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Dynamical Casimir effect in circuit QED for nonuniform trajectories
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We propose a generalization of the superconducting circuit simulation of the dynamical Casimir effect where
we consider relativistically moving boundary conditions following different trajectories. We study the feasibility
of the setup used in the past to simulate the dynamical Casimir effect to reproduce richer relativistic trajectories
differing from purely sinusoidal ones. We show how different relativistic oscillatory trajectories of the boundaries
of the same period and similar shape produce a rather different spectrum of particles characteristic of their
respective motions.
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I. INTRODUCTION

The observation of the Unruh effect, either directly or
in analog systems, is one of the experimental cornerstones
of quantum field theory in curved space-times and relativis-
tic quantum information. Since field quantization schemes
associated with inertial and accelerated observers are not
equivalent [1], observers uniformly accelerating in what
inertial observers regard as a vacuum will detect a thermal
bath of particles [2]. The temperature T of this thermal bath is
predicted to be proportional to the magnitude a of the proper
acceleration of the detector. The breadth of context in which
this effect has been predicted and derived, including axiomatic
quantum field theory [3], via Bogoliubov transformations
[1], and the response rates of noninertial particle detectors
both perturbatively [1] and nonperturbatively [4–7], has led
physicists to regard it as a universal phenomenon.

Yet generalizations of this effect to other (nonequilibrium)
regimes such as nonuniformly accelerated trajectories [8,9]
and short times are not completely understood, even from
a theoretical point of view [4,7,10–12]. Recently it was
shown [4] that within optical cavities in (1+1) dimensions
an accelerated detector equilibrates to a thermal state whose
temperature is proportional to its acceleration. Provided the
detector is allowed enough interaction time, this effect holds
independently of the cavity boundary conditions [11], though
for sufficiently short time scales (still long enough to satisfy the
Kubo-Martin-Schwinger condition) the temperature decreases
with acceleration in certain parameter regimes [12].

In the classic Unruh effect a uniformly accelerated detector
in an inertial vacuum measures thermal radiation at the Unruh
temperature TU ,

kBTU = �a

2πc
. (1)

Among the problems one encounters when trying to exper-
imentally detect this effect, the two main ones are (a) an
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inability to eternally accelerate anything (hence uniformity
of acceleration cannot always hold) and (b) in practical
terms, difficulty in accelerating a physical detector, such as
a two-level atom, with sufficient control. For these reasons, it
would be extremely useful to have a quantum simulation of
these phenomena. However, its implementation requires some
care.

The first problem involves overcoming the idealization of
uniformity of acceleration by considering generalizations to
nonuniformly accelerating trajectories. Under general con-
ditions, a particle detector undergoing a general noninertial
trajectory will register a colored noise that turns thermal
only under the limiting conditions of uniform acceleration.
The natural setting to consider is oscillatory motion, which
is more convenient for experimental implementations and
extremely interesting from a theoretical point of view. A
recent analysis of detectors undergoing various kinds of
oscillatory motion [7] found that in general such detectors
responded to the vacuum fluctuations of a quantum field and
experienced a constant effective temperature at late times in
these out-of-equilibrium conditions. Three kinds of oscilla-
tory motion—sinusoidal motion, sinusoidal acceleration, and
alternating uniform acceleration—were considered and the
effective temperature for each was found to depend more
strongly on the geometry of the world line than on the instan-
taneous proper acceleration. The behavior of their steady-state
temperature was seen to be more similar to each other than
to that of the Unruh temperature of an idealized uniformly
accelerated detector provided the time scale of the detec-
tor’s response was longer than the period of the oscillatory
motion.

The second problem, that of the difficulty of (relativis-
tically) accelerating a detector (even under the restriction to
oscillatory motion), can be addressed by considering an inertial
detector and a moving reflective boundary (or mirror). For a
mirror that uniformly accelerates at late times, the detector
experiences the same thermal radiation as predicted in the
original Unruh effect. In spite of considerable theoretical
support for the Unruh effect, as yet it lacks direct experimental
proof. Experimental explorations of relativistic particle cre-
ation from the vacuum [10,13,14] are therefore particularly
interesting.
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Here we analyze the behavior of oscillatory boundaries in
the context of circuit QED. Superconducting circuits offer an
ideal test bed for implementation of this kind of experiment.
This idea is reinforced by the fact that the Unruh effect
is strongly connected with the dynamical Casimir effect.
As such, it may be possible to modify settings where the
latter is simulated [10,13,14] to study particle creation due
to effectively relativistic noninertial trajectories of boundary
conditions. We consider the same three motions as in Ref. [7]
and compute the number of photon quanta emitted as a result.

In Sec. II we review the different relativistic moving bound-
ary conditions that we investigate and discuss in Sec. III how
to interpret these in the context of circuit QED. We compute
in Sec. IV the output number of photons for each trajectory
for a variety of realistic values of the input parameters and
discuss this difference for different relativistic trajectories in
Sec. V. We conclude in Sec. VII with a brief discussion of the
implications of our work for detecting the Unruh effect.

II. RELATIVISTIC TRAJECTORIES AND MOVING
BOUNDARIES

Our aim is to simulate the different relativistic motions of
a boundary using a slight modification of the setup previously
used to simulate the dynamical Casimir effect [10,13–15], to
compute the photon emission spectrum, and to extract from
this an effective temperature. This setup, a coplanar waveguide
(CPW) terminated by a superconducting quantum interference
device (SQUID), will be used to simulate a moving boundary
described by x = z(t), where t is the coordinate time in the
laboratory frame. The relativistic trajectories that we will sim-
ulate are the ones studied in [7]. These are sinusoidal motion
(SM), sinusoidal acceleration (SA), and alternating uniform
acceleration (AUA). The periodic boundary motion is in one
dimension and we define its directional proper acceleration as
its (positive-definite) proper acceleration multiplied by the sign
of the spatial component of the 4-acceleration. We denote the
periodicity of the motion by ωd , anticipating that the external
driving flux that we will use to simulate these trajectories will
also have the same natural frequency, as we will see in detail
later on.

Sinusoidal motion is one for which the 4-position of the
boundary is given by

z
μ

SM(t) = (t,0,0,−R cos(ωdt)), (2)

where R is the oscillation amplitude and ωd is the oscillation
frequency in coordinate time. In order for the motion to
remain subluminal we must have Rωd < 1 in units with c = 1.

The proper time τ of the detector is τ = ω−1E(ωt,(Rω)2),
where E(φ,m) is an elliptic integral of the second kind. The
directional proper acceleration is

αSM(t) = Rω2
d

cos ωdt[
1 − (

Rωd

v

)2
sin2 ωdt

]3/2 ,

whereas the proper acceleration aSM(t) = |αSM(t)|. Note that
for Rωd � 1 the acceleration is proportional to the position,
as expected for nonrelativistic motion. The oscillation period
is tp = 2π/ωd [or τp = ω−1

d E(2π,(Rωd

v
)2) in proper time].

The time-averaged proper acceleration (over one oscillation
period) is

ā = vωd tanh−1 Rωd

v

E
(R2ω2

d

v2

) . (3)

The acceleration profile for the SM world line develops extra
peaks due to relativistic dilation effects that create periodic
positive double peaks (or kicks) in the two-point correlation
function for the photon field [7].

Sinusoidal acceleration (employed in a experimental pro-
posal by Chen and Tajima [16], in which a particle of mass
m and charge e is placed at one of the magnetic nodes of
an electromagnetic standing wave with frequency ωd and
amplitude E0) is described by the world line

z
μ

SA(t) =
⎡
⎣t,0,0,− v

ωd

arcsin

⎛
⎝ 2 α

vωd
cos(ωdt)√

1 + 4
(

α
vωd

)2

⎞
⎠
⎤
⎦ (4)

with directional proper acceleration

αSA(t) = 2α cos ωdt,

where α = eE0
m

has units of acceleration and the proper
time of the detector τ is related to the coordinate time
t by τ (t) = ω−1

d F (ωdt,−4α2/v2ω2
d ), where F (φ,m) is the

elliptic integral of the first kind. The oscillation period
of this world line is tp = 2π/ωd or a proper time period
of τp = ω−1

d F (2π,−4α2/v2ω2
d ). The time-averaged proper

acceleration reads

ā =
vωd sinh−1

(
2 α

vωd

)
F
(
π/2,−4

(
α

vωd

)2) (5)

and for low accelerations (|α| � vωd ) and nonrelativistic
velocities we obtain zSA ∼ zSM.

For AUA the trajectory of the boundary (parametrized in
the accelerated observer’s proper time) is

z
μ

AUA(τ ) =
{

v2

a

[
sinh

a

v

(
τ − nτp

2

)
+ 2n sinh

aτp

4v

]
,0,0,

(−1)nv2

a

[
cosh

a

v

(
τ − nτp

2

)
+ {(−1)n − 1} cosh

aτp

4v

]}
(6)

and so it experiences constant acceleration a that periodically alternates in sign

a
μ

AUA(τ ) =
(
a sinh

a

v

[
τ − nτp

2

]
,0,0,(−1)na cosh

a

v

[
τ − nτp

2

])
, (7)

where n(τ ) ≡ floor( 2τ
τp

+ 1
2 ), with floor(x) the largest integer

less than or equal to x. We consequently have ā = a. We

illustrate in Fig. 1 the position (top) and proper acceleration
(bottom) as functions of time.
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FIG. 1. The top graph shows the position as a function of time.
The bottom shows the directional acceleration as a function of time.
In both cases the trajectories are distinguished as follows: sinusoidal
motion, red dashed line; sinusoidal acceleration, blue dotted line; and
alternating uniform acceleration, green dot-dashed line. The average
acceleration for all trajectories is ā = 1.2 × 1019 m s−2 and the
driving frequency is ωd/2π = 28 GHz.

III. CIRCUIT QED SETUP

To simulate these boundary motions we make use of the
setup [14] (illustrated in Fig. 2 of [14]), where a SQUID
modulates the boundary condition of a CPW. The CPW is
at x < 0 and the SQUID is at x = 0.

The dynamical flux away from the SQUID is found to
respect the Klein-Gordon equation

∂2

∂t2
�(x,t) − v2 ∂2

∂x2
�(x,t) = 0 (8)

FIG. 2. Fourier coefficients of the SA trajectory (blue squares)
and AUA (green circles).

with propagating velocity v = 1/
√

C0L0, where C0 and L0

are the capacitance and inductance per unit length of the CPW.
The equation of motion at the boundary is

0 = CJ �̈(0,t) +
(

2π

φ0

)2

EJ (t)�(0,t) + 1

L0

∂�(x,t)

∂x

∣∣∣∣
x=0

� �(0,t) + 1

L0EJ (t)

(
φ0

2π

)2
∂�(x,t)

∂x

∣∣∣∣
x=0

, (9)

where φ0 = h
2e

is the magnetic flux quantum, CJ is the
capacitance of the symmetric SQUID, which has a small
enough loop (so that self-inductance is neglected) and operates
in the phase regime, and EJ (t) = EJ (�ext(t)) is the tunable
Josephson energy whose arbitrary time dependence can be
given by controlling �ext, the external flux threading through
the SQUID. The second equality follows under the assumption
that the SQUID plasma frequency is much larger than any other
frequencies in the circuit. This boundary can be tuned by the
externally applied magnetic flux. Remember that for a field
terminated by a moving mirror, we would have the boundary
condition

φ(t,Z(t)) = 0, (10)

where Z(t) is some prescribed trajectory.
Note that the above equation can be written in the

approximate form

φ(t,x)|x=0 + [Z0 − z(t)]
∂φ(t,x)

∂x

∣∣∣∣
x=Z0

= 0 (11)

upon expanding Eq. (10) about the origin, where Z(t) =
Z0 − z(t) with z(t) � Z0. Equation (9) plays the role of
the boundary condition on the flux field in the CPW and
is designed to simulate the boundary condition (11). We
remark that the boundary condition (9) does not exactly
correspond to a Dirichlet condition and instead it is similar
to it only in an approximate way. In principle, identifying this
simulation with the original perfect-mirror Dirichlet boundary
condition employed in the classic literature on the dynamical
Casimir effect [17–19] can be problematic. This is because the
condition (9) well approximates a pure Dirichlet condition at
a moving boundary only when |dz(t)/dt | � c [20].

In our case this is not a concern for two reasons. First,
the dynamical Casimir effect does not require strict use of
a Dirichlet condition; indeed it occurs for a general set of
time-dependent boundary conditions near relativistic regimes
[21]. Second, the boundary condition (11) [which is faithfully
approximated by (9) for field frequencies much smaller than
the SQUID plasma frequency [22]] produces the same particle
spectrum (at leading order) as the pure Dirichlet condition.
Writing V = ωt + kωx and U = ωt − kωx, the full solution
to (8) that respects (10) is given by

φ(t,x) = f (V ) − f (p+(U )) + g(U ) − g(p−(V )), (12)

where ωt ± kωz±(t) = p±(ωt ∓ kωz±(t)), in the case of two
boundaries with trajectories V = p+(U ) and U = p−(V )
respectively determined in terms of the prescribed boundary
motions x = z±(t). We set f (V ) = 0 as there is neither a left
boundary nor incoming right-propagating signals and write
z−(t) = z(t).
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The general method for interpreting this equation (for left-
moving modes that are reflected from the boundary) is to write
(12) as

�(x,t) =
√

�Z0

4π

∫ ∞

0

dω√
ω

[ain(ω)e−i(−kωx+ωt)

+ aout(ω)e−i(kωx+ωt) + H.c], (13)

where Z0 = √
L0/C0 is the characteristic impedance and kω =

|ω|/v is the wave vector. The subscripts “out” and “in” in
the operators stand for the direction in which the signals are
propagating, with ain(ω) = ∫

dUg(U )e−iωU , and we interpret
aout(ω) = ∫

dVg(p+(V ))eiωV . Rather than directly computing
this latter integral, we obtain aout(ω) by requiring the field
(13) to satisfy the boundary condition (9). After a Fourier
transformation this yields

0 =
(

2π

�0

)2 ∫ ∞

−∞
dω g(ω,ω′)

[
	(ω)

(
ain

ω + aout
ω

) + 	(−ω)
(
ain

−ω + aout
−ω

)†] − ω′2CJ

(
ain

ω′ + aout
ω′

) + i
kω′

L0

(
ain

ω′ − aout
ω′

)
, (14)

where

g(ω,ω′) = 1

2π

√
|ω′|
|ω|

∫ ∞

−∞
dt EJ (t)e−i(ω−ω′)t . (15)

Consider an arbitrary driving motion EJ (t) with Fourier decomposition

EJ (t) = a0

2
+

∑
n

an cos(ωdnt) +
∑

n

bn sin(ωdnt). (16)

Writing the trigonometric functions as complex exponentials, assuming ω′ > 0, and if the SQUID plasma frequency is large
(|ω|2CJ � 1) we find

0 = ain
ω

(
1 + ikωL0

eff

) + aout
ω

(
1 − ikωL0

eff

) +
∑

n

an

a0

(√
ω

ω − nωd

θ (ω − nωd )
(
ain

ω−nωd
+ aout

ω−nωd

)

+
√

ω

nωd − ω
θ (nωd − ω)

(
ain

nωd−ω + aout
nωd−ω

)† +
√

ω

ω + nωd

(
ain

ω+nωd
+ aout

ω+nωd

))

+
∑

n

bn

a0

(
−

√
ω

ω − nωd

θ (ω − nωd )
(
ain

ω−nωd
+ aout

ω−nωd

) −
√

ω

nωd − ω
θ (nωd − ω)

(
ain

nωd−ω + aout
nωd−ω

)†

+
√

ω

ω + nωd

(
ain

ω+nωd
+ aout

ω+nωd

))
, (17)

where

L0
eff =

(
�0

2π

)2 1

L0

(
2

a0

)
(18)

and we have set ω′ → ω.
Equation (17) is the general relation determining aout

ω in terms of ain
ω for an arbitrary driving force. We can solve this equation

perturbatively by writing

aout
α = aout

α0 +
∑

n

aout
αn

an

a0
+

∑
n

bout
αn

bn

a0i
+ O(2), (19)

where we require an

a0
� 1 and bn

b0
� 1. Here O(2) means second order in an/a0 and bn/a0 With this, the zeroth-order term is

0 = ain
ω

(
1 + ikωL0

eff

) + aout
ω0

(
1 − ikωL0

eff

)
, (20)

yielding

aout
ω0 = −1 + ikωL0

eff

1 − ikωL0
eff

ain
ω = R(ω)ain

ω . (21)

Using (21) and upon imposing the requirement that kωL0
eff � 1, which gives an upper bound on frequencies where our treatment

is valid, the first-order term is

aout
ωn = 2iL0

eff

v

[√
ω

√
ω − nωdθ (ω − nωd )ei(kω+kω−nωd

)L0
effain

ω−nωd
− √

ω
√

nωd − ωθ (nωd − ω)ei(kω−knωd −ω)L0
effa

in†
nωd−ω

+√
ω

√
ω + nωde

i(kω+kω+nωd
)L0

effain
ω+nωd

]
(22)
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and similarly

bout
ωn = 2iL0

eff

v

[−√
ω

√
ω − nωdθ (ω − nωd )ei(kω+kω−nωd

)L0
effain

ω−nωd
+ √

ω
√

nωd − ωθ (nωd − ω)ei(kω−knωd −ω)L0
effa

in†
nωd−ω

+√
ω

√
ω + nωde

i(kω+kω+nωd
)L0

effain
ω+nωd

]
, (23)

where we substituted kα = |α|
v

. Substituting Eqs. (21)–(23) into (19), we finally get

aout
ω = R(ω)ain

ω +
∑

n

([
an

a0
P (ω,ω − nωd ) − i

bn

a0
P ∗(ω,ω − nωd )

]
ei(kω+kω−nωd

)L0
effain

ω−nωd

+
[
an

a0
P ∗(ω,nωd − ω) − i

bn

a0
P (ω,nωd − ω)

]
ei(kω−knωd −ω)L0

effa
in†
nωd−ω

+
[
an

a0
P (ω,ω + nωd ) − i

bn

a0
P (ω,ω + nωd )

]
ei(kω+kω+nωd

)L0
effain

ω+nωd

)
, (24)

where we have defined

P (ω′,ω′′) = 2iL0
eff

v

√
ω′√ω′′θ (ω′)θ (ω′′). (25)

If the initial photon population of the field is given by that of a thermal bath of temperature T , n̄in
ω = [exp(�ω/KβT ) − 1]−1, then

n̄out
ω = |R(ω)|2n̄in

ω + 4(L0
eff)

2

v2

∑
n

[
ω(|ω − nωd |)

∣∣∣∣an

a0
+ i

bn

a0

∣∣∣∣
2

n̄in
|ω−nωd |

+ω(nωd − ω)

∣∣∣∣an

a0
+ i

bn

a0

∣∣∣∣
2

	(nωd − ω) + ω(ω + nωd )

∣∣∣∣an

a0
− i

bn

a0

∣∣∣∣
2

n̄in
ω+nωd

]
. (26)

Requiring that kBT � �ωd , we neglect terms containing the small factor n̄in
ω+nωd

, finally obtaining

n̄out
ω = |R(ω)|2n̄in

ω + 4
(
L0

eff

)2

v2|a0|2
∑

n

{|an + ibn|2
[
ω|ω − nωd |n̄in

|ω−nωd | + ω(nωd − ω)	(nωd − ω)
]}

, (27)

and upon using

EJ (t) = a0

2
+

∑
n

an cos(ωdnt) +
∑

n

bn sin(ωdnt)

= E0
J + δEJ (t) (28)

we compute an effective length

Leff =
(

φ0

2π

)2 1

EJ (t)

1

L0

=
(

φ0

2π

)2 1

E0
J + δEJ (t)

1

L0

≈ L0
eff − δLeff (29)

with

δLeff = L0
eff

(
δEJ (t)

E0
J

)
. (30)

If we want to simulate a trajectory with a position given by
x = Z(t), then upon comparison with (11) we obtain

z(t) = δLeff ⇒ δEJ (t) = E0
J

L0
eff

z(t), (31)

and given z(t) and its Fourier coefficients {ã0,ãm,b̃m} we find

ã0 = 0,

ãm = 4

a2
0L0

(
φ0

2π

)2

am,

b̃m = 4

a2
0L0

(
φ0

2π

)2

bm.

(32)

Recall that the external driving field as a function of the exter-
nal flux is given by EJ (t) = 2EJ | cos(πφext(t)

φ0
)|. Consequently,

φext(t) = φ0

π
cos−1

(
EJ (t)

2EJ

)
, (33)

TABLE I. Time-averaged proper accelerations for the three
trajectories studied. Here F (φ,m) and E(φ,m) are elliptic integrals
of the first and second kinds, respectively.

SM SA AUA

ā
vωd tanh−1 Rωd

v

E( R2ω2
d

v2 )

vωd sinh−1 (2 α
vωd

)

F( π
2 ,−4( α

vωd
)2)

a
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TABLE II. Parameters used in [14].

Parameter SM

ωd

2π
18 GHz

E0
J = a0

2 1.3EJ

a1
( a0

2 )
4

EJ Ic(
φ0
2π

)

Ic 1.25 μA
CJ 90 fF
v 0.4c

Z0 55 


ωs 37.3 GHz

so the external flux as a function of the desired trajectory is

φext(t) = φ0

π
cos−1

[
E0

J

2EJ

(
1 + z(t)

L0
eff

)]
. (34)

IV. PARAMETERS FOR RELATIVISTIC TRAJECTORIES

In this section we suggest physically relevant parameters
for the relativistic SM, SA, and AUA trajectories (described
in Sec. II) and compute the number of photons produced for
each. From Eqs. (2), (4), and (6) we see that each trajectory has
a characteristic acceleration parameter (generically denoted
by A) that will roughly determine the scale of the proper
acceleration; A is Rω2

d for SM, α for SA, and a for AUA,
respectively.

For each trajectory, the time-averaged proper acceleration is

ā =
∫ τ (t=2π/ωd )
τ (t=0) dτ a(τ )∫ τ (t=2π/ωd )

τ (t=0) dτ
, (35)

where τ is the proper time. We reproduce these in Table I for
convenience. We notice that ā is a monotonically increasing
function of the accelerating parameter A for fixed frequency.
For fixed A and varying frequency, ā is monotonically
increasing for SM and monotonically decreasing for SA.

As an estimator of how relativistic the trajectory is we can
compare āt with the effective speed of light v. If āt � v the
trajectory would be significantly relativistic. Since v = 2

5c this
means that āt = ā2π

ωd
≈ 2

5c or ā 2π
ωd

5
2c

≈ 1, so if ωd

2π
∼ O(1010)

TABLE III. Parameters used for each trajectory.

Parameter SA AUA

ā 20 × 1018 m s−2 20 × 1018 m s−2

A α = 13.725 × 1018 m s−2 a = 20 × 1018 m s−2

ωd/2π 14.6 GHz 14.6 GHz
E0

J = a0
2 0.1002EJ 0.1006EJ

a1
( a0

2 )
4

( a0
2 )
4

EJ Ic(
φ0
2π

) Ic(
φ0
2π

)
Ic 1.25 μA 1.25 μA
CJ 90 fF 90 fF
v 0.4c 0.4c

Z0 55 
 55 


ωs/2π 37.3 GHz 37.3 GHz

Hz, then ā ∼ O(1017) m s−2. We remark that by ω and ωd we
mean angular frequencies, that is, 2πν, where ν is the linear
frequency.

The values of the parameters employed in [14] are
summarized in Table II. These parameters yield a proper
acceleration for the sinusoidal motion simulated in [14] of
ā = 9.054 × 1017 m s−2 and then ā 2π

ωd

5
2c

= 0.419. For this
acceleration and the oscillation period considered, neither the
SA nor AUA trajectories will yield any significant difference
with the simple sinusoidal motion as we will see in Sec. VI.

In order to obtain significant differences between the SM
and the other two trajectories we need to work with larger ā so
as to reach speeds that are closer to the effective speed of light
and thus have larger contributions from higher-than-first-order
Fourier coefficients in (16). We are constrained by the fact that
the speed of the wall cannot be faster than the speed of light.
Both the SA and AUA trajectories already incorporate this
constraint by construction, but in the case of sinusoidal motion,
not every value of the characteristic acceleration parameter is
possible. In this case we will have the constraint

Rωd < v. (36)

This means that for a maximum driving frequency of ωd

2π
=

40 GHz and v = 0.4c, then R < 0.4775 mm.
We therefore impose three requirements in choosing our

parameters. First, we set ā(A,ωd ) = 20 × 1018 m s−2 and
fix the same driving frequency ωd for the trajectories. Next

FIG. 3. Plots comparing nout at differing thermal bath temperatures T = 0 K (solid line), T = 25 mK (dashed line), and T = 50 mK (dotted
line) and fixed ωd/2π = 14.6 GHz as a function of ω/ωd for the SA trajectory (left) and the AUA trajectory (right). The average acceleration
for both trajectories is ā = 20 × 1018 m s−2. The insets show detail for the second maximum.
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FIG. 4. Output number of photons for varying frequency ω and fixed driving frequencies ωd as indicated in the figure. The solid lines
correspond to the AUA trajectory and the dashed lines to the SA trajectory, where both have the same average acceleration ā = 20 × 1018 m s−2

for ωd/2π = 15 GHz and ā = 21.9 × 1018 m s−2 for ωd/2π = 5 GHz, at T = 0 K (left) and T = 25 mK (right), where T is the temperature
of the thermal bath.

we select the characteristic acceleration parameter A and
driving frequency ωd such that we retain the higher-order
contributions for the SA and AUA trajectories while ensuring

that E0
J

EJ
> 0.1. Finally, we maximize the quantity ā(A,ωd )

ωd
so as

to maximally amplify the contribution of the motions. The first
criterion provides a point of comparison between trajectories,
the second gives a region on the plane (A,ωd ) in which we can
perform the experiment, and the third selects the parameters in
which the trajectory is “maximally relativistic” given the other
constraints.

We find that these criteria imply that α = 13.725 ×
1018 m s−2 for the SA motion and a = 20 × 1018 m s−2 for
the AUA motion and a driving frequency of ωd

2π
= 14.6 GHz

for both trajectories. For the SM, in order to keep the driving
frequency less than the plasma frequency and still achieve
an average acceleration of 20 × 1018 m s−2 we would need
R � 0.398 mm, and the greater the R, the smaller the required
driving frequency. Due to Eq. (36), R < 0.4775 mm, and
to achieve the desired acceleration the minimum driving
frequency is ωd = 31.7 GHz. This driving frequency is much
bigger than the frequency needed for SA and AUA. For
this reason we first consider these two cases, presenting the
analogous results for the sinusoidal case at the end of this work
with the parameters used in [14] (presented in Table II).

We summarize in Table III the experimentally controlled
parameters for the cases we subsequently analyze, unless
otherwise specified.

V. RESULTS

With the parameters presented in Table III, the Fourier
coefficients for the SA and AUA trajectories are nonvanishing
but are quickly suppressed as n increases. We present them
in Fig. 2. In both cases we find that we get an exponential
suppression and so can safely consider only the first three
Fourier coefficients.

Using Eq. (27) we can calculate the output number of
photons as a function of the frequency ω and of the driving
frequency ωd . Fixing the driving frequency as in Table III, we
calculate nout(ω) for different external temperatures. In Fig. 3
we illustrate results for various values of the temperature of
the thermal bath for each motion. We see that second-order
contributions are in principle detectable, as depicted in the
insets.

In Figs. 4 and 5 we calculate nout(ω) (for two different
fixed driving frequencies) and nout(ωd ) (for two different fixed
frequencies), respectively, for two different temperatures of
the thermal bath. For comparison purposes, we present both
trajectories together. We can see that even though small, there
is a difference in the statistics for different trajectories.

We see from Figs. 4 and 5 that the different relativistic
motions are indeed distinguishable from their spectra, with
the distinction becoming more pronounced at larger values of
ωd . The maximum of the curve in Fig. 4 occurs at values ω =
nωd/2. An analytic expression for determining the maxima of

FIG. 5. Output number of photons for varying driving frequency ωd and fixed frequencies ω as indicated in the figure. The solid lines
correspond to the AUA trajectory and the dashed lines to the SA trajectory, where both have the same average acceleration ā = 20 × 1018 m s−2,
at T = 0 K (left) and T = 25 mK (right), where T is the temperature of the thermal bath.
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s s

FIG. 6. Output number of photons for varying ā for fixed driving frequency ωd/2π = 14.6 GHz and varying the characteristic acceleration
parameter A for different frequencies ω as indicated in the plots, where the solid lines correspond to the AUA trajectory and the dashed lines
to the SA trajectory, at T = 0 mK (left) and T = 25 mK (right), where T is the temperature of the thermal bath.

the curves in Fig. 5 can be given in terms of elliptic functions;
we will not reproduce it here.

Finally, we compute the output number of photons as a
function of ā. Note that for AUA, the average acceleration is
only a function of the acceleration parameter while for both
SM and SA, due to the relativistic nature of the trajectories,
the average proper acceleration depends nontrivially on the
characteristic acceleration parameter and the driving frequency
(periodicity of the motion).

Consequently, there are two ways of having a variation
in the acceleration. We can either fix the characteristic
acceleration parameter and vary the driving frequency ωd

or fix the driving frequency ωd and vary the characteristic
acceleration parameter. We will consider the case where we
vary the acceleration by varying the acceleration parameter A,
since this is the variable that carries the units of acceleration.
The result is presented in Fig. 6, where we set the driving
frequency to ωd

2π
= 14.6 GHz. We notice that the output number

of particles is an increasing monotonic function of the average
acceleration.

FIG. 7. Plots comparing nout at a thermal bath temperature of
T = 0 K and fixed ωd/2π = 18 GHz as a function of ω/ωd for the
sinusoidal trajectory (red dashed line), SA trajectory (blue dotted
line), and AUA trajectory (green dot-dashed line). The average
acceleration for all the motions is ā = 9.054 × 1017 m s−2. The
inset shows detail for the difference between the sinusoidal and SA
trajectories.

VI. SINUSOIDAL MOTION AND THE DYNAMICAL
CASIMIR EFFECT

Turning now to the SM case, this is essentially the
same as that considered in the dynamical Casimir effect
(DCE) [10,13,14]. To order Rωd we are unable to produce
any distinctly relativistic effects for this motion as per the
discussion in Sec. III. As such, the DCE provides a cross-check
of our approach. We set all the parameters to be the same as
specified in [14] (presented in Table II). These parameters
give an effective length L0

eff = 0.44 mm and a modulation
R = δLeff = 0.11 mm. With these parameters, we obtain the
output number of photons calculated in [14].

To compare the three trajectories, we set the driving
frequency for SA and AUA to be the same as the sinusoidal
case and we modulate the acceleration parameter such that the
average acceleration is the same for the three of them, which
is ā = 9.054 × 1017 m s−2 as in [14]. In Fig. 7 we present the
result for nout(ω) as a function of ω

ωd
and in Fig. 8 for nout as

a function of ā. We notice that for this relatively small value
of the acceleration, the output photon spectra for SA and SM
are very similar, whereas the spectrum for AUA is smaller.

s

FIG. 8. Plots comparing nout at a thermal bath temperature of
T = 0 K and fixed frequency ω/2π = 9 GHz as a function of ā

where we fix ωd/2π = 18 GHz for the sinusoidal trajectory (red
dashed line), SA trajectory (blue dotted line), and AUA trajectory
(green dot-dashed line).
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We also notice that the additional Fourier coefficients make
noticeable changes in the output spectra only for higher values
of the acceleration, as indicated in Fig. 3 and in contrast to
Fig. 7.

VII. CONCLUSION

We have seen that the dynamical Casimir effect yields
different particle creation distributions depending on the
trajectory of the moving boundary condition. Despite the
limitations concerning the Dirichlet boundary condition in-
herent to the circuit QED implementation that we point out
in this paper, we have shown that a simulation of this effect
in a superconducting circuit can distinguish different particle
creation spectra due to different kinds of relativistic oscillatory
motion (all of them yielding very similar periodic boundary
trajectories as shown in Fig. 1). We have shown that the
simulation of these boundary trajectories is experimentally
attainable with state of the art technology.

To relate our results to the phenomenology of the Unruh
effect we can associate the average number of observed
particles created by the time dependence of the boundaries
with a temperature estimator. This can be done by relating
the observed output flux density to nout in the same way as
in [14]. Doing so yields a temperature estimator proportional
to average number of created particles T ∝ �ωkbnout. This
temperature estimator can be compared with the temperature
perceived by an accelerated Unruh-DeWitt detector following
the same trajectories we impose in our moving boundaries.

These results may be helpful in shedding some light on a
long debated question: How much can the dynamical Casimir
effect be discussed in terms of the same physical phenomena
behind the Unruh effect as seen by a freely accelerating
particle detector? One might argue that all moving boundary
condition effects are basically manifestations of the DCE and
as such this should also be the case of an accelerated atom.
However, the point of this study is the acceleration of the
moving boundary conditions and whether or not this picks
up new features of the type expected from the Unruh effect
for particle detectors with the same trajectories as studied in
[7]. As we can see from our results, the temperature estimator
does not really follow the simple behavior of the response of
particle detectors predicted in [7], which may be suggesting
that, beyond constant acceleration, the DCE may not be so
easy to relate to the Unruh effect, possibly because of these
nonequilibrium effects showing up in very different ways for
particle detectors and accelerating mirrors.
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