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We have trained a deep (convolutional) neural network to predict the ground-state energy of an electron in
four classes of confining two-dimensional electrostatic potentials. On randomly generated potentials, for which
there is no analytic form for either the potential or the ground-state energy, the model was able to predict the
ground-state energy to within chemical accuracy, with a median absolute error of 1.49 mHa. We also investigated
the performance of the model in predicting other quantities such as the kinetic energy and the first excited-state
energy.
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I. INTRODUCTION

Solving the electronic structure problem for molecules,
materials, and interfaces is of fundamental importance to a
large number of disciplines including physics, chemistry, and
materials science. Since the early development of quantum
mechanics, it has been noted, by Dirac among others, that
“...approximate, practical methods of applying quantum me-
chanics should be developed, which can lead to an explanation
of the main features of complex atomic systems without too
much computation” [1]. Historically, this has meant invoking
approximate forms of the underlying interactions (mean field,
tight binding, etc.) or relying on phenomenological fits to
a limited number of either experimental observations or
theoretical results (e.g., force fields) [2–8]. The development
of feature-based models is not new in the scientific literature.
Indeed, prior even to the acceptance of the atomic hypothesis,
van der Waals argued for an equation of state based on two
physical features [9]. Machine learning (i.e., fitting parameters
within a model) has been used in physics and chemistry since
the dawn of the computer age. The term machine learning is
new; the approach is not.

More recently, high-level ab initio calculations have been
used to train artificial neural networks to fit high-dimensional
interaction models [10–15] and to make informed predictions
about material properties [16,17]. These approaches have
proven to be quite powerful, yielding models trained for
specific atomic species or based upon hand-selected geomet-
ric features [18–20]. Hand-selected features are arguably a
significant limitation of such approaches, with the outcomes
dependent upon the choice of input representation and the
inclusion of all relevant features. This limitation is well
known in the fields of handwriting recognition and image
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classification, where the performance of the traditional hand-
selected feature approach has stagnated [21].

Such feature-based approaches are also being used in
materials discovery [22–24] to assist materials scientists in effi-
ciently targeting promising material candidates. Unsupervised
learning techniques have been used to identify phases in many-
body atomic configurations [25]. In previous work, an artificial
neural network was shown to interpolate the mapping of posi-
tion to wave function for a specific electrostatic potential [26–
28], but the fit was not transferable, a limitation also present
in other applications of artificial neural networks to partial
differential equations [29,30]. By transferable, we mean that a
model trained on a particular form of partial differential equa-
tion will accurately and reliably predict results for examples
of the same form (in our case, different confining potentials).

Machine learning can also be used to accelerate or bypass
some of the heavy machinery of the ab initio method itself. In
[31], the authors replaced the kinetic energy functional within
density-functional theory with a machine-learned one, and in
[32,33], the authors “learned” the mappings from potential to
electron density and from charge density to kinetic energy,
respectively.

Here we use a fundamentally different approach inspired
by the successful application of deep convolutional neural
networks to problems in computer vision [34–37] and com-
putational games [38,39]. Rather than seeking an appropriate
input representation to capture the relevant physical attributes
of a system, we train a highly flexible model on an enormous
collection of ground-truth examples. In doing so, the deep
neural network learns both the features (in weight space) and
the mapping required to produce the desired output. This
approach does not depend on the appropriate selection of
input representations and features; we provide the same data
to both the deep neural network and the numerical method. As
such, we call this featureless learning. Such an approach may
offer a more scalable and parallelizable approach to large-scale
electronic structure problems than existing methods can offer.
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In this paper we demonstrate the success of a featureless ma-
chine learning approach, a convolutional deep neural network,
at learning the mapping between a confining electrostatic
potential and quantities such as the ground-state energy,
kinetic energy, and first excited state of a bound electron. The
excellent performance of our model suggests deep learning as
an important direction for treating multielectron systems in
materials.

It is known that a sufficiently large artificial neural network
can approximate any continuous mapping [40,41], but the cost
of optimizing such a network can be prohibitive. Convolutional
neural networks make computation feasible by exploiting the
spatial structure of input data [42], similar to how the neurons
in the visual cortex function [43]. When multiple convolutional
layers are included, the network is called a deep convolutional
neural network, forming a hierarchy of feature detection [44].
This makes them particularly well suited to data rooted in
physical origin [45,46], since many physical systems also
display a structural hierarchy. Applications of such a network
structure in the field of electronic structure, however, are few
(although recent work focused on training against a geometric
matrix representation looks particularly promising [47]).

II. METHODS

A. Training set: Choice of potentials

Developing a deep learning model involves both the design
of the network architecture and the acquisition of training data.
The latter is the most important aspect of a machine learning
model, as it defines the transferability of the resulting model.
We investigated four classes of potentials: simple harmonic
oscillators (SHOs), infinite wells (IWs) (i.e., particle in a box),
double-well inverted Gaussians (DIG), and random potentials.
Each potential can be thought of as a grayscale image: a grid
of floating-point numbers.

B. Numerical solver

We implemented a standard finite-difference [48] method
to solve the eigenvalue problem

Ĥψ ≡ (T̂ + V̂ )ψ = εψ (1)

for each potential V we created. The potentials were generated
with a dynamic range and length scale suitable to produce
ground-state energies within a physically relevant range. With
the random potentials, special care was taken to ensure that
some training examples produced nontrivial wave functions
(Fig. 1). Atomic units are used, such that h̄ = me = 1. The
potentials are represented on a square domain from −20
to 20 a.u., discretized on a 256 × 256 grid. As the simple-
harmonic-oscillator potentials have an analytic solution, we
used this as reference with which to validate the accuracy of
the solver. The median absolute error between the analytic
and the calculated energies for all simple-harmonic-oscillator
potentials was 0.12 mHa. We discuss the generation of all
potentials further in the Appendixes.

The simple harmonic oscillator presents the simplest case
for a convolutional neural network as there is an analytic
solution dependent on two simple parameters (kx and ky) that

FIG. 1. Wave functions (probability density) |ψ0|2 and the corre-
sponding potentials V (r) for two random potentials.

uniquely define the ground-state energy of a single electron
[ε0 = h̄

2 (
√

kx + √
ky)]. Furthermore, these parameters repre-

sent a very physical and visible quantity: the curvature of the
potential in the two primary axes. Although these parameters
are not provided to the neural network explicitly, the fact that
a simple mapping exists means that the convolutional neural
network need only learn it to accurately predict energies.

A similar situation exists for the infinite well. Like the
simple harmonic oscillator, the ground-state energy depends
only on the width of the well in the two dimensions
[ε0 = 1

2π2h̄2(L−2
x + L−2

y )]. It would be no surprise if even
a modest network architecture is able to accurately “discover”
this mapping. An untrained human, given a ruler, sufficient
examples, and an abundance of time, would likely succeed in
determining this mapping.

The double-well inverted Gaussian data set is more complex
in two respects. First, the potential, generated by summing a
pair of two-dimensional (2D) Gaussians, depends on signifi-
cantly more parameters; the depth, width, and aspect ratio of
each Gaussian; in addition, the relative positions of the wells
will impact the ground-state energy. Furthermore, there is no
known analytical solution for a single electron in a potential
well of this nature. There is, however, still a concise function
that describes the underlying potential, and while this is not
directly accessible to the convolutional neural network, one
must wonder if the existence of such simplifies the task of the
convolutional neural network. Gaussian confining potentials
appear in works relating to quantum dots [49,50].

The random data set presents the ultimate challenge. Each
random potential is generated by a multistep process with
randomness introduced at numerous steps along the way.
There is no closed-form equation to represent the potentials
and certainly not the eigenenergies. A convolutional neural
network tasked with learning the solution to the Schrödinger
equation through these examples would have to base its
predictions on many individual features, truly learning the
mapping of potential to energy. One might question our
omission of the Coulomb potential as an additional canonical
example. The singular nature of the Coulomb potential is
difficult to represent within a finite dynamic range and, more
importantly, the electronic structure methods that we would
ultimately seek to reproduce already have frameworks in place
to deal with these singularities (e.g., pseudopotentials).
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FIG. 2. In this work, we use the machinery of deep learning to learn the mapping between potential and energy, bypassing the need to
numerically solve the Schrödinger equation and the need for computing wave functions. The architecture we used (shown here) consisted
primarily of convolutional layers capable of extracting relevant features of the input potentials. Two fully connected layers at the end serve as
a decision layer, mapping the automatically extracted features to the desired output quantity. No manual feature selection is necessary; this is a
featureless-learning approach.

C. Deep neural network

We chose to use a simple yet deep neural network
architecture (shown in Fig. 2) composed of a number of
repeated units of convolutional layers, with sizes chosen for a
balance of speed and accuracy (inset of Fig. 3). We use two
different types of convolutional layers, which we call reducing
and nonreducing.

The seven reducing layers operate with filter (kernel) sizes
of 3 × 3 pixels. Each reducing layer operates with 64 filters
and a stride of 2 × 2, effectively reducing the image resolution

FIG. 3. Training loss curve for each model we trained. Since
the training loss is based upon the training data sets, it does not
necessarily indicate how well the model generalizes to new examples.
The convergence seen here indicates that 1000 epochs is an adequate
stopping point; further training would produce further reduction
in loss, however 1000 epochs provides sufficient evidence that
the method performs well on the most interesting (i.e., random)
potentials. In the inset, we see that two nonreducing convolution
layers is a consistent balance of training time and low error.

by a factor of 2 at each step. In between each pair of
these reducing convolutional layers, we have inserted two
convolutional layers (for a total of 12) that operate with 16
filters of size 4 × 4. These filters have unit stride and therefore
preserve the resolution of the image. The purpose of these
layers is to add additional trainable parameters to the network.
All convolutional layers have rectified linear unit (ReLU)
activation.

The final convolutional layer is fed into a fully connected
layer of width 1024, also with ReLU activation. This layer
feeds into a final fully connected layer with a single output.
This output is the output value of the deep neural network
(DNN). It is used to compute the mean-square error between
the true label and the predicted label, also known as the loss.

We used the AdaDelta [51] optimization scheme with a
global learning rate of 0.001 to minimize this loss function
(Fig. 3), monitoring its value as training proceeded. We found
that after 1000 epochs (1000 times through all the training
examples), the loss no longer decreased significantly.

We built a custom TensorFlow [52] implementation in
order to make use of four graphical processing units (GPUs)
in parallel. We placed a complete copy of the neural network
on each of the four GPUs, so that each could compute a
forward- and backpropagation iteration on one full batch of
images. Thus our effective batch size was 1000 images per
iteration (250 per GPU). After each iteration, the GPUs share
their independently computed gradients with the optimizer
and the optimizer moves the parameters in the direction that
minimizes the loss function. Unless otherwise specified, all
training data sets consisted of 200 000 training examples
and training was run for 1000 epochs. All reported errors are
based on evaluating the trained model on validation data sets
consisting of 50 000 potentials not accessible to the network
during the training process.
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FIG. 4. Histograms of the true vs predicted energies for each example in the test set indicate the performance of the various models: (a)
simple harmonic oscillator, (b) infinite well, (c) DIG potential, (d) random potential, and (e) DIG potential on random model. The insets show
the distribution of error away from the diagonal line representing perfect predictions. A 1-mHa2 square bin is used for the main histograms and
a 1-mHa bin size for the inset histogram. During training, the neural network was not exposed to the examples on which theses plots are based.
The higher error at high energies in (d) is due to fewer training examples being present in the data set at these energies. The histogram shown
in (d) is for the further-trained model, described in the text.

III. RESULTS

Figures 4(a)–4(d) displays the results for the simple-
harmonic-oscillator, infinite well, double-well inverted Gaus-
sian, and random potentials. The simple harmonic oscillator,
being one of the simplest potentials, performed extremely well.
The trained model was able to predict the ground-state energies
with a median absolute error (MAE) of 1.51 mHa.

The infinite well potentials performed moderately well with
a MAE of 5.04 mHa. This is notably poorer than the simple-
harmonic-oscillator potentials, despite their similarity in being
analytically dependent upon two simple parameters. This is
likely due to the sharp discontinuity associated with the infinite
well potentials, combined with the sparsity of information
present in the binary-valued potentials.

The model trained on the double-well inverted Gaussian
potentials performed moderately well with a MAE of 2.70 mHa
and the random potentials performed quite well with a MAE
of 2.13 mHa. We noticed, however, that the loss was not
completely converged at 1000 epochs, so we provided an
additional 200 000 training examples to the network and
allowed it to train for an additional 1000 epochs. With this
added training, the model performed exceptionally well, with
a MAE of 1.49 mHa, below the threshold of chemical accuracy
(1 kcal/mol, 1.6 mHa). In Fig. 4(d), it is evident that the model
performs more poorly at high energies, a result of the relative
absence of high-energy training examples in the data set. Given
the great diversity in this latter set of potentials, it is impressive
that the convolutional neural network was able to learn how to
predict the energy with such a high degree of accuracy.

Now that we have a trained model that performs well on the
random test set, we investigated its transferability to another
class of potentials. The model trained on the random data
set is able to predict the ground-state energy of the double-
well inverted Gaussian potentials with a MAE of 2.94 mHa.
We can see in Fig. 4(e) that the model fails at high energies,
an expected result given that the model was not exposed to
many examples in this energy regime during training on the
overall lower-energy random data set. This moderately good
performance is not entirely surprising; the production of the
random potentials includes an element of Gaussian blurring, so
the neural network would have been exposed to features similar

to what it would see in the double-well inverted Gaussian
data set. However, this moderate performance is a testament
to the transferability of convolutional neural network models.
Furthermore, we trained a model on an equal mixture of all four
classes of potentials. It performs moderately with a MAE of
5.90 mHa. This error could be reduced through further tuning
of the network architecture, allowing it to better capture the
higher variation in the data set.

The total energy is just one of the many quantities
associated with these one-electron systems. To demonstrate
the applicability of deep neural networks to other quantities,
we trained a model on the first excited-state energy ε1 of the
double-well inverted Gaussian potentials. The model achieved
a MAE of 10.93 mHa. We now have two models capable
of predicting the ground-state and first-excited-state energies
separately, demonstrating that a neural network can learn
quantities other than the ground-state energy.

The ground-state and first excited state are both eigenvalues
of the Hamiltonian. Therefore, we investigated the training
of a model on the expectation value of the kinetic energy
〈T̂ 〉 = 〈ψ0|T̂ |ψ0〉 under the ground-state wave function ψ0 that
we computed numerically for the random potentials. Since Ĥ

and T̂ do not commute, the prediction of 〈T̂ 〉 can no longer be
summarized as an eigenvalue problem. The trained model pre-
dicts the kinetic energy value with a MAE of 2.98 mHa. While
the spread of testing examples in Fig. 5(a) suggests that the
model performs more poorly, the absolute error is still small.

FIG. 5. Histograms of the true vs predicted energies for the model
trained on the (a) kinetic energy 〈T̂ 〉 of the random potential and (b)
excited-state energy ε1 of the double-well inverted Gaussian.
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IV. CONCLUSION

We note that many other machine learning algorithms exist
and have traditionally seen great success, such as kernel ridge
regression [18,20,32,53–55] and random forests [18,56]. Like
these algorithms, convolutional deep neural networks have the
ability to learn relevant features and form a nonlinear input-to-
output mapping without prior formulation of an input repre-
sentation [47,57]. In our tests, these methods performed more
poorly and scaled such that a large number of training examples
is infeasible. We have included a comparison of these alterna-
tive machine learning methods in the Appendixes, justifying
our decision of using a deep convolutional neural network. One
notable limitation of our approach is that the efficient training
and evaluation of the deep neural network requires uniformity
in the input size. Future work should focus on an approach that
would allow transferability to variable input sizes.

Additionally, an electrostatic potential defined on a finite
grid can be rotated in integer multiples of 90◦, without a
change to the electrostatic energies. Convolutional deep neural
networks do not natively capture such rotational invariance.
Clearly, this is a problem in any application of deep neural
networks (e.g., image classification) and various techniques are
used to compensate for the desired invariance. The common
approach is to train the network on an augmented data set
consisting of both the original training set and rotated copies
of the training data [58]. In this way, the network learns a
rotationally invariant set of features.

In demonstration of this technique, we tuned our model
trained on the random potentials by training it further on an
augmented data set of rotated random potentials. We then
tested our model on the original testing data set as well as a
rotated copy of the test set. The median absolute error in both
cases was less than 1.6 mHa. The median absolute difference
in predicted energy between the rotated and unaltered test sets
was however larger, at 1.7 mHa. This approach to training the
deep neural network is not absolutely rotationally invariant,
however the numerical error experienced due to a rotation
was on the same order as the error of the method itself. Recent
proposals to modify the network architecture itself to make it
rotationally invariant are promising, as the additional training
cost incurred with using an augmented data set could be
avoided [59,60].

In summary, convolutional deep neural networks are
promising candidates for application to electronic structure
calculations as they are designed for data that have a spatial
encoding of information. As the number of electrons in
a system increases, the computational complexity grows
polynomially. Accurate electronic structure methods (e.g.,
coupled cluster) exhibit a scaling with respect to the number of
particles of N7 and even the popular Kohn-Sham formalism of
density-functional theory scales as N3 [61,62]. The evaluation
of a convolutional neural network exhibits no such scaling,
and while the training process for more complicated systems
would be more expensive, this is a one-time cost.

In this work we have taken a simple problem (one electron
in a confining potential) and demonstrated that a convolutional
neural network can automatically extract features and learn
the mapping between V (r) and the ground-state energy ε0

as well as the kinetic energy 〈T̂ 〉, and the first-excited-state
energy ε1. Although our focus here has been on a particular

type of problem, namely, an electron in a confining 2D well,
the concepts here are directly applicable to many problems in
physics and engineering. Ultimately, we have demonstrated
the ability of a deep neural network to learn, through example
alone, how to rapidly approximate the solution to a set of
partial differential equations. A generalizable, transferable
deep learning approach to solving partial differential equations
would impact all fields of theoretical physics and mathematics.

The supporting data for this article are available from
the digital repository of the National Reserach Council of
Canada [63].

ACKNOWLEDGMENTS

The authors would like to acknowledge fruitful discussions
with P. Bunker, P. Darancet, D. Klug, and D. Prendergast. K.M.
and I.T. acknowledge funding from NSERC and SOSCIP.
Compute resources were provided by SOSCIP, Compute
Canada, National Research Council of Canada, and an
NVIDIA Faculty Hardware Grant.

APPENDIX A: COMPARISON OF MACHINE
LEARNING METHODS

One might question the use of a convolutional deep
neural network over other more traditional machine learning
approaches. After all, kernel ridge regression (KRR), random
forests (RF), and artificial neural networks (ANN) have
proven to be quite useful (see the main text for references
to appropriate work). Here we compare the use of our
convolutional deep neural network approach to kernel ridge
regression and random forests, the latter two implemented
through Scikit-learn [64].

1. Kernel ridge regression

We trained a kernel ridge regression model on a training set
of simple-harmonic-oscillator images, recording the wall time

FIG. 6. Kernel ridge regression on simple-harmonic-oscillator
potentials. When few training examples are provided, kernel ridge
regression performs better; however, with a larger number of
training examples, both methods perform comparably, with DNN
slightly better. The training time for kernel ridge regression scales
quadratically. The evaluation time for a fixed number of testing
examples scales linearly with respect to the number of training
examples in the case of kernel ridge regression. In the case of the
deep neural network, the training set size does not affect the testing
set evaluation.
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FIG. 7. Kernel ridge regression on random potentials. When few
training examples are present, kernel ridge regression performs better
(at constant training time). This is likely due to the fact that the
DNN is only given 10 s to run. At larger training set sizes, the deep
neural network performs much better; kernel ridge regression barely
improves as training set size increases, however training wall time
increases dramatically.

(real-world time) taken to train the model. Then we evaluated
the trained model on a test set (the same test set was used
throughout). We recorded both the evaluation wall time and
the MAE observed from the trained model. We then trained our
deep neural network on the same training data set, allowing
it the same training wall time as the KRR model. We then
evaluated the deep neural network on the same testing set of
data, again recording the MAE and the evaluation wall time.
This process was repeated for various training set sizes and
on training data from both the simple-harmonic-oscillator and
random data sets. The results are presented in Figs. 6 and 7.

2. Random forests

We carried out an identical process, training a random
forests regressor. The results are presented in Figs. 8 and 9.

FIG. 8. Random forests on simple harmonic oscillator. Random
forests perform better than deep neural networks for all training
set sizes on the relatively trivial simple-harmonic-oscillator data set.
Random forests takes a very long time to train. Note that the training
times plotted above have been scaled by a factor of 0.1 for plotting
and thus the true times are ten times greater than shown.

FIG. 9. Random forests on random potentials. On the more
complicated random potentials, random forests perform significantly
worse than the deep neural network. This combined with the
extremely high training time suggests that the deep neural network is
much better equipped to handle these more varied potentials.

3. Discussion

While the timing comparison is not quantitatively fair (the
random forest algorithm is not parallelized and uses only one
CPU core, the kernel ridge regression algorithm is parallelized
and ran across all available cores, and the deep neural network
is highly parallelized via GPU optimization and runs across
thousands of cores), this investigation gives useful insight into
the time-to-solution advantages of deep neural networks. The
error rates, however are quantitatively comparable, as the KRR
and random forest (RF) algorithms were permitted to run until
convergence. The DNN was able to perform better in most
cases given the same amount of wall time.

We see that for all but the simplest cases, our deep neural
network is vastly superior to both kernel ridge regression and
random forests. For very simple potentials, it is understandable
that the machinery of the deep neural network was unnecessary
and that the traditional methods perform well. For more
complicated potentials with more variation in the input data,
the deep neural network was able to provide significantly better
accuracy in the same amount of time.

APPENDIX B: DATA-SET GENERATION

The potentials are defined on a grid from x,y = −20 to
20 a.u. on a 256 × 256 grid.

1. Simple harmonic oscillator

The SHO potentials are generated with the scalar function

V (x,y) = 1
2 [kx(x − cx)2 + ky(y − cy)2], (B1)

TABLE I. Random number generation criteria for the simple-
harmonic-oscillator dataset.

Parameter Description Lower bound Upper bound

kx spring constant 0.0 0.16
ky spring constant 0.0 0.16
cx center position −8.0 8.0
cy center position −8.0 8.0
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TABLE II. Random number generation criteria for the double-
well-inverted-Gaussian dataset.

Parameter Description Lower bound Upper bound

A1 well 1 depth 2.0 4.0
A2 well 2 depth 2.0 4.0
cx1 well 1 center x −8.0 8.0
cy1 well 1 center y −8.0 8.0
cx2 well 2 center x −8.0 8.0
cy2 well 2 center y −8.0 8.0
kx1 well 1 width 1.6 8.0
ky1 well 1 length 1.6 8.0
kx2 well 2 width 1.6 8.0
ky2 well 2 length 1.6 8.0

where kx , ky , cx , and cy are randomly generated according to
Table I. The potentials are truncated at 20.0 Ha (i.e., if V > 20,
V = 20).

2. Infinite well

The IW potentials are generated with the scalar function

V (x,y) =

⎧⎪⎨
⎪⎩

0 1
2 (2cx − Lx) < x � 1

2 (2cx + Lx),
1
2 (2cy − Ly) < y � 1

2 (2cy + Ly)

20 otherwise,

(B2)

where 20.0 is used as numerical infinity, an appropriate choice
given the scale of energies used. Because of the nature of
the IW energy, randomly generating Lx and Ly independently
leads to a distribution of energies highly biased toward low-
energy values (it is more likely to randomly produce a large
well than a small). Since we want a distribution that is as
even as possible over the range of energies, we need to take a
slightly different approach. We randomly generate the energy
E uniformly on the interval [0,0.4] Ha. We then generate Lx

randomly on the interval [4.0,15.0], defining the width of the
well. We then solve for the value of Ly that will produce an
energy of E, given Lx , e.g.,

Ly = 1

/√
2E

π2
− 1

L2
x

. (B3)

Not all combinations of Lx and E lead to valid solutions for Ly ,
so we keep trying until one does. We then swap the values of
Lx and Ly with a 50% probability to prevent one dimension of
the well always being larger. This process leads to a relatively
even distribution of energies.

TABLE III. Random number generation criteria for the random
potential dataset. In column 2, SD denotes standard deviation.

Parameter Description Lower bound Upper bound

σ1 SD blur 1 6 10
k blob points 2 7
R blob size 80 180
σ2 SD blur 2 10 16

FIG. 10. Some example random potentials V and the norm of
their associated ground-state wave functions |ψ0|2.

3. Double-well inverted Gaussians

The DIG potentials are generated with the scalar function

V (x,y) = −A1 exp

[
−

(
x − cx1

kx1

)2

−
(

y − cy1

ky1

)2
]

−A2 exp

[
−

(
x − cx2

kx2

)2

−
(

y − cy2

ky2

)2
]
, (B4)

where the parameters are randomly sampled from a uniform
distribution within the ranges given in Table II. These ranges
were determined through trial and error to achieve energies in
the range of 0–400 mHa.

4. Random potentials

The random potentials are generated through a lengthy
process motivated by three requirements: The potentials must
(a) be random (i.e., extremely improbable that two identical
potentials ever be generated), (b) be smooth, and (c) go to a
maximum of 20.0 at the boundary. First, we generate a 16 × 16

FIG. 11. Examples of the four classes of potentials.
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binary grid of 1’s and 0’s and upscale it to 256 × 256. We
then generate a second 16 × 16 binary grid and upscale it to
128 × 128. We center the smaller grid within the larger grid
and then subtract them elementwise. We then apply a Gaussian
blur with standard deviation σ1 to the resulting image, where
σ1 is generated uniformly within the range given in Table III.
The potential is now random and smooth, but does not achieve
a maximum at the boundary.

To achieve this, we generate a mask that smoothly goes to
0 at the boundary and 1 in the interior. We wish the mask to
be random, e.g., a randomly generated blob. To generate the
blob, we generate k2 random coordinate pairs on a 200 × 200
grid, where k is an integer between 2 and 7, inclusive. We
then throw away all points that lie inside the convex hull of
these points and smoothly interpolate the remaining points
with cubic splines. We then form a binary mask by filling

the inside of this closed blob with 1’s and the outside with
0’s. Resizing the blob to a resolution of R × R and applying
a Gaussian blur with standard deviation σ2, we arrive at the
final mask. Here R and σ2 are generated uniformly within the
ranges given in Table III.

Elementwise multiplication of the mask with the randomly
blurred image gives a random potential that approaches zero at
the boundary. We randomize the “sharpness” of the potential
by then exponentiating by d = 0.1, 0.5, 1.0, or 2.0, chosen
at random with equal probabilities (i.e., V := V d ). We then
subtract the result from its maximum to invert the well.

This process, while lengthy, produces very random po-
tentials, of which no two are alike. The energy range of
0–400 mHa is appropriate for producing wave functions that
span a moderate portion of the domain, as shown in Fig. 10.
Examples of all classes of potentials can be seen in Fig. 11.
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