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Spectral analysis and identification of noises in quantum systems
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In quantum information processing, knowledge of the noise in the system is crucial for high-precision
manipulation and tomography of coherent quantum operations. Existing strategies for identifying this noise
require the use of additional quantum devices or control pulses. We present a noise-identification method directly
based on the system’s non-Markovian response of an ensemble measurement to the noise. The noise spectrum is
identified by reversing the response relationship in the frequency domain. For illustration, the method is applied
to superconducting charge qubits, but it is equally applicable to any type of qubits. We find that the identification
strategy recovers the well-known Fermi’s golden rule under the lowest-order perturbation approximation, which
corresponds to the Markovian limit when the measurement time is much longer than the noise correlation
time. Beyond such approximation, it is possible to further improve the precision at the so-called optimal point by
incorporating the transient response data in the non-Markovian regime. This method is verified with experimental

data from coherent oscillations in a superconducting charge qubit.
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I. INTRODUCTION

Artificial atoms fabricated with solid-state devices (e.g.,
superconducting qubits, quantum dots, and nitrogen-vacancy
centers) are promising for future quantum information pro-
cessors (e.g., [1-5], and references therein). To construct
more stable and robust quantum circuits, much effort is
required to overcome complex decoherence brought by their
“dirty” environment. Higher performance can only be achieved
by taking control actions (e.g., the dynamical decoupling
[6-9] or environment modulation [10-13]) to fight against
decoherence. To characterize and control quantum systems,
it is crucial to obtain a dynamical model of the quantum
system according to the measurement result of the system.
For closed systems, this calls for the identification of the
Hamiltonian [14-16]. Otherwise, when the system is open,
the dissipation effect also needs to be specified corresponding
to the noises coupled to the system. Hence, the information
acquisition of the noises is critical for modeling open quantum
system dynamics. The knowledge of noise is also useful for
improving the fidelity of state and process tomography from a
series of designed quantum measurements [17-21]. Since the
number of required measurements for process tomography
increases quickly with the system dimensionality, a good
model for the dynamics of the measured system will help
reduce the measurement cost based on the prediction of the
actual process matrix.

Physically, a stationary noise in a quantum system is
mainly characterized by its correlation spectrum [22]. In many
solid-state systems, the spectrum has nontrivial structures (e.g.,
Lorentzian shape, Ohmic, 1/f noise [23]), which corresponds
to colored noise. Figure 1 shows the general procedure for
identifying an unknown noise “n” acting on a quantum system.
The expectation value m of some observable is measured.
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If one knows how the noise n affects m via a functional
mapping m = .“(n) [e.g., Eq. (18) in Sec. III], then this
mapping can be reversed (if reversible) to identify the noise
from the measurement data, i.e.,n = .%~'(m) [e.g., Eq. (19) in
Sec. IIT]. Hence, the identification precision largely depends on
how well the model m = .#(n) describes the real noise-driven
quantum dynamics.

Generally, the noise causes a random frequency shift
and dissipation effects in the system dynamics, which can
be described by a generalized master equation [3,12,22]
or a spectral overlap function with the noise correlation
spectrum [12,24]. Such models were used to derive [25,26]
the widely used identification strategy based on Fermi’s
golden rule, which claims that the state transition rate of
a two-level system is proportional to the intensity of the
noise spectrum at the resonating frequency. This makes it
possible to experimentally analyze the noise by using a
frequency-tunable qubit [3,25-28]. Moreover, in Refs. [29,30],
the dephasing noise spectrum is identified from the direct
measurement of the asymptotic decay of the nuclear spin
qubit in NMR experiments. The strategy requires designed
mw-pulse sequences to cancel the dominant influence of the
lower-frequency component of the noise spectrum [31,32].

The above identification schemes essentially exploit only
the system’s long-time (compared to the noise correlation time)
response to the noise [25], while the non-Markovian transient
dynamics is not considered. In this paper, we introduce an
identification method that incorporates the non-Markovian
noise-driven dynamics. The model adopted for identification
is based on the Born approximation, which has been used to
compute non-Markovian dynamics driven by known colored
noises [33-36]. Under the Laplace transform, the model
appears in a purely algebraic form that will simplify the
analysis for the purpose of noise identification.

©2013 American Physical Society
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FIG. 1. (Color online) Schematics for a general identification
procedure. The quantum dynamics is properly excited so that the
noise n can have a simple relation with the measurement data m,
which is then reversed to numerically identify the noise properties.

This paper is organized as follows. In Sec. II, a frequency-
domain model is derived for analyzing the response of any
ensemble measurement to the noise in a quantum system. In
Sec. I1I, the model is applied to a qubit system and is shown to
be consistent with Fermi’s golden rule. Then, from the model
we propose an identification strategy at the optimal point and
demonstrate it with experimental data. Finally, Sec. I'V presents
our conclusions.

II. FREQUENCY-DOMAIN MODELING OF OPEN
QUANTUM SYSTEMS

In this section, we will introduce the generalized master
equation based on the Born approximation, and Laplace
transform the equation to the frequency domain for the
following identification analysis. Although such model has
been obtained in different ways in the literature [34-36],
we will express it in a new compact form to highlight the
influences of the noise on the qubit dynamics. This will
facilitate the following study on identifying the noise spectrum
from the measurement data of a physical observable.

Consider an N-level quantum system that is coupled to
some unknown environment. Suppose that the total Hamilto-
nian is

Hiyo = Hy + H ® C(2),

where Hj is the internal Hamiltonian of the system. The
environment operator C(¢) coupled to the system’s observable
H, is responsible for the noise. For convenience, it has been
rotated to the interaction picture. Assume that the environment
is initially at an equilibrium state ,og and the coupling strength
between the system and the environment is so weak that
the joint evolution with the system hardly alters the state of
the environment. This qualifies the Born approximation [34],
under which the net system evolution (after averaging out the
environment) can be described by the following generalized
master equation (with 2 = 1) [11,12,34-37]:

p(t) = —i [Ho,p(1)] — / dr'{@(1,1") [ Hy e =
0

x Hip(t)e'"=""] + Hee.}, (1)

where p(7) is the density matrix of the system.

The integral term in the above equation captures the
noise-driven quantum dynamics, where the environmental
noise enters through the temporal noise correlation function

®(t,1') =T [COHCH)py] = Tt +iQt,t),  (2)
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where ['(z,t) and Q(¢,t') are the real and imaginary parts
of ®(z,t"), respectively. Because the environment is initially
prepared at an equilibrium state p%, the correlation function
only depends on the time difference, t+ —#’. Thus, in the
following, ®(-) [as well as I'(-) and €2(-)] will be always taken
as a single-variable function of T = ¢ — #’. The system behaves
in a non-Markovian manner when the time is comparable with
the noise correlation time.

Here, I'(z,t") and ©2(¢,1’) in the correlation function ®(z,t’)
correspond to the commutative and noncommutative parts of
C (1), respectively, as follows [3]:

1
P(r) = ST {ICDCO) + COCD] 3.

Q1) = ZiiTr {[C(x)C0) - COC(D)]p}}.
In particular, when the environment is at zero temperature,
['(¢) corresponds to the average dissipation rate, while €2(¢)
corresponds to the Lamb shift.

To facilitate the following analysis, we first transform
Eq. (1) for the density matrix p(t) into a vector form. Choose
{(My=N"'Iy,M,,...,My2_;} as an orthonormal basis of
the space of N x N Hermitian matrices, where each M; is
Hermitian and Tr(M; M;) = §;; forany 0 < i < j < NZ 1.
Then, the density matrix p(#) can be spanned as

p(t) =vo(O)Mo + - - - + vy (DMpy2_y,

where v;(t) = Tr[p(t)M;]. The real vector v(t)=
[vo(t), ..., uy2_1(1)]T is called the augmented Bloch
representation of p(z) (see Sec. IIl for the example of
two-level systems). In this way, Eq. (1) can be translated into
the following form:

1
v(t) = Lov(®) + L, /.dt’{r(t — t’)g(t*f')ﬁoﬁl
0
+Q(t — e LT o), (3)

where £, and Elf, k = 0,1, are the matrix representations of
the commutator operation [—i Hy,-] and the anticommutator
operation { Hy,-}, respectively.

Equation (3) can be naturally Laplace transformed to the
frequency domain as only a linear term and a convolution term
of v(¢) are involved on the right-hand side. This gives

su(s) — v = Lov(s) + L1K(s)v(s), 4)

where v? is the Bloch vector corresponding to the initial density
matrix. The matrix s function

K(s) = ZIT(r)e™1L) + L[Q(r)e ™ LT
=T(sI — Lo)L1 + QsI — L)L (5)

characterizes the action of the noise on the system evolution,
where .Z[-] denotes the Laplace transform and I is the identity
operator on the space of Bloch vectors. Here the property
Lle(t)e™] = c(s — so) of the Laplace transform of a scalar
function c(¢) has been extended to matrix-valued functions of
['(sT — Ly) and Q(sT — L) (see Appendix A for details).
Let us now denote by the matrix s function R(s) =
(sT — Lo)~" the resolvent operator for the unperturbed system
evolution. One can immediately derive from Eq. (4) the
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following frequency-domain model:

v(s) = [R71(s) = LiK(s)I ™, (6)
as well as that of the time derivative y (t) = v(¢) (for calculat-
ing the transition rates) of the state vector:

y(s) = sv(s) — v°
[Lo + LIKWIR™ () = LIK®OIT. ()

The noise affects the system evolution through the operator
K(s) as a perturbation to the coherent evolution R(s).
Moreover, the fact that /C(s) is a function of s — L, shows
that the noise-driven dynamics is mainly determined by the
properties of the noise near the system’s frequencies.

With application to actual experiments, Eqgs. (6) and (7)
link the noise spectrum and the measurement data of some
observable (or multiple observables [38]) of the system, whose
expectation value is always a linear function of v(¢) or y (¢). The
expression of such functional dependence is generally very
complicated. However, as will be seen in the next section, it
can be simplified under proper selection of the parameters and
the system’s initial state, so that useful identification formulas
can be derived.

III. NOISE IDENTIFICATION IN A SUPERCONDUCTING
CHARGE QUBIT

This section will apply the above model to the identification
of the noise spectrum in an open quantum system. As a physical
example, we study two-level systems implemented by a
superconducting charge qubit [39—44]. The method developed
here can be easily extended to other physical implementations.

As shown in Fig. 2, the superconducting charge qubit is
encoded by the charge states |0) and |1) differing by one
Cooper pair in the box [40,44—47]. The box is biased by the
control gate voltage U via the capacitor C. Let E; be the
tunneling energy of the Josephson junction, E¢ be the Column
energy of the island, and E¢ = Ec(1 — 2ng) be the electro-
static energy that is linear in the dimensionless gate voltage
ng (proportional to U in Fig. 2). Then under the charge state
basis {|0),]1)}, the qubit’s internal Hamiltonian reads

Hy = Ejo, + Eqo, +0, Q@ C(1),

© e B3
Cooper pair box

FIG. 2. Schematic diagram for the circuit of a superconducting
charge qubit. The qubit is encoded by the number of Cooper pairs
in the box inside the dashed rectangle (with Josephson energy E )
that is biased by the gate voltage U (proportional to a dimensionless
number n, of charges) through the capacitor (with capacitance C).
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where the bath operator C(t) is responsible for the charge noise
(assumed to be dominant in experiments). It is commonly
recognized that the noise is mainly induced by fluctuat-
ing background charges in the substrate or on the surface
[48-51], but in the model it can consist of any sources as we
are only concerned with the overall correlation properties. The
average charge number, which corresponds to the expectation
value of o, operator, is read out by measuring the quasiparticle
tunneling onto and off the qubit island.
The density matrix under the Pauli matrix basis

143 Ox Oy 0z
pt) = Uo(l)i + vl(t)? + vz(t)? + v3(t)7

is vectorized as a four-dimensional augmented Bloch vector
v(t) = [ve(1),v1(1),v2(2),v3(1)]T with vy(r) = 1. Moreover, let
A = /Ej + EJ be the energy gap and 0 = arctan(E,;/Eq)
be the bias angle. We can rewrite the total Hamiltonian as

Hlot = AGH + o; ® C(t), (8)

where oy = 0, cos 6 + o, sin 6. Next, we assume that the
noise is weak, which validates the Born approximation [12,37].
The spectral relationship will be studied between the mea-
surement result and the noise spectrum shown under different
bias angles and initial states, from which noise identification
strategies can be designed.

A. Fermi’s golden rule

Fermi’s golden rule has been broadly applied in spec-
troscopy techniques. In the application to superconducting
charge qubit systems [42], the qubit is initially prepared at
the ground state (or the excited state) under some bias voltage,
which can be expressed as

0 0 0 0
|+) c052|0) +sm2| Y, |-) sm2|0)+c0s2| )

The probability for the qubit to stay in the ground state (or
the excited state) is measured at sampled time instances, from
which the excitation (or decay) rate y4 () [or y, (t)] is measured
by interpolating the time-variant curves.

To model this process, it is convenient to express the total
Hamiltonian (8) in the eigenbasis {|+),|—)}, which becomes

Hio = Ao 409 @ C(1). €))

Both y4(s) and y, (s) can be calculated from the z component

1
y3(s) = 3 [sv3(s) — v9]

of y(s), where vg =1 for y;(s) and vg = —1 for y,(s),
respectively. Their expressions under any bias angle are given
by (B2) in Appendix B. Because the noise operator C(t)
is weak under the Born approximation, it is reasonable to
approximate Eq. (B2) by keeping only the lowest-order terms
of I'(s) and Q2(s). This gives

sin? @

N
12

y(s) ~ [T (s) + Q_()], (10)

0
[[4(s) = Q_()], Y

yi(s) ~
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where [y (s) = Z[T(t)cos At] and Q_(s)=
ZL[Q(t) sin At] are the Laplace transforms of the modulated
noise correlation functions with a carrier wave whose
frequency is A. Such approximation holds when the noise
correlation time is much shorter than the decay time of the
excited state. One can immediately see that the transition rates
from |+) and |—) are differentiated by the noise term _(s).
When the time is sufficiently long (far greater than the noise
correlation), the transition rate from |—) to |+) approaches a
stationary value, which can be calculated by taking the limit
t — oo in Eqgs. (10) and (11). In the the frequency domain,
these become

7t = lim sy (s) ~ sin?6 [ (0) + Q_(0)] = ®pr(—A)sin6,
(12)

7, = !ir% syy(s) ~ sin’0 [[1(0) — Q_(0)] = Ppr(A)sin’6,
‘ (13)

where ®gr(A) is the Fourier transform of the correlation
function ®(z).! This exactly recovers the formulas adopted
in [26,42] according to Fermi’s golden rule, which holds when
the measurement time ¢ is much smaller than the inverse of the
stationary decay rate, and far greater than the autocorrelation
time of the noise.

Fermi’s golden rule shows that the spectral density of a
noise at some frequency A is proportional to the transition rate
of a resonating two-level system. Thus, a transition-frequency
tunable qubit can be used as a spectrum analyzer. In the
charge qubit system, the transition frequency A = E; sin~! 6
is tuned by the bias angle 6. The identification scheme based
on Fermi’s golden rule is operationally convenient, but the
precision may be limited due to the use of perturbation and
asymptotic approximations, which equivalently requires that
the system behaves approximately Markovian at the time of
measurement (i.e., the environment has no memory effects on
the system’s evolution).

B. Noise identification at the optimal point

The identification formula based on Fermi’s golden rule
is obtained by measuring the decay rate under various bias
angles 6. Actually, it is possible to find better identification
schemes from the full measurement data under a fixed bias
angle. For example, the identification formula (B2) can be
greatly simplified at 0 = 7 /2 (i.e., the so-called optimal point
in superconducting qubit systems) as below

I (s) + Q2_(s) () — 2-_(s)

ne)=———— ne=———
Fi(s)+s L)+

The transition rates differ only by €_(s) in the numerators,

which has its physical origin from the nonuniform thermal
distribution of populations on the qubit levels. Equation (14)

(14)

"Note that the Fourier transform is a two-sided integral over R,
while the Laplace transform is one sided. It is not difficult to prove that
Per(£A) =T (0) F 2_(0), i.e., the two-sided Fourier transformed
function ®r(+A) is decomposed into two one-sided integrals.
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can be easily reversed to obtain an identification formula:

s[yr(s) + vy ()]
2—[yi(s) + 1

Ii(s) = 15)

Q(s) = s[yr(s) — v ()]
- 2= (@) =y

for 't (s) and €2_(s), respectively, corresponding to the
modulated signals I'(¢) cos Ar and 2(¢) sin Az, respectively.
Because no asymptotic approximation is taken here, the
identification is expected to be more precise and more
economic because only measurement data at the optimal point
are required.

The above formula can be used to identify the modulated
signals I'(t)cos At [or Q(z)sin At]. However, from them
one cannot obtain the full correlation function because the
values of I'(¢) [or ©(¢)] at the time instances r = (k + %)%
(or t = ’%), where k is an arbitrary non-negative integer,
cannot be determined. Also, the presence of high-frequency
measurement noise may cause large error in the calculation
of y4(t) or y,(r). Nevertheless, this idea can be extended to
the following different experimental setup [40], with which
at least the spectrum of I'(#) can be identified at the optimal
point.

As shown in Fig. 3(a), the qubit is prepared at the zero-
charge state |0) and released for free evolution under some
bias angle 6. The average charge number is then measured
at sampled time instants [see Fig. 3(b)], from which coherent
oscillations can be observed [40]. The presence of charge noise
C(t) will damp the oscillation via.

Because the average charge number is measured, it is more
convenient to use the original total Hamiltonian (9) in the
charge states basis {|0),|1)}. Correspondingly, the average
charge number Qy(?) is calculated from the z component of
the Bloch vector:

1 1

1
Qo(1) = 3 [I —v(®)] = Qols) = 5[— - v3(S)}- A7)
s

(16)

In Appendix C, the functional dependence of Qg(z) on the
noise spectrum is derived [see Eq. (C2)]. At the optimal point
& = 7 (corresponding to E; = 0), the formula becomes

AZ
2s[s2 + sT(s) + A?]°
where only I'(s) is present but €2(s) disappears. This can
be used to separate the identification of I'(r) and Q2(¢). By

reversing Eq. (18) at s = iw, we obtain an identification
formula for I"(¢):

F(iw):—A—z—i(a)—w—é) (19)
202 Qi) w)

where wg = E;/h; and Qnp(iw) is obtained by Laplace
transforming the measured coherent oscillation curve in the
time domain. From (19), the Fourier transform of the noise
spectrum, which is more often used in practice, can be obtained

as
;} (20)
0?2 Qrpliow) ]’

Orpls) = (18)

Ter(w) = 2Re M(iw) = —wiRe [
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FIG. 3. (Color online) Schematic diagram for identifying the
noise I'(z). (a) The energy gap versus the bias angle, where both
quantities are defined below Eq. (9). The charge qubit is initially
prepared in the zero-charge state, corresponding to the ground state
far from the optimal point. Then, a gate pulse is applied to induce
coherent oscillations at some bias angle 6 (e.g., the optimal point
6 = %), which is determined by the height of the pulse. The pulse
persists for a time ¢, after which the average charge number is
measured from the quasiparticle (QP) current. (b) The coherent
oscillation curve (with data collected from NEC and RIKEN) of the
average charge number Q/»(¢) versus the time ¢, which is measured
at the optimal point 8 = 7/2.

where the symmetry property I'(—¢) = I'(¢) of the noise I'(¢)
was utilized [see (A1) in Appendix A].

Since there is an w? term in the denominator of Eq. (20),
which may cause significant numerical error in the low-
frequency regime, we can express the noise spectrum as a
function of the ac component Qj‘f/z(t) = Qrp(t) — 0.5 of
the measurement data Q/>(¢), which leads to the following
identification formula:

2Qa7TC/2(ia)) :| 2n

2
Frr(@) = ““Re[05-+nugﬁﬂaw)
from Eq. (18).

The above formulas suggest that an identification scheme
can be devised as shown in Fig. 4. For illustration, formula (19)
is used to identify the noise I'(¢) from the experimental data
[52] collected in NEC and RIKEN [see Fig. 3(b)] for testing
coherent oscillations at the optimal point. The experimental
setup is the same as that in Ref. [39]. The average charge
number was measured at a temperature of 20 mK with a
time delay sweeping over a time period of 7 = 1288 ps with
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FIG. 4. Schematic diagram for noise identification in a supercon-
ducting charge qubit. The average charge number Q(¢) is measured
and transformed into the frequency domain, and then used to calculate
the noise spectrum via identification formulas (20) or (21) at the
optimal point.

sampling time 6t =4 ps. From the Laplace transform (at
s = iw) of the oscillation curve, the characteristic frequency
is read as A & 13.5 GHz from the peak in Fig. 5(a). Then
the spectrum of I'(¢) was calculated by Eq. (21) as shown in
Fig. 5(b).

This example illustrates how the identification strategy
works with a simple experiment design without using ad-
ditional control pulses or devices. The identification only
uses the measurement data at the optimal point, but the

2
—~
|
2}
Al
o
~—
(-
L
—~
-2

0 10 20 30 40
f (GHz)

FIG. 5. (Color online) (a) The absolute value of the Laplace
transform of Qicﬂ(t) = Qrp2(t) — 0.5, where Q/,(¢) is the average
charge number at the optimal point. (b) The identified noise spectrum
['rr(w) at the optimal point.
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samples should cover a sufficiently broad time interval. The
identification error could come from many possible factors,
including the measurement noise (not the noise coupled to the
qubit) from the readout device. Moreover, the data collected
from the experiment has a finite number of data points and
finite sampling time period, which restricts the precision and
frequency regime of the identification results. To improve the
identification over a wider range, the data should be more
densely sampled over a sufficiently long time period until the
oscillation decays to approximately zero.

Moreover, the linewidth of the coherent oscillation spec-
trum shown in Fig. 5(a) is comparable to the width of the
nonzero part I'rp(w) in Fig. 5(b) near zero frequency, which
seems to imply that the noise correlation time is comparable to
the decay time. This could be due to the strong noise coupling
(where the Born approximation, as well as the above derived
identification formulas, may not be valid), but it could also be
from measurement errors (including the measurement noise
and the finite number of data points). These factors should be
further analyzed.

IV. CONCLUSION

We have presented a noise-identification approach that can
improve the precision based on a frequency-domain model for
the system’s non-Markovian dynamics with a lesser amount
of measurement data. With applications to qubit systems,
Fermi’s golden rule can be naturally derived under proper
approximations from this model. The advantage of this model
is that a simple identification strategy can be obtained without
the aid of additional control pulses or devices. The obtained
identification formula at the optimal point is illustrated with
applications to superconducting qubits, which requires only
measurements at the optimal point.

It was also seen that the quality of the identification is
limited due to the finite data points and possibly severe
measurement noises in the experiment. Moreover, the efficient
identification of the noise term €2(¢), which is non-negligible
under ultralow temperatures, is to be studied. In principle, the
full expression (C2) derived in this paper can be used to extract
the noise spectrum of €2(¢) with data obtained under biased
configurations. However, sophisticated numerical algorithms
are to be designed due to the complexity of the formulas. It
is also possible to design other measurement schemes with
which the identification formulation can be simplified.

In principle, the idea of identifying the noise spectrum
proposed in this paper can be applied to any quantum systems
as long as the Born approximation is valid. This is owing to
the universal frequency-domain expression of the noise-driven
dynamics. For example, the strategy can be extended to
multiqubit systems and harmonic oscillators. In particular,
we have started to investigate the noise identification for
nanomechanical resonators based on the experimental data
obtained in the RIKEN-NEC laboratories. These issues will
be explored in the future.
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APPENDIX A: PROPERTIES OF THE NOISE
CORRELATION FUNCTION

According to definition (2) of the noise correlation function,
it is easy to examine the following symmetry properties:

M'(—t)=T(), Q-1)=-(), &(—1)= (7).
(AD)
Owing to these symmetry properties, the Fourier transform of
the symmetric function I'(7) is a purely real-number valued
function, while the Fourier transform of the antisymmetric
function () is purely imaginary.

In this paper, both the Laplace and Fourier transforms are
involved to describe the noise spectrum. The major difference
between them is that the Fourier transform is a two-sided
integral in the time domain from 7 = —o0 to T = 0o, while
the Laplace transform is one sided (i.e., from 7 =0~ to
T = 00). Because ®(7) is evaluated for both negative and
positive times, the noise spectrum is generally defined as the
Fourier transform of the correlation function ®(t) [3,25].
However, in the frequency-domain model (7) derived from
the generalized master equation (1), the Laplace transform
has to be adopted because only the positive time-correlation
function is involved. Another reason for using the Laplace
transform is that the system is always prepared at some initial
state in any realistic measurement, regarding to which the
Fourier transform is physically not applicable. Nevertheless,
owing to the symmetry properties, it is sufficient to use the
positive-time branch, from which we can recover full noise
correlation function.

Therefore, the Laplace transform will be adopted corre-
sponding to the positive time-correlation function. To avoid
confusion, the Fourier transform of a time-variant function,
say ®(r), will be denoted by Pprp(w) with a subscript.
Ppr(w) is generally different from the Laplace transform
®(iw) evaluated at s = iw, but the symmetry property of the
correlation functions guarantees the following relations:

I'rr(w) =2ReT((w), Qpr(w) =2ImQL>(w), (A2)

which will be used to extract the temporal correlation function
from the noise spectrum obtained via the inverse Fourier
transform.

APPENDIX B: FREQUENCY DOMAIN DERIVATIONS
IN SEC.IIT A

First, suppose that the eigenvalues of Ly are xi,...,x,,
and that £y is diagonalized by P, then the matrix s function
I'(sI — L) can be calculated as follows:

I'(sT — Lo) = P~ diag{'(s — x1), ..., I'(s — x,)} P,

and in a similar way Q(sI — L) can be evaluated.

022324-6



SPECTRAL ANALYSIS AND IDENTIFICATION OF ...

With respect to the Hamiltonian (9), the system is initially
prepared at the excited state corresponding to the Bloch vector
w0 =[1,0,0, — 117. Correspondingly, the matrix representa-
tion Ly of Ao, is diagonalized as

Lo = P~ 'diag{0,0,iA, —iA}P,

where

) (BI)

SO O =
Nl_
O~ = O
— o O O

and hence
(sl — Ly) = P’ldiag{F(s),I‘(s),F(s —iA),I'(s +iA)}P.

When the qubit is released from the excited state, from
Eq. (6), the corresponding transition rate under the bias angle
6 can be expressed as

24 No(s)cot> & + Ni(s)
Dy(s)cot?20 + Di(s)’
where, by dropping the argument “s” for simplicity, we have
No(s) = (s* + ADIy +s(T'3 +T2)
X( — QAT —sT_) — Q_(s* + 5T, + A?),
Ni(s) = (s> + 5T + A4 — Qo),
Do(s) = s[(s + T1)* + (T— + A,
Di(s) = (s + T )(s? + sT + A?).
Here, we use the following notations:
FL(s) = Ls+iA) ;— (s —iA)
C(s+iA)—T(s—iA)
2i

and in the same way are 2. (s) defined. These represent signals
modulated by sinusoidal waves with the carrier frequency

Y, (s) = sin (B2)

= Z[E(t)cos At], (B3)

I_(s) = = ZLIy(t)sin At], (B4)
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A. Such noise spectral functions shifted by the oscillation
frequency £ A exhibit the interplay between the qubit and its
environments.

When the qubit is prepared in the ground state, the
expression of y;(s) is similar to Eq. (B2) except that the signs
of all terms of 2(s) and 2. (s) are flipped. This shows that the
presence of Q(¢) in the noise correlation function causes
the difference between the static average charge number and
the corresponding transition rates.

APPENDIX C: FREQUENCY DOMAIN DERIVATIONS
IN SEC.III B

The extended Bloch vector corresponding to the initial zero-
charge state is v =1[1,0,0,1]7. We first diagonalize Ly = Aoy
as

Lo = P, 'diag{0,0,i A, — i A} Py,

where
1 0 0 0
0O tan® —cotd —coth
Py = 0 0 icscO® —icsch (C1)
0 1 1 1

Consequently, we have
(sl —Ly) = Pe_ldiag{F(s),F(s),F(s —iA),T(s +iA)} Py,
and from Eq. (6), the average charge Qg (t) for the bias angle
6 can be expressed as

A Ny(s)cos 6 + Ni(s)

Q08) = 5 Dols) o0+ Di(s)’ €2

where
No(s) = (s + ') [Q4 — Q)] + (A +T)Q-,
Ni(s) = A(s +Ty),
Do(s) = s[(s + T1)* + (A +T_)],
Di(s) = (s + T (s + sT + A?).
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