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At zero temperature, a two-dimensional lattice of Majorana zero modes on mesoscopic superconducting
islands exhibits a topologically ordered toric code phase. Recently, a Landau field theory was used to describe
the different phases of the aforementioned system and the phase transitions separating them. While the field
theory provides details on the properties of the system close to the phase transitions, signatures of topological
ordering in the different phases have not been computed. This is the primary goal of this work. We describe a
lattice gauge theory of the Majorana toric code in terms of U(1) matter fields coupled to an emergent Z, gauge
field. Subsequently, we use a generalized Wilson-loop order parameter, the equal-time Fredenhagen-Marcu order
parameter, to characterize the topological ordering in the different phases. Our computation provides evidence
of the toric code phase both in the Mott-insulator and the charge-2e superconductor phases, while showing that
the toric code phase disappears in the charge-e superconductor phase. In addition, we perturbatively analyze the
influence of Cooper pair tunneling on the topological gap of the toric code in the limit of strong charging energy
and show that the toric code phase is, in fact, stabilized by the Cooper pair tunneling. Our results are relevant for

experimental realizations of the Majorana toric code.
DOLI: 10.1103/PhysRevB.100.104508

I. INTRODUCTION

A promising candidate for realizing fault-tolerant quantum
computation is Kitaev’s two-dimensional toric code [1-4].
The ground (code) space is topologically ordered [1,5,6] and
is fourfold degenerate. Thus, it can encode two logical qubits.
These encoded logical qubits are robust to local perturbations
since the degeneracy of the ground space depends only on
the topology of the embedding space where the code is
implemented. There are several approaches to realize the
toric code. The first approach involves tessellating a two-
dimensional plane with a regular lattice, with physical qubits
on the links of the lattice. The Hamiltonian of the system is
the toric code Hamiltonian which comprises vertex terms and
plaquette terms. Each vertex term is a product of o, operators
of the qubits residing on the links incident at the vertex,
while each plaquette term is a product of o, operators of the
qubits residing on the links around a plaquette [2]. A different
approach to realize the toric code is to design Hamiltonians
of interacting many-body systems which, in the low-energy
sector, give rise to the toric code Hamiltonian. This is the case
of Kitaev’s honeycomb model, which describes SU(2) spins,
interacting with alternating oyo,, 0,0y, and 0.0, interactions
around a plaquette [3]. In this work, we concentrate on a
different implementation of the latter approach involving a
lattice of mesoscopic superconducting islands with Majorana
zero modes (MZMs) on each island [7-18]. Note that any
physical implementation of either approach eventually also
involves active measurements which evacuate the entropy
due to thermal fluctuations since the topological ordering
of the toric code disappears at any nonzero temperature. A
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toric code built out of MZM-based physical qubits holds the
promise of better error-correction properties compared to its
superconducting transmon qubit-based counterpart. This is
due to the potentially superior coherence properties of the
MZM-based physical qubits [10-12,19,20].

The physical system of the Majorana toric code comprises
mesoscopic superconducting islands which have finite
charging energy (Ec). These nearest-neighboring islands are
separated by tunnel junctions (see below for details), through
which Cooper pairs can tunnel coherently between islands (at
rate Ey). Furthermore, due to the presence of the MZMs, sin-
gle electrons can also coherently tunnel between neighboring
islands (at rate Ej;). It was shown that for E; < Ey < Ec, the
system is in a topologically ordered toric code phase, while
being a Mott insulator [7,11]. The presence of the MZMs
leads to an emergent Z, gauge field and the topological
ordering of the toric code. Increase of Ej;/E¢, while keeping
E; much smaller than E);, Ec, causes the system to undergo a
three-dimensional (3D) XY-type quantum phase transition to
a charge-e superconductor phase, the latter property arising
from the dominant tunneling of single electrons. In this
phase, the topological ordering of the toric code disappears
[7]. On the other hand, for Ey; < E¢ < Ej, the system was
again shown to be in a topologically ordered toric code
phase, while being a charge-2e superconductor [8], the latter
property arising from the dominant tunneling of Cooper
pairs. Increase of Ey/Ec, keeping E; significantly larger
than Ey, Ec, causes the system to undergo a 3D Ising-type
quantum phase transition to a charge-e superconductor phase
(without toric code ordering). These two different limiting
cases were shown to be connected by tricritical points and
first-order transitions [21]. Using a Landau-Ginzburg-Wilson
field theory, the phase diagram of the model for general
Ec, Ey, E; was predicted [21] and experimentally accessible
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charge transport characteristics were also computed [22].
However, the above field theory calculations focused on
the charge characteristics of the system and provided only
indirect evidence of the existence of the topological order.

Our goal, in this work, is to fill this void and compute
nonlocal order parameters which provide direct evidence of
the presence or absence of topological ordering in the different
phases. In contrast to the coarse-grained field theory, we ana-
lyze the system at a microscopic lattice level, by transforming
the problem to a lattice gauge theory one with U(1) matter
fields and a Z, gauge field. In this mapping the emergent Z,
gauge field of the toric code arises naturally. The coupling be-
tween gauge and matter fields causes additional complications
in the detection of topological ordering. For a gauge theory
which has local symmetry, in absence of matter fields, the
Wilson loop is the relevant nonlocal order parameter [23,24].
The characteristic area vs perimeter law decay of the latter is
able to distinguish between the different phases of the theory.
This should be contrasted to a theory with global symmetry,
where the phases are distinguished by a local order parameter.
However, the presence of matter fields in a gauge theory
changes the situation since the fluctuations of the matter field
can screen the interaction between the charges of the gauge
field. This can cause the Wilson loop to decay with perimeter
law in all the phases [25]. As will be shown in this work, this is
indeed the case for the Majorana toric code. For such theories,
the concept of Wilson loops has to be generalized and the
nonlocal order parameters capable of distinguishing between
the different phases of these theories are the Fredenhagen-
Marcu operators [26,27]. We compute the latter operators
in the different phases using time-independent perturbation
theory. We show that the topological ordering exists in the
Mott-insulator and charge-2e superconductor phases of the
system, while it disappears in the charge-e superconductor
phase.

Recent experimental endeavors in mesoscopic supercon-
ducting systems have shown a lot of promise toward detection
of the MZMs [28-33]. Motivated by these developments, we
also compute the topological gap using perturbation theory
for small, but finite, E; and Ej < Ec. This computation is
relevant for near-term experimental implementation of the
Majorana toric code since the experiments are most likely to
be done for finite Josephson tunneling rate.

The paper is organized as follows. In Sec. II, we describe
the microscopic Hamiltonian of a two-dimensional square
lattice of MZMs on mesoscopic islands and map it to a lattice
gauge theory of U(1) matter and Z, gauge fields. In Sec. III,
we introduce and compute the equal-time Fredenhagen-Marcu
operator in the different phases of the system. In Sec. IV, we
determine the influence of interisland Cooper pair hopping on
the toric code gap in the limit of dominant charging energy. In
Sec. V, a concluding summary is provided. Details of calcula-
tions and a short review of lattice gauge order parameters are
given in the Appendices.

II. MODEL

The microscopic model consists of a two-dimensional
lattice of mesoscopic superconducting islands, each carrying
four MZMs occurring as edge modes of Kitaev wires [34].
The nearest-neighbor islands are separated by tunnel junctions
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FIG. 1. Schematic of the Majorana toric code. Panel (a) shows
the two-dimensional square lattice of mesoscopic superconducting
islands (gray) with nearest-neighbor interaction (green). Panel (b)
shows a unit cell of this lattice. On each island there are four Majo-
rana zero modes (red). Each island has a finite charging energy (Ec).
The nearest-neighbor interactions are due to Cooper pair tunneling
(at rate E;) and Majorana-assisted single-electron tunneling (at rate
Ew).

(see Fig. 1). The Hamiltonian of the system is given by H =
HC + H] + HM, where

Hc =4Eczn§, (1a)
J
Hy = —E; ) cos(¢; — i), (1b)
(j.k)
Hy = —Ey %iyjykcos (@) (Ic)
Js

The first term, Hc, denotes the charging energy associ-
ated with each mesoscopic island. Here, E¢ is the overall
charging energy scale ¢?/2C, where C is the self-capacitance
of each island. In contrast to the Cooper pair box [35,36],
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FIG. 2. Schematic of the two-dimensional square lattice, with
U(1) matter degrees of freedom ¢/ (gray squares) located at the
nodes of the lattice and Z, gauge degrees of freedom o (green
circles) placed on the links connecting nearest-neighboring nodes.
This system Hamiltonian [Eq. (4)] realizes a Z, lattice gauge theory
with U(1) matter fields.

here n; denotes excess number of fermions on each island
and, thus, can take both integer or half-integer values. The
four MZMs on each island are denoted by Hermitian oper-
ators vl, o =a, b, c,d, satisfying anticommutation relations
{vd, yg} = 2840 jx. Even though they are not directly present
in He, the MZMs impose a gauge (parity) constraint satisfied
by the physical state |Phys) of the system, given by [22,37,38]
Qj|Phys) = [Phys),
where Q; = —y/ Yi v! v ¥ 2)
The second term, Hj, describes the coherent tunneling of
Cooper pairs between neighboring islands, E; being the
Josephson tunneling rate. Finally, the third term, Hy, de-
scribes the Majorana-assisted single-electron tunneling, E),
being the relevant tunneling rate. The factor of 1/2 in the
argument of the cosine indicates that 1/2 of the charge of the
Cooper pair is being transferred, while the fermionic operators
keep track of the change in the fermion number parity [37,39].
To avoid clutter, we have dropped the subscripts of the MZM
operators in Eq. (1c). Throughout this work, we consider the
case of zero offset charge.
In order to analyze the topological ordering in the system,
we map the Hamiltonian in Eq. (1) to that of interacting spins
coupled to quantum rotors. This is done by the transformation

iv'y* > o5 and —ylylviv] - [[o5.  ©)
+

using the bond algebraic approach [9,40] (see Appendix A for
details). This can be viewed as a Jordan-Wigner transforma-
tion followed by a duality transform and maps the product
of the MZMs located at the end points of a link to a spin
placed centrally on it. This transformation keeps the number
of degrees of freedom (DOF) invariant and the resulting
Hamiltonian is given by (see Fig. 2)

Hyrc = He + Hy + Hy
=4E¢ an —E; Zcos(qu — r)
J

(J.k)

—Ey Zafkcos (¢j ;(bk). @)

(J.k)

The gauge constraint is transformed to
Qj — eZnin/ l_lo,x , 5)
+

where in the last equation, [ [, o* indicates the product of the
Pauli X operators of the spins residing on the links incident at
the jth island.

Equation (5) is the discretized Gauss’ law for the system
[24], but unlike conventional electrodynamics, a U(1) matter
field (¢'%), residing on the vertices, is coupled through its
parity to a Z, gauge field (crfk), residing on the links. The
gauge fields do not have dynamics of their own since only ajk
operators occur in the Hamiltonian [Eq. (4)]. However, they
acquire dynamics through the gauge constraint which couples
them to the parity of the U(1) matter fields.

The phase diagram (see Fig. 4) of the system is rich and
has been analyzed [7,8,21,22]. For small E; <« Ey < Ec,
the system is in a toric code phase, while being a Mott
insulator. Increasing Ey;/E¢ keeping E; < Ey, Ec causes the
system to undergo a 3D XY quantum phase transition to
a charge-e superconductor phase. For E; > Ey > E¢, the
system is again in a toric code phase, while being a con-
ventional superconductor. Increasing Ejs/Ec, while keeping
E; > Ey, Ec, causes the system to undergo a 3D Ising-type
quantum phase transition to a charge-e superconductor state.
These different phase transitions are connected by a couple of
tricritical points and first-order transitions. Finally, a 3D XY-
type quantum phase transition separates the Mott-insulator
and the conventional superconductor phases.

While charge signatures of the different phases have been
analyzed in the earlier works, the existence of the toric code
has been indirectly inferred. In the next section, we compute
nonlocal order parameters to provide direct evidence of the
presence or absence of toric code ordering.

III. ANALYSIS OF TOPOLOGICAL ORDERING USING
THE FREDENHAGEN-MARCU OPERATOR

For models with global symmetry, the phases are distin-
guished by a local order parameter (the celebrated symmetry-
breaking paradigm of Landau). In contrast, for models with
gauge symmetry, which cannot be broken [23], the different
phases can be differentiated by nonlocal order parameters
[41]. For a pure gauge theory, like the Ising gauge theory,
the Wilson loops have their characteristic area (perimeter)
law decay in the confined (deconfined) phases (see Ref. [24]
and references therein). However, the presence of dynamical
matter fields, alongside gauge fields, introduces additional
complications. The matter fields potentially screen the fluc-
tuations of the gauge fields and can cause the Wilson loop
of the gauge fields to decay with a perimeter law in both the
confined and the deconfined phases (throughout we refer to
confinemenet and deconfinement of the external charges of
the gauge field) of the system, e.g., the Ising gauge theory in
the presence of Ising matter fields [25]. The Majorana toric
code, as was shown in the previous section, can be viewed
as such a theory, where dynamical U(1) matter fields interact
with Z, gauge fields.

For these theories, the notion of the Wilson loop has to
be generalized to distinguish between the different phases of
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the model and the relevant nonlocal order parameter is the
Fredenhagen-Marcu (FM) operator [26], proposed initially for
models of particle physics and has been used for condensed
matter systems [27]. In contrast to the Wilson loop which has
the same behavior in both confined and deconfined phases,
the FM operator has the desired feature of an order parameter:
It is zero (nonzero) in the confined (deconfined) phases of
the system. There are three different operator formulations
depending on the space-time orientation of the nonlocal op-
erators [27] and we use the equal-time formulation (a short
review of the Wilson loop and different FM order parameters
is given in Appendix B).
The Wilson loop for the system is given by

W(L) = (G| [ [ o71G). (6)

leC

where o] are the Pauli Z operators of the spins residing on
the contour C, the latter being a square of side length L [cf.
Fig. 3(a)], and |G) is (one of) the ground state(s) of the system.
In order to construct the FM operator, we need also the
modified half Wilson loop. It comprises a product of a string
of gauge field operators along the contour C; /,, terminated by
two matter field operators at sites s and s/, given by

Wip(L) = (Gle®”* [T of e7*/?|G) . ™
1eCi)y
The equal-time FM operator R(L) is given by
Wi2(L)
VWL

In the limit of an infinitely large loop, one can show that (see
Appendix B for details)

R(L) = ®)

0, Z., deconfined
const, Z, confined.

lim R(L) = { )
L—o0

The construction of the FM operator can be understood as
follows. In order to correctly diagnose the signatures of the
confining and deconfining phases, a “correct string tension”,
which determines the potential between the gauge charges,
needs to be computed. To that end, consider half a Wilson

St
(b) Fredenhagen-Marcu

(a) Equal-time version

FIG. 3. The Fredenhagen-Marcu order parameter. Panel (a)
shows the equal-time version. The green line denotes the gauge
spins o} along a square of side length L, a space-space Wilson loop.
The red dashed line depicts a half Wilson loop, with matter degrees
of freedom (gray) at the end points. Panel (b) shows the operator
originally proposed by Fredenhagen and Marcu, where one of the
directions is the imaginary-time direction t. The strings of gauge
spins at a given imaginary time are denoted as S; [see Appendix B,
Eq. (B3)].

loop [see Fig. 3(a)]. Just by itself, this quantity is not gauge
invariant, but can be made so by gluing matter fields at the
end points. In the confining phase, this half Wilson loop with
matter fields at the ends, Wy >(L), acquires a finite expectation
value, whereas in the deconfining phase, it vanishes (see
Appendix B). The division by a square root of the Wilson
loop is done to distill the dependence of the diagnostic on the
coupling constant from the size of the loop.

Intuitively, both the Wilson loop and the FM operator
can be best interpreted in the space-time formulation [see
Fig. 3(b)]. In this formulation, loops extend in one spatial
and one temporal direction. In absence of matter charges, the
Wilson loop is a quantity purely involving gauge DOF and
is related to the potential between external, static, charges of
the gauge fields. In the presence of dynamical matter charges
which can potentially screen the interaction between the
gauge field charges, the Wilson loop is no longer capable of
correctly diagnosing the potential between the gauge charges.
This is remedied by the FM operator which is defined in
terms of the dynamical matter charges to compensate for the
screening effect. More on the FM operator can be found in
Appendix B and Ref. [27].

The Majorana toric code describes interacting U(1) matter
fields and Z, gauge fields in two spatial and one (Euclidean)
time direction. The toric code phase corresponds to the
system being in the Z, deconfined phase. Below, we compute
R(L) in the different phases of the Majorana toric code using
time-independent perturbation theory. Since we evaluate the
FM operator expectation value at equal times, it is sufficient
to consider the expectation value in the ground state of the
system.

Before providing the details of the computation, we pro-
vide a summary of the findings in Fig. 4. The Mott insulator

(E; > Ec¢)
R(L) =0 R(L) — const.
(b)
E;/Ec : (c)
(a)
By < B | 7O R(L) > const.
(P < ) (Bx > Ee)

EM/EC

FIG. 4. Phase diagram of the Majorana toric code. For E; «
Ey < Ec, the system is in a Mott-insulator phase [denoted by (a)].
The Fredenhagen-Marcu (FM) operator is R(L) — 0, indicating a Z,
deconfined (toric code) phase. Increase of E,;/Ec causes the system
to undergo a pure matter (Higgs) phase transition of 3D XY type
to a charge-2e superconductor [denoted by (b)], while remaining in
the toric code phase with R(L) — 0. Increase of Ey;/E¢ from either
(a) or (b) causes the toric code ordering to disappear R(L) — const
and the system transforms into a charge-e superconductor [denoted
by (c)]. The nature of the phase transition is either 3D XY [(a) — (c)]
or 3D Ising [(b) — (c)]. The 3D Ising and 3D XY lines terminate
at tricritical points, before turning first order. The boundary of the
toric code phase is inferred from the field theory [21,22] and the
perturbation theory calculation of the next section.
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FIG. 5. Allowed node configurations that satisfy [], o* = 1.
The fixed matter fields (gray squares) are depicted for completeness,
but are irrelevant for the topological ordering computations. We
focus on a specific node i, where the adjacent gauge degrees of
freedom (circles) are displayed in the x basis. The colors blue (red)
indicate the gauge field o;; to be in the +1 (—1) eigenstate of o;;.
To be valid, the configuration needs to contain an even number of
—1 eigenstates. To obtain the complete set, the four (two) possible
rotations of the second (third) graph have to be considered as well.
Coloring the respective links in red, it is evident that the strings of
spins in —1 eigenstate have to form closed loops.

[phase (a)] and the charge-2e superconductor [phase (b)] are
in the toric code phase, indicated by R(L) — 0, while the
charge-e superconductor [phase (c)], with R(L) — constant,
does not exhibit toric code ordering. This result also indicates
that there are no additional phase transitions as E; is varied
between 0 and oo for large Ej;. Thus, the results of our
computations of the FM operator support the earlier field
theory computations.

A. Dominant charging energy

First, we consider the parameter regime where the Josephson
as well as the single-electron tunneling rate is small compared
to the charging energy: E;, Ey < Ec. It is evident that the
charge (excess number of fermions) on each island is a good
quantum number and the system is a Mott insulator [21].
The unperturbed Hamiltonian is Hc¢, given in Eq. (4), with
the unperturbed ground state being |G) = |n; =0), Vi. Asa
consequence, the gauge constraint reduces to

[[o'16) = 1G). (10)
+

Imposing this constraint allows eight configurations of gauge
fields at each node, as shown in Fig. 5, where out of the four
spins incident at each vertex, an even number of them are
in o* = +1 (blue circles) and o* = —1 (red circles). If we
imagine coloring the links of the lattice with red whenever
the spins are in the o* = —1 eigenstate, then all possible
closed red loop configurations of the lattice are allowed and
the ground state is a loop condensate [2,42]. The degeneracy
of the ground state is fourfold, due to the presence of the four
noncontractible loops on a torus. While calculating using per-
turbation theory,' we impose the constraint in Eq. (10) directly
on the unperturbed ground state and obtain equal-weight (w)
superpositions of all possible closed loop configurations S:

|G)=w2|ni=0, s)=w2|s). an

seS seS

'For the perturbation theory calculation, it is sufficient to consider
one of the four degenerate ground states since their splitting is
exponentially suppressed in the system size.

Including the single and double charge hopping from Eq. (4)
as perturbations V = Hy, + H,, time-independent calcula-
tions yield

R(L) = ¢ "t 123 ¢, (12)

indicating the presence of a Z, deconfined (toric code) phase
for dominant charging energy (see Appendix C 1 for details of
the computation).

B. Dominant Josephson tunneling rate

Next, we analyze the case when the Josephson tunneling
rate is the strongest: E; > Ey;, Ec, when the system can be
mapped to an effective Ising gauge theory, as explained below.
In this limit, the phase differences on the islands are pinned
to multiples of 2w up to a gauge choice. In this reduced
subspace, the U(1) DOF behaves like an effective Z, DOF.
The operator e**/2 acts like an effective Pauli Z operator: 7}
whose eigenvalues can be +1 depending on whether the U(1)
DOF are pinned to even/odd multiples of 2. The charging
energy term induces quantum fluctuations of the phase, lead-
ing to constant energy shifts and 2 -phase slips on the nodes.
Thus, the exponent of the number operator n; acts like a Pauli
X operator: €*™" — ¥, where [t7, 7] = [/ 2 e¥ming].
Disregarding the constant contribution, the charging energy
term can effectively be incorporated into the Z, formulation
as Hc; — —Art;}" leading to the effective Hamiltonian

H=-A er — Ey Zfizaizjff’ (13)

(i.)

Qi=1]]o" (14)
+

To determine the dominant coupling dependence of A,
assume the slips to occur separately on each island. This
approximation is analogous to the one-dimensional case
treated in Ref. [43]. The coupling of independent slips is
then calculated as the tunneling amplitude in the cosine
potential using semiclassical Wentzel-Kramers-Brillouin
(WKB) approximation [8,44], leading to In A &« —/E,;/Ec.
The obtained Hamiltonian is that of the 2D quantum Z, gauge
theory. This is seen by choosing the London gauge, where the
matter fields are unity: ¥ = 1 and using the gauge constraint
to replace 7 =[], o*. Switching to the dual lattice and
rotating the basis yields

H=-AY T]o"—Eu)_ o (15)
i 0O (i, j)

This directly verifies the limit considered in Ref. [8], where
the toric code phase was predicted to exist for A > Ey.
Increasing Ej; /A caused the system to undergo a 3D Ising-
type phase transition to a non-toric-code phase. The argument
of Ref. [8] is based on working in a dual picture and analyzing
the phase transition of the quantum Ising model. Below, we
provide a more direct proof of the toric code ordering by com-
puting the expectation value of the FM operator in the ground
state of the gauge-invariant Hamiltonian given in Eq. (13).

1. Large charging energy: Ec > Ey

Since in this limit, A > Ej;, from Eq. (13), the matter
fields are all pinned: 7 = 1. From Eq. (14), only those
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FIG. 6. Allowed node configurations that satisfy ;' [], o* = 1.
We focus on a specific node i, where the adjacent gauge degrees of
freedom (circles) as well as the matter degrees of freedom (squares)
are displayed in the x basis. Note that we consider the matter after
the effective mapping on to the Z, variables. The colors blue (red)
indicate the gauge and matter o;; and 7; to be in the +1 (—1)
eigenstate of o> and 7. To be valid, the configuration needs to
contain an even number of —1 eigenstates. To obtain the complete
set, the four (two, four, four) possible rotations of the second (third,
fifth, sixth) graph have to be considered as well. By coloring the
respective links also in red, it is evident that the —1 eigenstates form
open loops terminated by flipped matter fields.

configurations of the gauge field are allowed which satisfy
the gauge constraint. Those are closed loops where loops are
formed by the gauge field in o* = —1 state, exactly as for the
case Ec > Ey, E; analyzed in Sec. IIT A. Thus, the ground

state is given by
sf=w_ls), (16)

Gy =w) |5 =

seS seS
which is again a fourfold-degenerate loop condensate. Time-
independent perturbation theory then yields

(@£l Lo 0

R(L)=e , a7

again indicating a toric code phase.

2. Large single-electron tunneling rate: Ey; > E¢

In this limit, Ej > A and from the gauge constraint in
Eq. (14), the valid vertex configurations displayed in Fig. 6
allow for open (red) loops of 0¥ = —1 terminated by flipped
parity (t;7 = —1). The unperturbed ground state is

Gy=w)_ |m), (18)

meM

where M denotes the set of all open loop configurations. Note
that closed loops are treated as open loops with coinciding
start and end point such that those are also contained in M.
In contrast to the closed loop condensate, where only an
even number of noncontractible loops are generated, Eq. (18)
contains also odd numbers of noncontractible loops in the
equal-weight superposition leading to a nondegenerate ground
state. Computing the expectation value of the FM operator in

the ground state, we find (see Appendix C 2 for details)

R(L)y=¢" ‘6(FM) % const. (19)

This indicates that the system is in a Z, confined phase [see
Eq. (9)] and, thus, does not have the toric code ordering.

C. Dominant single-electron tunneling rate

We consider the limit of Ey > E¢, E; and we restrict
ourselves to the case of E; = 0 since the limit of large E;
was already analyzed in the previous section. For E); — 0o in
Eq (4), we find that ¢; — ¢; = 0 or 27 depending on whether

oj; =1 or —1. Assuming a fixed configuration {of 2}, the
phases are again pinned to ¢; = 27m;, where m € Z Thus,
we can apply the same mapping as in the previous section to
map the U(1) DOF to the Ising variable t/. Furthermore, the
charging term induces quantum fluctuations such that H¢ ; —
A'ty. Assuming independent slips, A can be estimated
by the tunneling event in the 4m-periodic cosine potential
using the WKB method [44]. This yields In A" o« —y/Ey/Ec.
Thus, the Hamiltonian takes the same form as in Eq. (13)
only differing by an adjusted tunneling rate A’. It has the
same nondegenerate unperturbed ground state resulting in the
Fredenhagen-Marcu operator to be evaluated as

R(L) = e_‘iﬁ(EA*M)- Log const. (20)

Thus, the system is again in a Z, confined phase and there
is no toric code ordering. The summary of the our findings is
given in Fig. 4.

IV. STABILITY OF THE TORIC CODE IN THE DOMINANT
CHARGING ENERGY REGIME

In this section, we compute the topological gap of the toric
code phase perturbatively in E;/E¢c and Ey;/Ec. We consider
the Hamiltonian [Eq. (4)] of the system in the Mott-insulator
phase (a), where Ec > Ej, Ey and determine the effective
Hamiltonian up to sixth order in perturbation theory (for
details see Appendix D). The goal of this computation is to
provide a quantitative prediction of the effect of Cooper pair
tunneling on the toric code gap. The different virtual processes
that contribute to the effective Hamiltonian are depicted in
Fig. 7(a). The number of lines indicates the number of single
charges that are transferred and the color green denotes the
appearance of ¢ for the link. Every valid contribution to Heg
is given by a process that starts and ends in a chargeless state
[see the projectors P_ in Eq. (D9)].

The lowest-order contribution to the effective Hamiltonian
that is not a constant is obtained at fourth order in the
perturbation theory. This process is depicted in Fig. 7(b). This
is due to the process which transfers a single charge around the
smallest loop on the lattice, a plaquette. The Z, (gauge) DOF
are carried around by the U(1) charge transfer operators e*/¢/2
and lead to a nonconstant contribution to the Hamiltonian
[see Fig. 7(b)]. The respective fourth-order term in operator
formulation is given by [11]

5 Ey

4)
H_’ = const — BF ZHU 21
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(b)

(d)

FIG. 7. Spatial visualization of single perturbations (a), where
the line indicates a link of the direct lattice. On the left is the
tunneling of a single electron from node j to i, which lowers the
charge on island j by 1/2 (in numbers of Cooper pairs) and adds
this charge to node i. Additionally, the gauge field on the link
between those nodes flips (colored green). On the right, a Cooper pair
tunnels between the nodes. This involves a charge transfer of one.
Panels (b)-(d) show nonconstant fourth- to sixth-order diagrams
contributing to the effective Hamiltonian.

In combination with the gauge constraint [Eq. (5)], this gives
the toric code Hamiltonian.

To determine the leading-order contribution in E;, we have
to go to fifth order in perturbation and find the process shown
in Fig. 7(c). A single charge effectively flows around a plaque-
tte. However, in contrast to Fig. 7(b), a single electron tunnels
opposite to the direction of the overall charge flow around the
plaquette. This opposite movement of the single electron is
compensated by a transfer of Cooper pair along the direction
of the overall charge flow around the plaquette. Since the
gauge operators appear independent of the flow direction [cf.
Eq. (4)] it yields a plaquette term. The contribution to the
effective Hamiltonian is given by

61 E}E
5) _ _ M= 4
H_' = const 1 E é Ei |D| o’. (22)

Thus, for small Ej;, the hopping of Cooper pairs increases
the gap of the toric code and stabilizes the toric code space.
In contrast to the Cooper pair box Hamiltonian H¢ + H,,
where the sign of E; leaves the spectrum invariant, it becomes
important due to the introduction of Hy,. Instead, Eq. (4) is
only left invariant by the transformation

Ey - —Ey and ¢p —> ¢pp+2m, V k e K, (23)
where K is a set of indices containing next-nearest-
neighboring islands, one sublattice in a bipartite lattice. The
phase diagram (cf. Fig. 4) is thus not expected to be symmetric
along the E; = 0 axis, while the transition lines approach the

Ey = 0 at aright angle.

At sixth order, the nonconstant contributions can be sepa-
rated in two terms:

Hsg) = const + He(ff’l) + He(gfz). (24)

First, there are next-to-leading-order plaquette terms, which
we compute to be

259 ES

24509861 E,E?
(6,1) Mty z
= | =M T E | |U . (25
eff [1728 E} i| - ()

71124480 E2

Second, we find an additional process depicted in Fig. 7(d). A
single charge can flow around the perimeter of two adjacent
plaquettes, which is the second smallest cycle in the square
lattice. The gauge fields on the perimeter get thereby flipped.
The sum of the relevant diagrams for this contribution is
calculated to be

63 E?
6,2) _ M Z l_[ 1—[
Hegy T O26E & DDGZ+ O T
O

The o on the shared link can be added for clarity as they
square to identity. This term introduces a nearest-neighbor
interaction between adjacent plaquettes. The interaction com-
mutes with the single plaquette term and results in an addi-
tional stabilization of the ground-state space [8].

V. CONCLUSION

To summarize, we have analyzed the signatures of topo-
logical ordering in the different phases of the Majorana toric
code. To that end, we mapped the system onto a model of in-
teracting U(1) matter fields and Z, gauge fields. We computed
a nonlocal order parameter, the equal-time Fredenhagen-
Marcu order parameter, to capture the topological ordering in
the system. Our calculations confirm that the Mott-insulator
and the charge-2e superconductor phases of the system show
an emergent toric code, while the charge-e superconductor
phase does not exhibit toric code ordering. Our results are
compatible with the earlier field theory predictions in the dif-
ferent parts of the phase diagram. Furthermore, we computed
the topological gap of the toric code in the presence of finite
Cooper pair tunneling and showed that a small amount of
Cooper pair tunneling actually stabilizes the toric code phase
since the topological gap increases with a small amount of
Cooper pair tunneling.
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APPENDIX A: FROM MAJORANAS TO SPINS

In this Appendix, we construct the duality transformation
given in Eq. (3) based on the bond algebraic approach from
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Refs. [9,40]. First, we define L the set of all nearest-neighbor

in,ia,l

bonds, Z the set of all nodes, and the operator P, = —y vy,
to compactify the notation. The set of bonds generating the
bond algebra is then given by
ivky!, Yk, )eL and P, Viel. (A1)
Making use of the Clifford algebra one can show that the
bond algebra .4 contains the intensive relations, i.e., indepen-

dent of the lattice size:
M vy =P=1, Yk DeLl Vjel
) (P, iy*y"y =1{P,iy*y'} =0, VY DeL
(III) all remaining bond combinations commute.

For periodic boundary conditions, there remains one exten-
sive, i.e., lattice-size-dependent, relation

Iv) HjeI Pi=a H(k,z)ez: iy*y!,

where o = 1 accounts for the different orderings of the
Majorana operators on both sides of the equation. This last
equation considers the global Z, symmetry of the Majoranas.
We want to reproduce the same bond algebra A with alterna-
tive bonds, where there is a spin-1/2 degree of freedom placed
on the links between two islands (cf. Fig. 2). This DOF is
represented by the regular Pauli operators ofj, al.yj, o;; obeying
the Pauli algebra. The sizes of the Hilbert spaces agree as there
are two Majorana modes per island which can be occupied
or not in case of the original bonds and two links per island
containing a spin-1/2 DOF which can be up or down in the
alternative bond description. The new set of bonds can be
defined as

of, Y1) eL,

E:Ha*z l_[ afj, Viel,

+i jijeL

(A2)

so that B, is given by the product of o* of all four links ema-
nating from island i. With the Pauli algebra it can be verified
that the alternative bonds satisfy the intensive relations

@ (a,fl)zzﬁjzzl, Vel Vjel

an {A, o) = (P, o5} =0, Yk 1)e L

(IIT) all remaining bond combinations commute.
In order to fulfill the extensive relation, we choose one arbi-
trary, but fixed, island and set %) =[], o* - (« [.nec o)
With this choice, the intensive relations still hold, as the
additional prefactor commutes with all remaining bonds and
we obtain

V) T1jez P = [l pec o
since all o* square to identity. Now that the Hilbert space
sizes are equal and both the intensive as well as the extensive
relations are satisfied, we can write the new model description
as in Eq. (4). Both Hamiltonians are linked by a unitary
transformation (see Ref. [9]).

APPENDIX B: LATTICE GAUGE ORDER PARAMETERS

In this Appendix, we give a short review on the Wilson loop
as well as an in-depth discussion of the Fredenhagen-Marcu
operator to make the paper self-contained.

1. Wilson-loop operator

The Wilson loop was introduced by Wegner [45] for the
isotropic Ising gauge model, where it distinguishes the area
from perimeter law [24]. For anisotropic models, e.g., with
continuous- (imaginary-) time direction as in Eq. (4), distinct
operator formulations for the Wilson loop are possible (cf.
Fig. 8).

The space-space operator formulation of the Wilson loop
is given by

W(L) = (G] H01Z|G>- (B1)
leC

To discuss the contour C, we have to look at Fig. 8(a). The
contour is a square of side length L, thus, the L dependence
on the left-hand side of Eq. (B1) stems from this implicit
dependence in C. The space-space formulation yields the
ground-state expectation of a square loop of side length L. It
is a gauge-invariant measure of the correlation between gauge
fields, that are a distance L apart.

To construct the space-time formulation, we define the
imaginary-time-dependent gauge spin operators per link !/
as [27]

of(t) = e " ofe. (B2)

Furthermore, we apply the temporal gauge o7 = 1 for all links
!’ in the imaginary-time direction. The length of the loop in
imaginary time is given by L, = v7, where we assume the
velocity v to be unity. This results in a space-time operator
formulation of

W(L,T)=(GIS(L,0) S(L, =T)|G). B3)

The strings are defined as S(L, t) = ]_[lEsL o (), where S
is the curve of links depicted in Fig. 8(b). Those are the
remaining spatial lines of the loop at different time slices. For
convenience, we choose the strings to lie at times T = —7 and
T = 0. This operator is connected to the potential V between
two external static, infinitely heavy, charges of the gauge field

P
/%/
T . Ly
Vez L
é1 -+
_’—l
Si
(a) Space-space Wilson loop (b) Space-time Wilson
loop

FIG. 8. Visualization of the Wilson-loop order parameter. In
(a) there is the space-space Wilson loop. The green line denotes
the gauge spins o along a square of side length L. In (b) the
space-time Wilson loop is depicted, where one of the directions is
the imaginary-time direction t. A different length L, in temporal
direction allows for the anisotropic limit. The strings of gauge spins
at a given imaginary time are denoted as S .
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placed a distance L apart [24] with

V(L) o< ~ lim A (WL, T)]. (B4)

7—’
The latter relation leads to the labeling of phases in the Ising
gauge model as

e 7, confined

W(L) = {e BP 7, deconfined (BS)

where A (P) denotes the area (perimeter) of the Wilson loop
and «, B are model-dependent prefactors. In the presence of
dynamical matter this diagnostic breaks down, if the matter
fluctuations introduce screening and thus perimeter law ev-
erywhere [25].

2. Fredenhagen-Marcu operator

The interpretation of the equal-time Fredenhagen-Marcu
operator defined in Eqgs. (6)—(8) is analyzed using the lattice
gauge theory of Ising gauge coupled to Ising matter, where
we follow the treatment in Ref. [27]. We consider a system
of spins 7 /o on the nodes/links of a two-dimensional square
lattice. The respective Hamiltonian is given by

He=-sY[lo -5 Yo
i 0O A (iJ)
—)»ercrfjr; — %er
i

(i,.)

(B6)

We refer to nearest-neighbor hopping of matter DOF
[proportional to A in Eq. (B6)] as edges and aligned gauge
DOF around plaquettes [proportional to A in Eq. (B6)] as
surfaces. Since the perimeter of a square of side length L is
considerably smaller than its area for large L, the system will
generate the (half) Wilson loop both by mainly constructing
its perimeter with edges. More generally, we say that large
loops will always be dominantly covered by edges as opposed
to surfaces, as long as A % A [cf. Fig. 9(a)]. Therefore, the
numerator and denominator in Eq. (8) have the same scaling
behavior, except when surfaces are much cheaper than edges.
This is the case when the matter field is considerably heavy,
while the gauge field is ordered A >> A. Then, the closed loop
gets filled with surfaces. The open loop is equivalently cov-
ered with surfaces, but the remaining (L-dependent) line has
to be covered by expensive edges [cf. Fig. 9(b)]. Thus, the nu-
merator decays much faster than the denominator. Central to
these scaling behaviors is the necessity of matter flow (edges)
in the generation of the half Wilson loop. In conclusion, we
have that

0, A2

const, else. (B7)

lim R(L) = {
L—o0o
Either the numerator decays faster or the scaling is equal

up to a constant. By taking the A — 0 limit, we can rewrite
Eq. (B6) as

H=-aY o~ s Yoi—5 Y[l @8
i O {i,J) i+

(b)

FIG. 9. Graphical evaluation of the equal-time version of the
Fredenhagen-Marcu order parameter. In (a) open and closed loops
are covered mostly with edges (red) as opposed to surfaces (green).
In (b) the closed loop is covered completely with surfaces, while for
the open loop edges have to be introduced that close the loop. The
figure is inspired from Ref. [27].

where we replaced 7 = [[, o* via the gauge constraint. If
also A — oo, we find an emergent toric code. Using this we
can infer

. 0, 7., deconfined
LILHOIO R(L) = {const, 7, confined. (B9)
This connection can be made more explicit by considering
the original Fredenhagen-Marcu order parameter, where one
spatial direction is exchanged for the imaginary-time direction
[cf. Fig. 3(b)].

We construct the operator formulation along the lines of
Ref. [27]. We assume that the two matter spins 7, and ty lie at
the same time slice, which we set to T = 0. Choosing the tem-
poral gauge and performing the imaginary-time propagation
analogously to Eq. (B2), we find that

Wi (L, T) = (Gl (0)r5(0) S(L, =T /2)IG).  (B10)
The gauge flux generated from a charge at s and anticharge
at s gets introduced at time —7 /2 and the respective charges
are created at time zero. Using a unit velocity v, we choose
vT = L, = L such that the loop only has L dependence. For
the Wilson loop we have

W(L) = (GIS(L, T/2) S(L, =T /2)|G)
= (GIS(L. T/2)7;(0)7(0)

x (0TI (O)S(L, =T /2)|G). (B11)

We explicitly add and remove the charges for convenience.
We define a state where we added a charge and anticharge,
that are a distance L apart, to the ground state as
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IS(L)) = 75(0)73(0) S(L, =T /2)|G). (B12)

If we assume the distance to go to infinity, we can focus on
the charge and neglect the anticharge at infinity. Thus, the
state |S(L — o0)) can be interpreted as a free charge state.
Applying the reformulation to the (half) Wilson loop gives

Wia(L) = (GIS(L)) and W(L) = (S(L)IS(L)). (B13)
The Fredenhagen-Marcu operator is rewritten to
ry 2 W __Gsay
VW) V(SWISL))

i.e., the overlap between the ground state and the normalized
charge-anticharge state. Taking the L — oo limit indicates a
phase containing free (deconfined) charge states |S(L — 00))
only if R(L) decays to zero since the state is orthogonal to the
ground state. If in turn there is a finite overlap, the state |S(L))
would decay into the ground state signaling only confined
charges [26,27]. Therefore, we write

0, Z, deconfined

const, Z, confined. (B15)

hm R(L) = {
This diagnostic was first proposed in Ref. [26] to test whether
a theory contains free or confined quarks. It generally detects
a confinement-deconfinement transition in a lattice gauge
theory containing dynamical matter charges.

APPENDIX C: EVALUATION OF THE
FREDENHAGEN-MARCU OPERATOR

In this Appendix, we discuss the perturbative evaluation of
the Fredenhagen-Marcu operator in more detail.

1. Dominant charge energy

For the regime of dominant charging energy Ec > Ej, Ey,
we found the unperturbed ground state in Eq. (11). For clarity,
we expand the cosine functions and set d; = e~"*/? to write
the perturbation as

En 2ot +
v=-—F Zaij(di dj+dd))

B ‘& d2d?). (C1)
(i.J)

The ground state to first order follows to

. 1 Ey
NIG) =16+ 537 > " oi(d]d; + did))|G)
(i, )
1 E; 2 0 2 442
—— d'"d;+d:d;")|G
+16Ec (47 dj +did))iG)

(i)
=1G) +1G1) +1G2). (C2)

We define N’ to be the normalization factor. For the
second term, the Majorana term, the two single-charge
creation/annihilation operators each lead to an n? = 1/4 on
the respective island and thus result in an energy change of

2Ec. This is the charging energy of two single charges. For
the third term, the Josephson term, we analogously obtain
2 -4 E¢, the charging energy of two Cooper pairs. With this
perturbative ground state one can calculate the expectation
value of the (half) Wilson loop, both to first order. In the
following, we denote the state with respect to which we cal-
culate the expectation value of the Wilson loop explicitly by
redefining W (L) = (G|W (L)|G). As the mixed terms vanish,
this yields

NG W (D)IG)

= (GIW(L)|G) + (G1|W (L)|G1) + (G2|W(L)|G?)
121v“5221v“5’2 C3
=i e ©

The first term is the result for the unperturbed ground state.
For the remaining terms it is important to note that the
creation/annihilation operators d; /d; commute with the Pauli
operators and that the perturbations are Hermitian. In the
second term, the Majorana term, one finds that it only yields a
finite contribution if the charge transfer occurs on the same
link. This happens for 2N terms of the sum, where N is
the number of nodes in the system. For the third term, the
Josephson term, we analogously find those 2N summands, but
with different prefactors.

Most importantly we note that the expectation value for
the Wilson loop is finite to zeroth order already. If we now
perform the same analysis for the half Wilson loop with a
length L larger than two links, we find a vanishing expectation
value

NG Wi 2(L)IG)
[i l;"ﬂ Z Z Glof(d] d; + did})
x didy (]‘[mcm af)o,j, (d}d) + dyd))|G)
2T S e
x d'dy <1‘[r€€m ) (d*d? + d2d*)|G)

=0. (C4)

From Eq. (C4) we generalize to even higher orders. We find
that contributions purely from the Josephson term cannot be
finite even in higher orders of perturbation theory since the
Pauli operators o* can never be squared to unity or form a
closed contour. The first term yields a finite contribution if
the open loop Cj, is bridged by consecutive single-electron
transfers. One can infer that even for mixed terms in higher
orders, the lowest-order contribution is still given by the
pure single-charge tunneling. Those are at least of order
O([Ey/(4Ec)TF). Now, we are in a position to calculate the
expectation value of the Fredenhagen-Marcu operator to lead-
ing order in the perturbation theory. With the ground state |G*)
and normalization N* of at least O(L/2) in the perturbation,
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this reads as

(G WipwIc) (3
GIWDIGIN 1

—n(4£2 )L

R(L) =

A L2 . (C5)
The Wilson loop as well as the normalization are approxi-
mated to leading order as 1. Thus, the expectation value of
the Fredenhagen-Marcu operator vanishes for L — oo in the

regime of dominant charging energy Ec > Ej, Ey.

2. Dominant Josephson energy and large single-electron
tunneling rate

For the case of dominant Josephson energy and large
single-electron tunneling rate E; > E); > Ec, we found the
ground state in Eq. (18). Furthermore, the perturbation is

given by
V=-A) 1. (C6)
We compute the first-order perturbative ground state to
N'|G') = 1G) L2 71G) €N
§Ey &1
N—— i

We define the parameter « to simplify the notation. Since we
are interested in the ground-state expectation value of R(L) for
the limit of an infinite lattice we can, to a reasonable degree,
approximate higher-order corrections to the ground state as
independent flips of matter DOF (z;"). Under this assumption
of locally separate perturbations, we find for the ground state
at order Nyax

Ninax

|G) + Z —oc”(z f>n|G>.

At nth order, we thus assume n independent flips to occur,
where the n! is necessary to avoid double counting. The
normalization is then calculated to

= (G|G) + G|ff—a (Z )

N*|G*) ~ (C8)

Ninax m
x 2; % o™ (Z tj‘) |G). (C9)
m= J

Under the assumption of independent flips, the mixed-order
contributions have to vanish, as otherwise at least one 7 does
not square to unity. In particular, this means that the two sums
in the calculation of the normalization in Eq. (C9) simplify
with a Kronecker delta §,,, to

Ninax

_1+Z

Nrmax

—Z

>(2) e

=1

(azN)" ~ N, (C10)

We used the fact that there are n! ways to arrange the sums
over j such that all 77 square to unity. The empty sums run
over all nodes resulting in the total number of nodes N. In
the last step, we added the remaining terms from Ny.x to
infinity, which is a negligible difference for large enough Npax.
Moving on to the expectation value of the Wilson loop, we
obtain to first order with Eq. (C7)

N2 (G \W(L)|G) =1+ a’N (C1D)

Since the ¥ commute with the o°, we again obtain a Kro-
necker delta because the t* have to square to unity to result in
a finite contribution. Thus, we repeat the above higher-order
calculation for the normalization factor for the Wilson loop
to find

N**(G*|W (L)|G*) ~ N (C12)
In contrast to that, the half-Wilson-loop expectation value
yields to first order

N*(G'|W2(L)|G')
=1 2(Glt*
+i2j:oz (G|t ©f l—[ Clz

— 2 2 4
=1+ (N =2) = 20(GI7 [ [, of16)

1/2

o/ 7;|G)

=14+a’(N —4). (C13)

In total, N — 2 of the 7 commute with 7§ and 7. In two
terms the t operators antlcommute SO that the expectatlon
value differs from the Wilson loop. Assuming independent
perturbations analogously to Eq. (C12) results in

N (GH|Wip(L)]GY) ~ N, (C14)

Collecting Egs. (C10), (C12), and (C14), we obtain for the
Fredenhagen-Marcu operator

N**(G*|Wy »(L)|G*
R(L) = (G*|W1 2(L)|G*) p—y (C15)
N*/N*(G*|W (L)|G*)
Resubstitution of the parameter gives
1 A 2 L
R(L) = e_TG(W) % const. (C16)

Thus, for E; > Ey > E¢ the Fredenhagen-Marcu operator
takes a constant value and the phase is confining.

APPENDIX D: PERTURBATION ANALYSIS

In this Appendix we give a more detailed description of the
perturbation analysis for the case of E¢ > Ey, E;. Let us start
by giving some additional notation. We define the projectors

= > IGXG
G

The P_ projects onto the ground-state space and P, projects
onto the remaining space. With

and P, =1-P (D1)

1
Gor(E) = Pr Py, D2)

— H,
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Vie=PLVP; and Hy, = P HyP,, the effective
Hamiltonian is given by
[o¢]
Hep = V_yGop(E) Y [V Gor (E)'Vy_.  (D3)
k=0

We neglected the constant contribution and linear corrections
vanish. Note that |G) is in general highly degenerate, if we
only take Hj into account. In the presence of the perturbation,
effectively introducing the plaquette terms and the gauge con-
straint, this degeneracy is lifted for the most part. The ground
state then remains fourfold degenerate due to the topology
of the system under consideration. Switching between these
four states will only be possible in (Ly,/2)th order, where
Lnin denotes the total length of the smallest lattice dimension.
Thus, for reasonably low orders of perturbation theory there is
no mixing and we can concentrate on one of the ground states.
It was proven that the ground states remain degenerate even in
the perturbed case [27]. To do this, they defined two ground
states |G) and |G') = I'|G), where I' = ]_[lecm o/ denotes a
noncontractible loop. Then, one can show that

(GIVP,Gos ...P.V|G) = (G|VP.Goy ... P.V|G) (D4)

by expressing |G’) in terms of |G) and commuting the latter I"
to the front such that it squares to identity. Therefore, we only
perform the calculation for one representative ground state.

Since the Green’s function for the ground-state energy
corrections is negative, we define GO+(E ) = —Go4+(E) and
V = —V to find

oo
Het = =V _1Gos(E) ) (V1 Gor(E)) Vo (DS)

k=0

This allows us to keep better track of the signs and we omit the
~ again for convenience. In contrast to earlier works, where
the perturbation was only performed up to fourth order, we
have to expand Gy also in terms of E around Ey = 0. We can
compute this with the operator identity

1 1 1 1

X—-Y X (D6)

X X—v

as
1 1

1 1 1

1 1 1
+ —08E —8E — +0(V®%. (D7)
Hoy  Hoy  Hot
To capture all important terms up to sixth order, we now
have to set

SE = 8EW + 8E® + sEW 4+ 0(V?) (D8)

since there is no linear contribution. The third order is further-
more neglected as it cannot lead to a plaquette contribution
up to sixth order. The expansion has to be inserted back into
Eq. (D3) to find all the necessary terms. Collecting the results,
we find

Her = const+ H'Y + HS + HE, (D9)
where
HY = —V_1Gor [V Gor 1PV,
HY = —V_ Go([Vis Gor V4,
HY) = —V_1Goi[Vi 1 Gor 1V,
—SEPV__ Gy MGy LV, _
—SEWV_, G}V, _ (D10)
and
M? =2V, 4G Vi1 Goy + Vi1 Gy Vg (D11)

Here, we set Goy = 1/Hpy. Without the energy expansion,
we would obtain only negative contributions to the effective
Hamiltonian.
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