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For superconducting qubits, microwave pulses drive rotations around the Bloch sphere. The phase of these
drives can be used to generate zero-duration arbitrary virtual Z gates, which, combined with two Xπ/2 gates, can
generate any SU(2) gate. Here we show how to best utilize these virtual Z gates to both improve algorithms and
correct pulse errors. We perform randomized benchmarking using a Clifford set of Hadamard and Z gates and
show that the error per Clifford is reduced versus a set consisting of standard finite-duration X and Y gates. Z gates
can correct unitary rotation errors for weakly anharmonic qubits as an alternative to pulse-shaping techniques
such as derivative removal by adiabatic gate (DRAG). We investigate leakage and show that a combination of
DRAG pulse shaping to minimize leakage and Z gates to correct rotation errors realizes a 13.3 ns Xπ/2 gate
characterized by low error [1.95(3) × 10−4] and low leakage [3.1(6) × 10−6]. Ultimately leakage is limited by
the finite temperature of the qubit, but this limit is two orders of magnitude smaller than pulse errors due to
decoherence.
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I. INTRODUCTION

Computers based on quantum bits (qubits) are predicted to
outperform classical computers for certain critical problems,
e.g., factoring. Unlike a classical bit, which is discretely
in the state 0 or 1, a qubit can be in a superposition
state |�〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉 where |0〉 and |1〉
are the quantum versions of the classical 0 and 1 states.
This single-qubit superposition state can be geometrically
represented as a point on the surface of a unit sphere known
as the Bloch sphere. Critical to implementing a quantum
computer is the ability to control the state of the qubit, i.e.,
transform the qubit state arbitrarily between two points on the
Bloch sphere. This is accomplished by unitary transformations
(gates), which correspond to rotations of the state around
different axes in the Bloch sphere representation. Physically,
X and Y gates (rotations around the X and Y axes) are
generated by modulating the coupling between the states
|0〉 and |1〉 at the frequency difference between these states
ω01 = (E|1〉 − E|0〉)/h̄. This modulation drive has the general
form �(t) cos(ωDt − γ ) where �(t) is the drive strength of the
rotation, ωD is the drive frequency (ωD = ω01 on resonance),
and γ is the drive phase. The duration of the gate is set by the
desired rotation angle and the drive strength. On resonance,
when γ = 0, the qubit state rotates around the X axis and
when γ = π

2 the rotation is around the Y axis. Therefore, the
geometric X and Y axes in the Bloch sphere correspond to a
real π

2 phase difference between drive fields.
Rotations around the remaining axis (Z axis), i.e., Z gates,

correspond to a change in the relative phase between the |0〉 and
|1〉 states. A Z gate can be implemented by either detuning the
frequency of the qubit with respect to the drive field for some
finite amount of time (e.g., see Ref. [1]) or by composite X and
Y gates. The result is that the qubit state rotates with respect to
the X and Y axes. However, it is equivalent to rotate the axes
with respect to the qubit state—such a gate is known as a virtual
Z gate, which corresponds to adding a phase offset to the drive
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field for all subsequent X and Y gates. This includes adding
a phase offset to any two-qubit drives such as a drive used to
implement a controlled-NOT (CNOT) gate via cross resonance
[2]. In many qubit implementations this phase, γ , is defined by
classical control hardware and software. A Z gate implemented
in this way is essentially perfect; the classical hardware is
self-calibrated via a global frequency reference (e.g., an atomic
clock) and the gate has zero duration. Virtual-Z (VZ) gates have
long been used in quantum experiments such as in NMR [3],
ions [4], and superconducting qubits [5]. Utilizing these gates
can improve the overall fidelity of a quantum circuit if the
circuit is optimized to maximize the number of single-qubit Z

gates. Additionally, any arbitrary rotation in the Bloch sphere
can be generated by combining Z and Xπ/2 gates. This greatly
simplifies calibration procedures because only a single drive
strength must be calibrated.

Furthermore, Z gates can compensate for certain unitary
errors that occur in physical qubit implementations. For ex-
ample, when driving X and Y rotations in weakly anharmonic
superconducting transmon qubits [6] there are unitary rotation
errors (Stark-shift errors) and population leakage. Both of
these errors can be corrected by implementing a full derivative
removal by adiabatic gate (DRAG) pulse [7], which involves
pulse shaping and dynamic frequency tuning. However, only
the pulse-shaping component of DRAG is typically imple-
mented [1,8,9], which cannot simultaneously correct both
errors (we herein refer to DRAG by this definition). In most
experiments DRAG is optimized to correct the more dominant
unitary errors. This problem is solved by adding VZ gates since
VZ gates can correct unitary phase errors while pulse shaping
is then optimized to minimize leakage. Similar errors are
common when driving two-qubit gates, such as the parametric
ISWAP [10], cross resonance [11], and adiabatic CZ [12], so
VZ gates plus pulse shaping is also applicable in multiqubit
systems.

In this paper we explore how the VZ gate can be used
to minimize circuit error and, for superconducting transmon
qubits, minimize pulse errors. First, we review the theory of the
VZ gate and show one specific formula for an arbitrary SU(2)
gate. Next, we compare randomized benchmarking [13] of a
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qubit using Clifford gates generated from two different sets of
basis gates—one set using X and Y rotations and the other set
using X and Z rotations. We show that the error per Clifford
is lower for the XZ basis set, since the number of finite-
duration gates (i.e., X and Y rotations) required to represent
each Clifford gate is reduced. We also perform interleaved
benchmarking of the S gate (Zπ/2) and measure an error
rate that is consistent with a perfect gate. Next, we demonstrate
that VZ gates can be used to compensate Stark-shift errors
that arise when driving most X and Y rotations in weakly
anharmonic systems. This technique, Gaussian plus Z (GZ),
is a straightforward alternative to the commonly used DRAG
pulse [1,7–9]. We show via randomized benchmarking (RB)
that the pulse error for DRAG and GZ is essentially equivalent.
Next, we measure population leakage to the |2〉 state during
these RB sequences (see Ref. [14] for similar work). We show
that GZ and DRAG (optimized for fidelity) have similar leakage
rates. Combining DRAG and VZ gates (DRAGZ) improves
leakage without a loss of fidelity as does passive filtering plus
VZ gates (FILTZ). For pulses longer than 25 ns we find that
the leakage rates for all methods are similar and limited by
heating. Finally, we discuss some considerations when using
these gates in a multiqubit system.

II. THEORY

To elucidate the concept of the virtual Z gate (VZ gate),
we first review basic single-qubit gates as they are physically
realized in many labs, i.e., with a local oscillator (LO) shaped
by an arbitrary waveform generator (AWG) through an IQ
mixer (setup shown in Fig. 1). The LO is a single-tone
microwave source that outputs a constant signal cos(ωLOt).
The AWG outputs a programmable series of discrete voltage
points at a specific sample rate, e.g., for the Tektronix 5014
used in these experiments that sample rate is 1.2GSa/s
(0.833 ns between points). These points are internally filtered
so that the output is a smooth waveform. Including this filter
(F ), the AWG output is

V (t) =
∫ t

0
dτF (t − τ )

∞∑
n=0

Vn � (n − τ/T ), (1)

LO RF
I Q

Arbitrary  Waveform 
Generator

To Qubit

Ch. 1 Ch. 2

Microwave 
Generator

FIG. 1. Schematic of the typical experimental setup for generat-
ing shaped microwave pulses for driving superconducting qubits.

where {Vn} is the set of AWG voltages, T is the AWG
period and �(x) is a pulse function defined as �(x) = {1,0}
conditioned on |x| � 1/2. The IQ mixer multiplies the I and
Q channels with the LO such that,

VRF (t) = VI (t) cos(ωLOt)

+VQ(t)[1 + εQ] sin(ωLOt + εφ)

+ εLO cos(ωLOt), (2)

where the ε terms are nonideal errors common to IQ mixers.
The AWG voltages are used to shape the pulse and shift

the pulse frequency to resonance via single sideband (SSB)
modulation. If the desired pulse envelope is �(t) and the
drive frequency is ωD = ωLO + ωSSB then the output of an
ideal AWG [ignoring the pixelation and filtering described by
Eq. (1)] is,

VI (t) = �(t) cos(ωSSBt − γ ), (3)

VQ(t) = −�(t) sin(ωSSBt − γ ). (4)

These AWG signals, when applied to the inputs of an ideal
mixer, output the desired drive pulse

VRF (t) = �(t) cos(ωDt − γ ). (5)

A series of n-shaped microwave pulses driving an anharmonic
oscillator (a good description of a transmon qubit) is described
by the Hamiltonian (in the laboratory frame),

H/h̄ =
∑

n

�n(t) cos(ωDt + γn)(â + â†) + ω01n̂

+ α

2
(n̂ − 1)n̂, (6)

where â(â†) is the annihilation (creation) operator of the
oscillator, n̂ = â†â is the number operator and α is the
anharmonicity. The |0〉 and |1〉 levels of this oscillator
are the qubit levels. Leakage to higher levels and unitary
errors due to mixing with these levels will be discussed in
Secs. IV and V. For simplicity we rewrite just the qubit
Hamiltonian,

H/h̄ =
∑

n

�n(t) cos(ωDt − γn)σ̂X − ω01

2
σ̂Z, (7)

where σ̂X,σ̂Z are the Pauli operators. For a resonant drive
(ωD = ω01), the Hamiltonian in the qubit rotating frame is

H̃ /h̄ =
∑

n

�n(t)

2
[cos(γn)σ̂X + sin(γn)σ̂Y ]. (8)

Assuming a constant amplitude pulse �n for duration T , the
unitary transformation (the gate) due to pulse n is,

Un = e−i �nT
2 [cos(γn)σ̂X+sin(γn)σ̂Y ], (9)

and so a γn = 0(π
2 ) pulse is a rotation of angle �nT around

the X (Y ) axis of the Bloch sphere. Therefore, the AWG
controls both the pulse rotation and the rotation axes. Since
γ controls the rotation axes, intuitively we can perform a VZ

gate by adjusting γ . More formally, we can show how this
works by consider two consecutive X pulses, Xθ = e−i θ

2 σ̂X ,
with the phase γ offset by φ between the pulses. The total
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unitary is,

e−i θ
2 [cos(φ)σ̂X+sin(φ)σ̂Y ]Xθ, (10)

which can be expanded to,

ei
φ

2 σ̂Z e−i θ
2 σ̂X e−i

φ

2 σ̂ZXθ , (11)

which equals

Z−φXθZφXθ . (12)

Therefore, by simply adding a phase offset in software and
redefining the rotation axes for subsequent X and Y gates, we
can effectively implement an arbitrary Z gate. The additional
Z−φ gate at the end is due to the fact that we are in the qubit
frame of reference and so the phase offset φ must be carried
through for all subsequent gates. For example, if we follow our
original sequence with a Yθ gate with the phase offset applied
the gate sequence is

e−i θ
2 (cos[ π

2 +φ]σ̂X+sin[ π
2 +φ]σ̂Y )

Z−φXθZφXθ , (13)

= Z−φYθZφZ−φXθZφXθ , (14)

= Z−φYθXθZφXθ . (15)

The inverse Z gate remains, but does not change the measure-
ment outcomes, which are measured along Z.

Given that we can easily create Z gates, we now show that
any arbitrary SU(2) gate can be constructed by combining Z

gates with two Xπ/2 gates. In general, any SU(2) gate can be
written in the form,

U (θ,φ,λ) =
[

cos(θ/2) −ieiλ sin(θ/2)

−ieiφ sin(θ/2) ei(λ+φ) cos(θ/2)

]
, (16)

which is conveniently represented (up to a global phase) as,

U (θ,φ,λ) = ZφXθZλ. (17)

By using the identity,

Xθ = Z−π/2Xπ/2Zπ−θXπ/2Z−π/2, (18)

we show that any SU(2) gate is

U (θ,φ,λ) = Zφ−π/2Xπ/2Zπ−θXπ/2Zλ−π/2. (19)

We express some common gates in this notation in Table I.
The ability to efficiently create arbitrary SU(2) gates us-

TABLE I. Common SU(2) gates expressed with Z gates.

Gate θ φ λ

I 0 0 0
Xπ π 0 0
Yπ π π/2 −π/2
Zπ 0 π/2 π/2
Xπ/2 π/2 0 0
Yπ/2 π/2 π/2 −π/2
S 0 π/4 π/4
H π/2 π/2 π/2
Xπ/4 π/4 0 0
T 0 π/8 π/8

ing Z gates is essential for performing universal quantum
algorithms.

III. RANDOMIZED BENCHMARKING OF THE Z GATE

To demonstrate how the VZ gate can improve algorithms
we perform randomized benchmarking [13] (RB) using a
fixed-frequency superconducting transmon qubit of frequency
ω/2π = 5.0353 GHz, anharmonicity α/2π = −235.5 MHz,
and typical coherences T1 = 54(1)μs, Tφ = 135(4)μs. This
qubit is part of a two-qubit device detailed in Ref. [10];
for the work here we consider it as a single independent
qubit (the other qubit frequency is 5.924 GHz). A RB circuit
consists of m random Clifford gates with a final inverting
gate so that the full circuit implements the identity operator.
These Clifford gates are constructed from single-qubit gate
primitives, which, at minimum, are π

2 pulses along two inde-
pendent axes. Here we compare two sets of basis pulses—the
XYπ

2
and HZ sets. The XYπ

2
set consists of the finite-duration

gates {Xπ/2,X−π/2,Yπ/2,Y−π/2} whereas the HZ set consists
of one finite duration gate combined with VZ gates {H,I =
Z0,S = Zπ

2
,S† = Z− π

2
,Zπ } where H = Zπ

2
· Xπ

2
· Zπ

2
is the

Hadamard gate. On average, 2.25 gates from the XYπ
2

set
and 2.4583 gates from the HZ set are required to construct a
Clifford. However, for the HZ set only one of those gates per
Clifford is the finite-duration Hadamard gate. Since we expect
the VZ gates to be near perfect, the HZ set should have lower
error per Clifford. For this experiment each of these finite
duration gates is implemented as a DRAG pulse—a pulse
with a Gaussian envelope along the main rotation axis and a
pulse with a derivative Gaussian envelope along the orthogonal
rotation axis. The Gaussian pulse is defined as,

�G(t) =
{

�0
e−t2/2σ2 −e−T 2/2σ2

1−e−T 2/2σ2 , |t | � T

0, else
, (20)

where T is the pulse length, which is set to T = 4σ . For these
experiments T = 13.33 ns and σ = 3.33 ns with a 6.7 ns buffer
between pulses (ωSSB/2π = −120 MHz). The total DRAG
pulse is then

�(t) =
{

�G(t), γ = 0

β�̇G(t), γ = π
2

, (21)

where the DRAG parameter β is calibrated to optimize
pulse fidelity by canceling Stark-shift errors due to off-
resonance driving of higher transmon levels. In theory, the
value of β that optimizes fidelity is 1/2α [9], however, in
practice the experimentally optimized value of β is different
since the DRAG pulse also compensates phase errors from
other sources. DRAG pulses can also minimize population
leakage to these higher levels, but the value of β for which
the pulse minimizes leakage is not generically the value
for which the pulse maximizes fidelity. This point will be
discussed in more detail in Sec. V and is also addressed in
Ref. [14].

Sample RB data is shown in Fig. 2. For the XYπ
2

set,
averaging over five runs of 20 seeds each, we get an error per
Clifford (EPC) of 5.6(1) × 10−4 and an error per gate in the set
(EPG) of 2.48(5) × 10−4. For the HZ set, averaging over ten
runs, the EPC is 3.0(1) × 10−4 and the EPG is 1.22(4) × 10−4.
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FIG. 2. RB curves for the two basis sets discussed in the main
text: XY π

2
(red circles) and HZ (blue squares). Interleaved RB for the S

gate using the HZ set (green triangles). Each point is the average of 20
random seeds run in five separate experiments and fit to the standard
RB exponential decay curve Arm + B where m is the number of
Clifford gates and the average error per Clifford is 1

2 (1 − r). The
average error per gate is 1

2 (1 − r1/Ng ) where Ng is the number of
gates in the basis set required to implement a Clifford [13].

The lower EPC of the HZ set is evident from the data in Fig. 2,
and confirms our expectation that the VZ gates are significantly
better than finite-length X and Y gates. To quantify the error
of the VZ gates we perform interleaved RB [15] of the S gate;
sample data is shown in Fig. 2. Averaging over five runs we get
an error of −1.7(1.0) × 10−5 with systematic errors bounds of
[0,6 × 10−4]. This is consistent with the VZ gate having zero
error and, therefore, being a perfect gate.

The RB data demonstrate the advantage of utilizing the VZ

gates in quantum algorithms. In essence, each of the curves is
implementing the same RB algorithm, i.e., generate a sequence
of m random Cliffords that constructs the identity operator. By
utilizing VZ gates we are able to implement the algorithm with
higher fidelity. Therefore, VZ gates can lower error rates in
many algorithms by optimizing the circuit to maximize the
number of Z gates.

IV. CORRECTING ERRORS WITH VZ GATES

Beyond their direct use in quantum circuits, VZ gates can
correct for certain pulse errors that occur during physical
one- and two-qubit gates without introducing new errors. For
example, a VZ gate can correct a phase error, i.e., an unwanted
Z gate, by applying the inverse Z gate. VZ gates can also
correct most off-resonance-rotation (ORR) errors. The unitary
operator due to an ORR along the X axis is,

U1 = e−it[ �
2 σ̂X+�σ̂Z], (22)

U1 = e−i
�Rt

2 [cos(λ)σ̂X+sin(λ)σ̂Z], (23)

where tan(λ) = �
�

and �R = √
�2 + �2. If the goal is to

implement the gate Xθ , then the question is whether there
is a Z correction that can be applied to Eq. (23), i.e., is there a
ξ and �R such that

Xθ = ZξU1(�Rt,λ)Zξ ? (24)

FIG. 3. (a) Bloch-sphere representation of an attempted π

2 rota-
tion around the X axis starting in the state |0〉 on resonance [red (light
gray)] and with a detuned drive [blue (dark gray)]. For a suitably
compensated rotation angle the detuned drive ends up in the XY

plane, but with a finite Z-rotation error. (b) Correcting the error using
a VZ gate, i.e., axes rotation.

If we expand Eq. (24) then we get the following relations,

sin

(
�Rt

2

)
= sin

(
θ
2

)
cos(λ)

, (25)

tan(ξ ) = sin(λ) tan

(
�Rt

2

)
, (26)

and so there is a valid correction for the ORR error when
sin ( θ

2 )
cos(λ) � 1. For example, if λ = 0.1, and the desired gate

is Xπ
2

then ξ ≈ 0.1 and �Rt = π/2 + 0.12. Graphically, an
exaggerated ORR for Xπ/2 is illustrated on the Bloch sphere
in Fig. 3. Starting from |0〉 the rotation is off axis and so the final
state is not along the Y axis. However, a rotation angle exists so
that the state still crosses the XY plane and then a final VZ gate
corrects the angle error. Physically there is no solution when
the rotation is sufficiently off resonance such that it cannot
pass through the plane defined by the desired final state. For
example, a detuned π pulse cannot be compensated since a
qubit starting in state |0〉 does not complete the rotation to |1〉.

Correcting ORR errors is of practical importance for weakly
anharmonic transmon qubits. When resonantly driving the |0〉
to |1〉 transition, the drive frequency is only slightly detuned
from the higher-level transitions such as |1〉 to |2〉, and so
there is a strong Stark effect, which shifts the frequency of
the |1〉 state during the drive. The strength of the Stark shift
is inversely proportional to the detuning, and thus ORR errors
increase for short gates because of Fourier broadening of the
drive frequency. The standard approach to correct these errors
is to utilize DRAG pulse shaping, Eq. (21), as we did for the
RB data in Sec. III. Here we show similar performance using
Gaussian pulses with VZ gates used to correct ORR errors in
the form given by Eq. (24); we refer to the combined pulse
as Gaussian plus Z (GZ). In Fig. 4 we plot the error per gate
(EPG) from XYπ

2
RB for DRAG, GZ, and Gaussian pulses

versus the sideband frequency of the pulse. Interestingly, the
EPG for the Gaussian pulse is a strong function of the sideband
frequency. This can be understood to be the result of the
internal filtering of the AWG. In the rotating frame of the qubit
the effect of this filter on the pulse shape is similar to the DRAG
pulse shape. The value and sign of β is a function of the
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FIG. 4. (a) EPG for the XY π
2

set (see main text) for three different
pulse implementations: Gaussian, DRAG and Gaussian plus VZ gate
(GZ) as a function of the sideband frequency. Dashed lines are theory
fits assuming the coherence numbers listed in the main text, LO
leakage of −65 dBm and an internal AWG filter approximated as a
Gaussian filter with a bandwidth of 300 MHz [16]. (b) Sample RB
curves for the different pulses for a sideband frequency of 180 MHZ.
The DRAG and GZ pulses are coherence limited, but the Gaussian
pulse is completely dominated by unitary errors.

sideband frequency and so for certain frequencies the pulse
shape exacerbates the ORR error. When we apply the
Z-gate correction the calibrated phase compensates for any
passive DRAG shaping. From this data we conclude that GZ

pulses are a viable alternative to DRAG when optimizing pulse
fidelity. GZ pulses are not sensitive to the exact shape of the
pulse and, as we will discuss next, permit the utilization of
pulse shaping to address different errors such as leakage.

V. LEAKAGE

In addition to unitary ORR errors, there is also population
leakage to higher levels when driving transmon qubits. This
leakage is mainly caused by frequency components in the
drive at the transition frequency between the |1〉 and |2〉 states,
ω12 = ω01 + α. Pulse shaping, i.e., DRAG, can effectively
mitigate leakage when VZ gates can be utilized to correct

the unitary ORR errors (see Ref. [14] for similar work
using DRAG and frequency chirped pulses). Here we analyze
leakage versus pulse width for different pulse types: DRAG
optimized for fidelity, GZ, DRAG optimized for leakage with
VZ gates to correct ORR errors (DRAGZ), and GZ with the
AWG outputs externally low-pass filtered (FILTZ). For these
leakage experiments we operate with a sideband frequency
of −120 MHz, which has two advantages. For one, leakage
components at ωLO and ωLO − ωSSB due to nonidealities
in the mixer are detuned by at least |α + ωSSB| from ω12.
Second, by selecting a negative sideband we can passively
filter the AWG for signals at |α + ωSSB|, which could mix
with ωLO to produce ω12. For the qubit in these experiments
|α + ωSSB|/2π = 355.5 MHz, so a LP filter between 120 MHz
and 355.5 MHz can effectively filter leakage components and
leave enough bandwidth to drive short pulses. Specifically, we
use Mini-Circuits VLF-180 (3dB frequency of 270 MHz), and
by filtering the AWG output we are effectively implementing
a passive form of pulse shaping.

To measure leakage we perform standard RB sequences
and measure the |0〉, |1〉, and |2〉 populations simultaneously
by hard thresholding single-shot readout signals as shown in
Fig. 5(a). A sample RB curve for the three states is shown in
Fig. 5(b). The EPG is measured in the standard way by fitting
the |0〉 state as described in the caption to Fig. 2. To measure
the leakage rate per gate (LPG) we fit the |2〉 state RB data
to the same type of RB curve Arm + B and the LPG is given
by the expression p = (1 − r)B/Ng [17]. In general there is a
correction to the RB fit of the |0〉 data due to leakage, however,
when EPG � LPG this correction is small [17]. A typical
calibration curve for the DRAG parameter of the DRAGZ
pulses is shown in Fig. 5(c). An efficient proxy for the LPG is
the averaged |2〉 population for a long Clifford sequence.

The LPG and EPG versus pulse width for the four pulse
types is illustrated in Fig. 6. DRAG and GZ give similar
results with a general trend of lower LPG for longer pulse
widths as expected due to Fourier broadening. The exception
to this trend is a pronounced minima at 10 ns, which is an
artifact of the Gaussian truncation such that there is a zero in
the pulse spectrum at ω12; this effect is captured accurately
in the numerics. For pulses shorter than 20 ns the DRAGZ
and FILTZ pulses demonstrate nearly an order-of-magnitude
lower LPG. For a pulse length of 13.3 ns we measure the
LPG (×10−6) for the various pulse types: DRAGZ 3.1(6),
FILTZ 1.4(4), DRAG 13(1), and GZ 25(2). Overall, each of
the pulses obtains similar EPG (×10−4): DRAGZ 1.95(3),
FILTZ 2.80(6), DRAG 2.24(3), GZ 2.75(6). These are all close
to the coherence limit of 1.8 × 10−4. While the LPG sets a
lower bound on the EPG, significant gains in coherence will
be required to reach that bound. For pulses greater than 20 ns
the LPG rises; this is observed in theory calculations, which
include thermal relaxation to an effective system temperature
of T = 46 mK. When the system is at a finite temperature there
is incoherent population transfer between levels m and n such
that in equilibrium the ratio of populations is e−(En−Em)/kBT .
Therefore, finite-temperature heating sets a lower bound on
the leakage, which is also the conclusion of Ref. [14].
Understanding why the qubit is higher temperature than the
cryostat (10–15 mK) and how to reduce that temperature is an
active area of investigation.
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FIG. 5. (a) Single-shot measurements of the |0〉 (blue, left),
|1〉 (red, top-right) and |2〉 (green, bottom-right) states in the IQ
plane (1000 shots). The colored regions demonstrate the hard
thresholding barriers used to bin measurements. For the RB data
we use the results from this calibration to construct a POVM and
invert the hard-threshold results to compensate for assignment errors.
(b) Typical RB measurement for leakage. The |2〉 state population is
multiplied by 20 times for scale. (c) Leakage rate and |2〉 population
after 2901 Clifford gates (averaged over 20 seeds) versus the DRAG
parameter β (black). This |2〉 population is used to calibrate β for the
DRAGZ pulses [red (light gray)].

Overall, replacing DRAG with GZ pulses does not affect the
EPG and instead it frees up DRAG pulse shaping to specifically
minimize leakage using DRAGZ pulses. The lowest LPG
is obtained with FILTZ, albeit with similar performance to

FIG. 6. (a) Leakage per gate versus pulse length for DRAG, GZ,
DRAGZ and FILTZ. Lines are theory curves assuming the coherences
mentioned in the main text, a temperature of 46 mK, LO leakage of
−65 dBm and an AWG filter bandwidth of 300 MHz (100 MHz for
FILTZ). DRAGZ points were only taken to a pulse length of 20 ns;
beyond this point calibration of the DRAG parameter (to minimize
leakage) was not reliable because the leakage signal was below the
noise floor. (b) EPG from the same measurement. The black dashed
line is a theory curve for a perfect DRAG pulse (i.e., no mixer or
AWG effects) and is representative of the coherence limited error.

DRAGZ and with the caveat that it only works for specific
sideband frequencies. Ultimately, leakage is not a limiting
factor for single-qubit gate performance, however, leakage can
have detrimental effects on error correction protocols [18,19].

VI. VZ GATE IN MULTIQUBIT SYSTEMS

Employing VZ gates in multiqubit systems depends on
the specific implementation of the two-qubit gate interaction.
For example, consider a two-qubit Hamiltonian with the
interaction term σ̂

(1)
Z ⊗ σ̂

(2)
X ,

H/h̄ = −ω1

2
σ̂

(1)
Z − ω2

2
σ̂

(2)
Z + gσ̂

(1)
Z ⊗ σ̂

(2)
X . (27)

In the rotating frame of the single-qubit drives, Urot =
e−i( ω1 t+φ1

2 σ̂
(1)
Z + ω2 t+φ2

2 σ̂
(2)
Z ),

H̃ /h̄ = gσ̂
(1)
Z ⊗ (

cos(ω2t + φ2)σ̂ (2)
X + sin(ω2t + φ2)σ̂ (2)

Y

)
,

(28)

and so the single-qubit drive phase is imprinted on the two-
qubit interaction if the interaction term is σ̂X or σ̂Y . When
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we apply a VZ gate, the phase update to the single-qubit drive
will affect subsequent two-qubit interactions; how to manage
this issue is dependent on the specific implementation of that
interaction.

For microwave-activated gates the phase update is straight-
forward. Here we will give two examples for the cross-
resonance gate and the parametric ISWAP gate. The cross-
resonance (CR) gate (see, e.g., Ref. [11]) interaction is the
example considered in Eq. (27). To turn on the CR interaction
the ZX term is modulated at ω2 with a separate drive. The CR
rotation angle is defined with respect to the phase φ2 as shown
in Eq. (28). When a VZ gate is applied to qubit 2 the phase
of the CR drive must be updated accordingly. For the ISWAP

gate (see, e.g., Ref. [10]), an XX + YY term is activated by
modulating at the difference frequency ω1 − ω2. The phase of
this ISWAP drive is matched to the difference of the single-qubit
drive phases φ1 − φ2. Therefore, the VZ gate phase is applied
to the ISWAP drive with a different sign for qubits 1 and 2.

For flux-tunable qubits, i.e., where the qubit frequencies are
dynamically tuned to go to an interaction resonance, compati-
bility with the VZ gate is more difficult. In these systems there
are time-dependent single-qubit σZ terms in Eq. (28), which
do not necessarily commute with the interaction. Therefore
VZ gates before the interaction necessitate also updating the
σZ dynamics. However, if the interaction is ZZ (see, e.g.,
Refs. [12,20]), then these single-qubit Z terms commute
through and can be compensated by a subsequent VZ gate.

VII. CONCLUSIONS

In conclusion, we investigate a method to implement a
near-perfect Z gate by controlling the phase of the microwave
drive used for X and Y rotations—the virtual Z gate (VZ

gate). This gate can improve the fidelity of circuits with a
large number of single-qubit gates, can be used to efficiently
correct typical gate errors, and to implement arbitrary SU(2)
gates given a calibrated Xπ/2 gate. In this paper we used VZ

gates to correct single-qubit rotation errors, but the gate should
have wide applicability for improving two-qubit gates. In
particular, as the number of qubits increases, crosstalk Z errors
will be ubiquitous. The VZ gate is a low-overhead method
for correcting these type of errors. By using pulse-shaping
techniques to minimize leakage and VZ gates to correct rotation
errors we demonstrated a hybrid pulse with leakage limited by
the qubit temperature and gate fidelity limited by coherence.
Further improvements in leakage are limited by the qubit
temperature.
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