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Strong-coupling corrections to ground-state properties of a superfluid Fermi gas
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We theoretically present an economical and convenient way to study ground-state properties of a strongly
interacting superfluid Fermi gas. Our strategy is that complicated strong-coupling calculations are used only to
evaluate quantum fluctuation corrections to the chemical potential μ. Then, without any further strong-coupling
calculations, we calculate the compressibility, sound velocity, internal energy, pressure, and Tan’s contact, from
the calculated μ without loss of accuracy, by using exact thermodynamic identities. Using a recent precise
measurement of μ in a superfluid 6Li Fermi gas, we show that an extended T -matrix approximation (ETMA)
is suitable for our purpose, especially in the BCS-unitary regime, where our results indicate that many-body
corrections are dominated by superfluid fluctuations. Since precise determinations of physical quantities are not
always easy in cold Fermi gas physics, our approach would greatly reduce experimental and theoretical efforts
toward the understanding of ground-state properties of this strongly interacting Fermi system.
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While the tunability of various physical parameters, such
as an interaction associated with a Feshbach resonance, is an
advantage of ultracold Fermi gases [1–3], the fact that precise
measurements are not always easy (compared to the electron
condensed-matter systems) is a weak point of this system. This
becomes more serious in examining ground-state properties
of a strongly interacting superfluid Fermi gas [4–6], because
some fundamental observables, such as the spin susceptibility
[7] and specific heat [8], vanish at T = 0.

Overcoming this difficulty may also contribute to the
development of other research fields, e.g., neutron-star physics.
Since the recent discoveries of massive neutron stars [9,10], the
internal structure of a neutron star has attracted much attention
with renewed interest [11–13]. Since the low-density region
of a neutron-star interior is expected to be similar to a strongly
interacting superfluid Fermi gas at T ∼ 0 [14,15], latter atomic
system may be used as a quantum simulator for the former
nuclear case.

In this paper, as a possible way to resolve the above-
mentioned problem existing in cold Fermi gas physics, we
theoretically present a set of ground-state quantities with
high accuracy and reliability, in the BCS-unitary regime of a
superfluid Fermi gas. Our strategy is that we first use the recent
measurement of the chemical potential μ in this regime of a
superfluid 6Li Fermi gas [16], to find a strong-coupling theory
which can reproduce the experimental data. Then, combining
this theory with exact thermodynamic identities, we evaluate
several fundamental quantities, such as compressibility κT ,
sound velocity vs, internal energy E, pressure P , and Tan’s
contact C [17], from the calculated μ. An advantage of this
approach is that all the calculated quantities have the same
accuracy, because calculations from μ only rely on exact
thermodynamic formulas. Thus, when one of the calculated
quantities (≡ X) well explains highly precise experimental
data, one may understand that the other quantities also have the
same reliability as X. (In this paper, μ is used as X.) Another
advantage is that, by grouping physical quantities in this

manner, strong-coupling effects on them can be summarized
as quantum fluctuation corrections to X.

We consider a two-component homogeneous superfluid
Fermi gas, described by the BCS Hamiltonian in the two-
component Nambu representation [18],

H =
∑

p

�†
p[ξ pτ3 − �τ1]� p − U

∑
q

ρ+(q)ρ−(−q). (1)

In this paper, we take kB = h̄ = 1, and the system volume V

is taken to be unity. In Eq. (1), � p = (c p,↑,c
†
− p,↓)T is the two-

component Nambu field, and τi=1,2,3 are the corresponding
Pauli matrices. c p,σ is the annihilation operator of a Fermi
atom with pseudospin σ =↑ , ↓, describing two atomic
hyperfine states. ξ p = p2/(2m) − μ is the kinetic energy of
a Fermi atom with a mass m, measured from the chemical
potential μ. � is the superfluid order parameter, which is
taken to be real and parallel to the τ1 component, without
loss of generality. ρ± = [ρ1(q) ± iρ2(q)]/2 is the generalized
density operator, where ρ1(q) = ∑

p �
†
p+q/2τ1� p−q/2 and

ρ2(q) = ∑
p �

†
p+q/2τ2� p−q/2 physically mean amplitude and

phase fluctuations of �, respectively [19,20]. We measure the
interaction strength in terms of the s-wave scattering length
as , which is related to a bare attractive interaction −U as
m/(4πas) = −U−1 + ∑

p m/ p2.
The first step is to find a strong-coupling theory which

can reproduce the recently observed chemical potential μ in
a 6Li superfluid Fermi gas far below the superfluid phase
transition temperature Tc (T/TF � 0.06, where TF is the Fermi
temperature) [16]. In this regard, Fig. 1 shows that an extended
T -matrix approximation (ETMA) [21–23] well explains this
result, without any fitting parameters. ETMA gives the value
of the Bertsch parameter [24] as ξB = 0.381, which is also
close to ξB = 0.376(4) obtained by another experiment [8].
We briefly note that, because of Tc/TF ∼ 0.2 � 0.06 in the
unitary regime, μ shown in Fig. 1 is actually almost the same
as the ground-state result in this region [25].
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FIG. 1. Calculated chemical potential μ in ETMA, in the BCS-
BEC crossover regime of a superfluid Fermi gas. εF and kF are the
Fermi energy and Fermi momentum, respectively. The gray curve
shows the recent experiment on a 6Li superfluid Fermi gas in the
BCS-unitary regime at T/TF � 0.06 [16]. Following this experiment,
we also set T/TF = 0.06. TMA and MF mean the non-self-consistent
T -matrix approximation and BCS-Leggett theory, respectively. The
inset shows the superfluid order parameter �.

ETMA is characterized by a 2 × 2-matrix self-energy �̂(p)
in the 2 × 2-matrix single-particle thermal Green’s function
Ĝ(p) = [Ĝ0(p)−1 − �̂(p)]−1. Diagrammatically, the ETMA
�̂(p) is given as Fig. 2(a) (where Ĝ0(p) = [iωn − ξ pτ3 +
�τ1]−1 is the BCS Green’s function in the Nambu representa-
tion) [26]. In Fig. 2(a), the particle-particle scattering matrix,

(
−+ −−
++ +−

)
= −U

[
1 + U

(
�−+ �−−
�++ �+−

)]−1

, (2)

describes superfluid fluctuations, where

�α,α′ (q) = T
∑

p

Tr[ταĜ0(p + q)τα′Ĝ0(p)] (3)

is a pair-correlation function. The expression for the ETMA
self-energy is given by

�̂(p) = −T
∑

q

∑
α,α′=±

α,α′ (q)ταĜ(p + q)τα′ . (4)

The ETMA chemical potential μ in Fig. 1 and the su-
perfluid order parameter � shown in the inset in Fig. 1
are self-consistently determined by numerically solving the

Σ = Σ   =(a) ETMA:

Γα,α′

τα τα′G
^

G0^^
^(b) TMA:

FIG. 2. Feynman diagrams describing the self-energy �̂. (a)
ETMA. (b) TMA. The double and single solid lines represent the
dressed Green’s function Ĝ and the bare one Ĝ0, respectively. The
wavy line shows the particle-particle scattering matrix α,α′ . The solid
circles are Pauli matrices.

number equation, n = T
∑

p Tr[τ3Ĝ(p)], together with the
gap equation,

1 = −4πas

m

∑
p

[
1

2E p
tanh

E p

2T
− m

p2

]
, (5)

where E p =
√

ξ 2
p + �2 is the Bogoliubov dispersion [23].

Although it is believed that the BCS-Leggett theory [4]
can qualitatively describe BCS-BEC crossover physics at
T = 0, Fig. 1 shows that it quantitatively overestimates the
magnitude of μ. Since thermal fluctuations are suppressed
far below Tc, the difference between the ETMA result and
this mean-field result seen in Fig. 1 comes from quantum
fluctuations existing even at T = 0. Figure 1 also shows that
the inclusion of many-body corrections to μ is insufficient
in the non-self-consistent T -matrix approximation (TMA)
[27–29]. Here, the TMA self-energy is given by replacing
the dressed Green’s function Ĝ in Eq. (4) with the bare one
Ĝ0 [see also Fig. 2(b)]. The (strong-coupling) Luttinger-Ward
approach (LW) [30], which is given by replacing all the bare
Green’s functions Ĝ0 in the pair-correlation function in Eq. (3)
by the dressed ones Ĝ, gives μ(T = 0)/εF = 0.36 in the
unitary limit (where εF is the Fermi energy), which is somehow
smaller than the experimental value (μ/εF = 0.38) [8,16],
indicating slight overestimation of quantum fluctuations.

To see the background physics of strong-coupling cor-
rections to μ, it is convenient to approximately treat the
particle-particle scattering matrix αα′ in Eq. (2) as a constant
eff(< 0), and extract the τ3 component from the self-energy
(≡ �̂3), which has the form �̂3 = eff(n/2)τ3 in ETMA. When
we only include this effect, the resulting μ shifts from the
BCS-Leggett result (μMF) as μ = μMF − |eff|n/2 < μMF,
which qualitatively explains the reason for the smaller μ

in ETMA compared to the BCS-Leggett result. A similar
correction is also obtained in TMA, where the number
density n in the correction term δμ = −|eff|n/2 is replaced
by the mean-field number density n0 = T

∑
p Tr[τ3Ĝ

0(p)],
reflecting the difference between ETMA and TMA self-
energies shown in Fig. 2. Since n0 decreases from n with
increasing the interaction strength in the BCS-unitary regime
[5], the TMA correction becomes smaller than the ETMA
case, as shown in Fig. 1. We note that, although the correction
δμ = −|eff|n/2 looks similar to the ordinary Hartree shift
EHartree = −Un/2, EHartree actually vanishes in ETMA, as
well as in TMA, because of the vanishing bare interaction
(U → +0) in these renormalized theories with an infinitely
large energy cutoff. Instead, δμ(T = 0) comes from superfluid
fluctuations [31–33] existing even at T = 0.

We now employ ETMA to examine other ground-state
quantities in the BCS-BEC crossover region. As far as we use
ETMA only for the purpose of the evaluation of μ appearing
in an exact thermodynamic expression for a physical quantity
X, the calculated X should still have the same accuracy as the
ETMA μ in Fig. 1.

The first nonvanishing example is the isothermal compress-
ibility κT . This can be obtained from μ via the thermodynamic
identity,

κT = 1

n2

(
∂n

∂μ

)
T

. (6)
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FIG. 3. Calculated isothermal compressibility κT in the BCS-
BEC crossover region at T/TF = 0.06. κ0 = 3/(2nεF) is the com-
pressibility in a free Fermi gas at T = 0. In this figure, we use the
same line styles as those in Fig. 1.

Figure 3 shows κT (T/TF = 0.06) obtained by numerically
evaluating the derivative in Eq. (6) by considering two cases
with slightly different densities in ETMA. In the BCS-unitary
regime, we see that the calculated κT agrees well with the
experiment on a 6Li Fermi gas [16], as well as other two
experiments on 6Li Fermi gases [7,8]. On the other hand, the
ETMA result deviates from the observed κT in the BEC regime
when (kFas)−1 � 0.8 [8], which we will comment on later.

The larger κT in ETMA than the mean-field result in Fig. 3
indicates the importance of the Stoner enhancement. When we
use Eq. (6) to calculate κT using the ETMA Green’s function
Ĝ, the Ward identity [34] is automatically satisfied, which
guarantees consistency between the self-energy and the three-
point vertex for κT . In ETMA, this three-point vertex consists
of RPA (random-phase approximation) type infinite series
of bubble diagrams. The resulting ETMA compressibility
symbolically has the form κT ∼ κMF

T /[1 − WκMF
T ] (where W

is a positive constant). The Stoner factor, 1 − WκMF
T (<1),

enhances κT compared to the mean-field value κMF
T , as seen in

Fig. 3. In TMA, on the other hand, the consistent three-point
vertex to the TMA self-energy is given by truncating the RPA
series up to O(W ), leading to κT ∼ κMF

T [1 + WκMF
T ]. Thus,

although the Stoner enhancement is partially included in TMA,
the TMA compressibility is smaller than the ETMA case, as
shown in Fig. 3.

Noting that the adiabatic compressibility κS coincides with
κT at T = 0 because of the vanishing entropy S(T = 0), we
can evaluate the sound velocity vs(T = 0) with the same
accuracy as μ and κT from

vs(T = 0) = 1√
nmκS

= 1√
nmκT

. (7)

Since the calculated vs is supported by the experiment on μ

in the BCS-unitary regime [16], it would give a constraint to
experiments in this region. Figure 4 shows that, among the
three experiments [35–37], the observed vs by the Bragg spec-
troscopy [37] is in good agreement with our result. Figure 4
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FIG. 4. Calculated sound velocity vs at T = 0, normalized by the
Fermi velocity vF. BCS, the weak-coupling BCS result, vs = vF/

√
3

[6,19]. We also show results of the combined BCS-Leggett theory
with GRPA (MF-GRPA) and Luttinger-Ward approach (LW) [30]. In
calculating vs from Eq. (7), we have approximately used κT in Fig. 3
for the compressibility at T = 0.

also shows that, compared to the result by the combined mean-
field theory with the generalized random-phase approximation
(MF-GRPA) [20], vs in ETMA is away from the weak-coupling
BCS result even at (kFas)−1 = −1, indicating the importance
of strong-coupling corrections even there. Indeed, ETMA
sound velocity agrees with vs obtained by LW [30] in the BCS
regime (see Fig. 4). The difference between ETMA and LW
seen in the BEC side might come from the different treatments
of collective modes between the two theories [38].

However, our approach has room for improvement in the
BEC regime. In this regime, the sound mode is described by
the Bogoliubov phonon in a molecular BEC with a repulsive
interaction UM = 4πaM/(2m). Since ETMA overestimates the
molecular scattering length as aM = 2as in this regime (note
that the correct value equals aM = 0.6as [39]), ETMA would
also overestimate vs(∝

√
UM) there. Other quantities in ETMA

would also be affected by this overestimation in the BEC
region. The discrepancy between the ETMA compressibility
and the experiment [8] in this regime shown in Fig. 3 also
implies the necessity of a strong-coupling theory beyond the
current ETMA [40]. To see to what extent our combined
ETMA approach with exact thermodynamic identities works
in the BEC regime, highly accurate experimental data for μ

in this regime would be helpful. However, one should note
that our approach using exact thermodynamic identities is
not restricted to the validity of ETMA. That is, once one
can replace ETMA by a more sophisticated theory which
quantitatively well describes μ in the BEC regime, our
approach using exact thermodynamic identities can again
evaluate other physical quantities in the BEC regime with
high accuracy as μ, as in the case of the BCS side.

As shown in Fig. 5, the ground-state energy E can also be
obtained from μ, via the differential equation [41],

μ

εF
= E

EFG
− (kFas)−1

5

d(E/EFG)

d(kFas)−1
, (8)
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FIG. 5. Calculated ground-state energy E of a superfluid Fermi
gas in the BCS-unitary region. EFG = (3/5)nεF is the ground-state
energy of a free Fermi gas. The solid and dashed lines show results of
ETMA and Gaussian pair fluctuation theory (GPF), respectively. The
insets (a) and (b) show, respectively, the ground-state pressure P and
Tan’s contact C. In the inset (a), squares represent an experiment on
a 6Li Fermi gas [42]. P0(μ) = [2(2m)3/2/(15π 2)]μ5/2 is the pressure
of a free Fermi gas at T = 0. In the inset (b), filled circles and squares
are experimental data on a 40K Fermi gas [44], and filled triangles are
experimental data on a 6Li Fermi gas [42].

where EFG = (3/5)nεF is the ground-state energy of a free
Fermi gas. One can then obtain the pressure P (T = 0) =
−E + μn shown in Fig. 5(a). ETMA also agrees with the
ENS experiment [42]. We briefly note that the Gaussian
pair fluctuation theory (GPF) [43] slightly overestimates
the internal energy E (see Fig. 5), which is because GPF
underestimates many-body corrections to μ compared to
ETMA.

The accuracy of the calculated internal energy in Fig. 5 is
supported by the experiment on μ [16]. In addition to this,
the correctness of this result can also be checked by further
calculating the Tan’s contact from C = −4πm(∂E/∂a−1

s ). As
shown in Fig. 5(b), the calculated C agrees well with the

recent experiments [42,44], LW [45], as well as GPF [46].
Furthermore, at the unitarity, ETMA result (C/k4

F = 0.098)
also agrees with the experiment on a 6Li Fermi gas (C/k4

F =
0.107(3)) [47], a quantum Monte Carlo (QMC) result (C/k4

F =
0.0996(34)) [48], as well as fixed-node diffusion Monte Carlo
(FNDMC) calculation (C/k4

F = 0.1147(3)) [49].
Although a strongly interacting superfluid Fermi gas at

T � Tc is a candidate for a quantum simulator to study the
neutron-star interior in the low-density region, one should
note that the effective range reff is different between the
two. While reff can be safely ignored in the former atomic
system, it cannot be ignored in the latter, because the value
reff = 2.7 fm becomes comparable to k−1

F even in the relatively
low-density region. Since it is difficult to tune reff in the
current experimental stage of cold-atom physics, we need to
make up for this difference theoretically, when we explore the
neutron-star interior with the help of cold Fermi gas physics.
Our results indicate that ETMA may be a good starting point
for this purpose.

To summarize, we have discussed ground-state quantities
in a strongly interacting superfluid Fermi gas. Instead of
independently evaluating them, we first confirmed that ETMA
can well reproduce the recently observed chemical potential
μ in a 6Li superfluid Fermi gas [16]. Then, combining ETMA
with exact thermodynamic identities, we evaluated the other
quantities in this regime from the calculated μ, without loss of
accuracy. To confirm the validity of this approach, we showed
that some of our results agree with recent experiments (that are
different from the experiment on μ). We also pointed out that
strong-couping effects on these quantities in the ground state
may be summarized as quantum fluctuation corrections to μ.
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