. (a) The Faraday rotation and (b) ellipticity of the trans-
mitted light as a function of h̄ω in the 2D Haldane material (t2 =
0.05 eV, M = 0, and φ = π/2) for several incident angles ψ =
0◦, 10◦, 20◦, 30◦, and 30.42◦ (εi = 3.9, εt = 1).

when the photon energy equal to the energy gap [see Figs. 4(a)
and 4(b)].

The maximum θF ≈ 1◦ is observed for the normal incident
(ψ = 0), and θF decreases as ψ increases to ψc. This occurs
because ξF is also proportional to cos χ . Hence, at the total
internal reflection (χ = 90◦), there is no Faraday rotation
(θF = 0) since ξF = 0. As for the ellipticity of the transmitted
light, it is shown that the largest ηF ≈ 0.45◦ is obtained at
ψ = 0, which indicates that the transmitted light is almost
linearly polarized. This occurs because only ∼4% of the right-
handed photons are absorbed, while there is no absorption
for the left-handed photons (see Fig. 9). Therefore, after the
transmission, the number of the left-handed photons is slightly
higher than the right-handed ones, which implies positive
ellipticity (ηF > 0) in the transmitted light. It can be shown
that ηF is nonzero if there is CD. By using Eq. (41), the
difference of A between LCP (σ̂ = +1) and RCP (σ̂ = −1)
lights is given by

CD = A+ − A− ∝ −2Im[σxy], (49)

which is similar to the case ηF but has the opposite
sign. Thus, when CD for LCP (RCP) light occurs, the
transmitted light will acquires negative (positive) helicity.
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FIG. 11. (a) The Kerr rotation and (b) ellipticity of the re-
flected light as a function of h̄ω in the 2D Haldane material (t2 =
0.05 eV, M = 0, and φ = π/2) for several incident angles ψ =
0◦, 10◦, 20◦, 30◦, and 30.42◦ (εi = 3.9, εt = 1).

At ψ = ψc = 30.42◦, the absorption probability LCP and
RCP lights are equal as shown in Fig. 9, which implies that
the transmitted light remains linearly polarized (ηF = 0).

In Figs. 11(a) and 11(b), we respectively plot the Kerr rota-
tion θK and ηK as a function of h̄ω for ψ = 0◦, 10◦, 20◦, 30◦,
and 30.42◦. Here again, singularities occur when the energy
of photon is equal to the band gap, h̄ω = εκ

g = 0.52 eV.
However, at ψ = 0◦ to ψ = 20◦, both θK and ηK also increase,
contrary to the previous case. We can see that the magnitudes
of the Kerr rotation (θK ∼ 4◦ to 6◦) are significantly larger
than the Faraday rotation (θF � 1◦), and the reflected light
is more elliptical (ηK up to 2◦) than that of the transmitted
light (ηF < 0.5◦). At ψ = 30◦, θK and ηK become negative.
This phenomenon can be explained by substituting ξi → 0
and Eq. (48) into Eq. (32). In these limits, ξr = ξK can be
simplified as follows:

lim
ξi→0

ξK = ZiZtσxy cos χ [1 + �′
s/�s]

�′
p − [ZiZtσxy]2 cos ψ cos χ/�s

. (50)

The negative sign of ξK originates from the the fact that �′
p

can be less than zero [see Eq. (36)], which means that the p
components of the electric fields of the reflected and incident
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lights have phase difference of π [27]. The direction of the
Kerr rotation and the ellipticity of the transmitted lights are
reversed, therefore θK < 0 and ηK < 0. At the critical angle
ψ = 30.42◦ (χ = 90◦), ξK = 0. This implies that the reflected
light does not undergo the rotation of polarization plane which
gives the absence of the Kerr rotation (θK = 0).

As a summary of this subsection, we have shown that the
singularity of the real part of the Hall conductivity is essential
to obtain large Faraday rotation (up to ∼1◦) and Kerr rotation
(up to ∼6◦) in the topological Haldane material. The value
of the Kerr rotation is comparable to that which is predicted
by Széchenyi et al. for a gapped bilayer graphene (up to
∼6.5◦), which possesses an intrinsic Hall conductivity due
to the quantum anomalous Hall effect. However, it should be
noted that the singularity of Re[σxy] only exists for the low
temperature (T ≈ 0 K). At higher temperatures, the singu-
larity becomes smeared and therefore the magnitudes of θF

and θK would be smaller. In the trivial phase of the Haldane
model, θF = 0 and θK = 0 because the Hall conductivities at
the K and K ′ valleys have opposite signs, and, therefore, the
Faraday and Kerr rotations can be used to detect the transition
between the topological and the trivial cases in the Haldane
material, as an alternative to wave-packet dynamics analysis
as previously performed by Jotzu et al. [15,16].

IV. CONCLUSION

We analytically calculated the longitudinal and the Hall
conductivities of the Haldane model. Our results can be
applied for various 2D hexagonal materials with the broken
T and I symmetries, in which electronic state of electron
can be reproduced by the parameters t2, φ, and M in the
Haldane model. In particular, we have shown that the CD and
VP in the 2D hexagonal materials depend on the imaginary
part of the Hall conductivity. We also derived formulas for
the Faraday and Kerr rotations in the Haldane model. The
maximum magnitudes of the Faraday and Kerr rotations are
obtained when the photon energy matches the band gap, due
to the singularity of the real part of the Hall conductivity.
Further, we have shown that the ellipticity of the transmitted
lights is proportional to CD. Our treatment on the Faraday and
Kerr rotations can also be applied for other 2D materials with
intrinsic Hall conductivities.
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