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We introduce a scheme for secure multiparty computation utilizing the quantum correlations of entangled states.
First we present a scheme for two-party computation, exploiting the correlations of a Greenberger-Horne-Zeilinger
state to provide, with the help of a third party, a near-private computation scheme. We then present a variation
of this scheme which is passively secure with threshold t = 2, in other words, remaining secure when pairs of
players conspire together provided they faithfully follow the protocol. Furthermore, we show that the passively
secure variant can be modified to be secure when cheating parties are allowed to deviate from the protocol.
We show that this can be generalized to computations of n-party polynomials of degree 2 with a threshold of
n − 1. The threshold achieved is significantly higher than the best known classical threshold, which satisfies the
bound t < n/2. Our schemes, each complying with a different definition of security, shed light on which physical
assumptions are necessary in order to achieve quantum secure multiparty computation.
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I. INTRODUCTION

Secure multiparty computation (SMPC) is an important
and well-studied cryptographic protocol. It was originally
introduced by Yao [1] in the form of the “millionaire problem,”
in which two millionaires wish to discover which of them is the
richest without revealing the size of their personal fortunes. In
its general form, SMPC refers to the case where n parties, each
holding a set of private variables, want to compute a publicly
available function f without revealing any information about
their variables to other parties, beyond that revealed by the
output of function itself. Real-world applications of SMPC
include market clearing-price scenarios, secure voting, and
on-line bidding [2].

It would be simple to achieve SMPC if a trusted third
party were available. In this “ideal scenario,” each party
would securely send their private data to this trusted third
party, who would perform the computation privately and then
announce the result. Studies of SMPC are therefore concerned
with scenarios where no party can be trusted. Such schemes
are deemed to be secure (under specified constraints on the
computational power and activities of the parties) when the
information learned by each party about their neighbors’ inputs
matches the ideal case.

SMPC has been studied under a variety of assumptions.
These may be limitations on the computational power available
to adversaries or restrictions on the level to which parties are
allowed to deviate from an agreed protocol. A protocol is
called “computationally secure” when its security assumes
that an adversary lacks the computational power needed
to perform a certain computation, which is believed to be
untractable. The ability to compute this function would allow
him to break the security of the protocol. An example of
this kind of security is the well-known RSA public key
system, which bases its security on the hardness of factoring
large numbers. The downside to computational security is
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that the schemes may be vulnerable to new algorithms and
new technologies, such as quantum computation, where an
efficient factoring algorithm [3] is known. A protocol is
called “information-theoretically” secure when its security
properties hold independent of the computational power of the
adversary. An example of an information-theoretically secure
cryptographic system is the well-known Vernam cipher [4].

A further ingredient in security assumptions of an SMPC
scheme is the allowed behavior of the participants in the
protocol. This has been an important component in classical
studies of the SMPC computation, but has so far not been
focused on in quantum approaches. The most important
behavior models occurring in the classical literature are the
“passive” security model and the “active” model.

A protocol has “passive security” with “threshold” t , if it
remains secure provided all parties follow the protocol exactly,
but t or fewer parties are “corrupted.” The corrupted parties
may form a coalition, sharing data during the execution of
the protocol. A protocol is “actively secure” with threshold
t if security is retained when parties are allowed to deviate
arbitrarily from the protocol and t or fewer parties are
corrupted. In particular, parties in an actively secure model
may send incorrect data during the protocol in an attempt
to trick other parties into revealing extra information about
their inputs. In addition to these standard definitions, we call
a protocol “private” if security is achieved when all parties
follow the protocol and do not share data (equivalent to
the t = 1 passive case). We call a protocol “nearly private”
when less information is revealed about the parties inputs
than public computation but the ideal scenario is not quite
attained.

The first solutions to the SMPC problem were based
on computational security assumptions. These include Yao’s
solution to the millionaire’s problem [1] and more gen-
eral treatments [5,6]. Later, information theoretic solutions
were shown in [7–11]. A summary of the assumptions,
thresholds, and efficiency of these protocols can be found
in [11]. The best thresholds for these schemes are upper
bounded by n/2—in other words, an honest majority is
required.
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After the success of quantum key distribution [12–14],
there was a concerted attempt to construct protocols with
quantum enhancement for a number of key cryptographic
primitives, such as bit commitment [15,16] and SMPC. Bit
commitment was shown to be impossible [15,16]; however,
quantum protocols were successfully found for quantum
secret sharing of classical information [17–20] and quantum
information [21,22].

It was thus natural to consider whether quantum advantages
may assist in the problem of SMPC. While computational
security is possible in the quantum case, for example, by
combining trapdoor functions together with the detectable
Byzantine agreement protocol proposed by Fitzi et al. [23],
surprisingly, this advantage was found to be limited for the
case of unconditional security. In fact, it was shown by Lo [24]
(see [25,26] for recent generalizations) that deterministic
two-party-setting computation was impossible, even with
quantum means (see [25,26] for recent generalizations of this
result). [27]

Here we uncover key assumptions in Lo’s seminal theorem
through the use of several security models and show which
parts of the theorem correspond to different security assump-
tions. We identify the most general security model which
provides unconditional security while remaining compliant
with Lo’s theorem and construct a protocol which satisfies this
model.

We introduce a “quantum passive” security model, a variant
of the passive security model well-studied in the classical case.
A key assumption in Lo’s and Colbeck’s no-go theorems is
that the entire protocol may be modeled by a “unitary black
box.” In the quantum passive model, this assumption does
not hold. Under this model, we offer a quantum solution to
the SMPC problem by presenting a protocol which is secure
against external eavesdroppers and coalitions between party
members within the quantum passive secure model which we
introduce. Furthermore, we introduce a no quantum cheating
channel (NQCC) model, which allows corrupted parties to
lie or deviate from the protocol and prove that our protocol
offers a solution to the SMPC problem compliant with NQCC
security.

Our schemes exploit the nonclassical correlations of
Greenberger-Horne-Zeilinger (GHZ) states [28–32], recently
shown [33] to be resources for classical computation similar
to the way cluster states are a resource for universal quantum
computation [34,35]. The advantage provided by our quantum
schemes is that, for certain functions, it provides a higher
security threshold than all current classical schemes, remaining
secure even when all but one party are dishonest.

The structure of this article is as follows: In Sec. II
we briefly review Anders and Browne’s reinterpretation of
the well-known GHZ quantum correlation in terms of the
computation of the Boolean AND function. In Sec. III we show
how this may be developed into a nearly private multiparty
computation scheme. In Sec. IV, we perform a privacy analysis
on the protocol of Sec. III and discuss its weaknesses.

Section V contains our definition for our quantum security
model, and in Sec. VI we then present a variation of the
same protocol which is passively secure with threshold t = 2.
Section VII contains a passive security analysis of our protocol
and a proof that it is passively secure, which includes a

discussion on how attacks similar to those in [24,25] relate
to our scheme and the quantum security model which we
introduce. Then, in Sec. VIII we define the NQCC, which is a
variation of the passive model where corrupted parties can lie.
Section IX offers an upgrade to the passively secure protocol
so that it is NQCC secure, and after this, in Sec. X, we present
its security analysis.

In Sec. XI we demonstrate that quantum mechanics has the
potential to offer a better corruption threshold than classical
protocols, indeed for certain function classes, it can become
maximal; that is, t = n − 1 for an n-member party.

II. GREENBERGER-HORNE-ZEILINGER
CORRELATIONS FOR DISTRIBUTED COMPUTATION

AND SECRET SHARING

In this section we briefly review the recent work [33]
in which the correlations present in measurements upon the
GHZ state are interpreted as a distributed computation of the
Boolean AND function. This can be seen most clearly by
considering the stabilizer equations for the GHZ state, first
presented by Mermin [31],

σz ⊗ σz ⊗ σz |ψ〉 = |ψ〉,
σz ⊗ σx ⊗ σx |ψ〉 = |ψ〉,

(1)
σx ⊗ σz ⊗ σx |ψ〉 = |ψ〉,
σx ⊗ σx ⊗ σz |ψ〉 = − |ψ〉,

where for notational convenience later in this article we
have chosen the locally equivalent GHZ state |ψ〉 =
(1/

√
2)(|y−y−y+〉 + |y+y+y−〉), with |y+〉 = (1/

√
2)(|0〉 +

i |1〉) and |y−〉 = (1/
√

2)(|0〉 − i |1〉). This is locally equiva-
lent to the more well-known GHZ state (1/

√
2)(|000〉 + |111〉)

and inability for these equations to be simultaneously satisfied
by c-number scalar values, representing the measured value
in a hidden variable theory, is sometimes known as the GHZ
paradox.

We imagine that the three qubits are divided among three
parties, each of which will measure in either the σz or the
σx basis and label these measurement operators O0 = σz and
O1 = σx . We can then rewrite the four preceding equations in
compact form,

Oa ⊗ Ob ⊗ Oa⊕b |ψ〉 = (−1)AND(a,b) |ψ〉, (2)

where a and b are bit values and ⊕ denotes addition
modulo 2.

Note that the value of the Boolean AND of bits a and b is
encoded in the eigenvalues of these equations. Representing
the measured eigenvalues + and − with the bit values Mi ∈
{0,1}, we see

M1 ⊕ M2 ⊕ M3 = AND(a,b). (3)

We therefore see that if three parties sharing |ψ〉 make
measurements determined by bit values a, b and a ⊕ b, the
parity of their output bits is equal to AND(a,b). An interesting
aspect of this is that the computation can be done in a
distributed manner. The qubits which form the GHZ state
do not have to be in the same spacial point; they can be
distributed between spatially separated parties. The outcome of
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FIG. 1. In this figure we present graphically our scheme. The
three party members, Alice, Bob, and Charlie, are connected with
straight lines which represent the GHZ state. The dot-dashed line
corresponds to the shared randomness resource (e.g., a Bell state)
which is shared between Alice and Bob and the dashed lines, whose
ends are arrows, that exist between Charlie and Alice and between
Charlie and Bob represent a secure classical channel.

the computation is naturally encoded in the parity of bits held
by the three parties. This is a simple form of secret sharing [36]
because the value is only revealed if the three parties share their
data. In the next sections, we use this property as the basis of
protocol for SMPC.

III. SCHEME A: A NEARLY PRIVATE MULTIPARTY
COMPUTATION PROTOCOL

In this section, we introduce a scheme for multiparty
computation between two parties, Alice and Bob. To circum-
vent Lo’s [24] no-go theorem, we add a third party, Charlie.
Adding a third party allows a measurement-based scheme to be
employed and this introduces an irreducibly classical part, the
measurement outcomes, into the protocol. It is this classical
part which makes the computation model differ from the
“unitary black box” model used in no-go theorems [24,25]. The
scheme has enhanced privacy compared to public computation,
but Charlie learns more information about Alice and Bob’s
input than in the ideal scenario. We therefore call this scheme
“nearly private.” To implement the scheme, Alice, Bob, and
Charlie must share a GHZ state |ψ〉 and additionally, each
pair must share secret correlated random bits. In addition,
Charlie is able to send data on a secure classical channel to
Alice and also to Bob, as shown in Fig. 1. The correlated
private bits and the secure channel can both be achieved in
information-theoretically secure manner by standard quantum
key distribution protocols [12–14].

Let f (x1, . . . ,xn,y1, . . . ,yn) be the function to be calculated
and let �x = (x1, . . . ,xn) and �y = (y1, . . . yn) represent Alice
and Bob’s input data. In order to simplify our protocol, we
make use of the fact that any Boolean function f (�x,�y) :
{0,1}n × {0,1}n → {0,1}, �x,�y ∈ {0,1}n can be calculated as
the inner product of two vectors of polynomials, Pi(�x) and
Qi(�y) [37],

f (x1,..,xn,y1,..,yn) =
m⊕

i=1

Pi(�x)Qi(�y), (4)

where the sum operator corresponds to addition modulo 2. The
number of terms that will be needed, m, is, at worst, bounded
by 2n, where n is the length of the input vectors; therefore,
this decomposition can only be practically employed when m

scales polynomially with n, m ∼ poly(n). The function can be
evaluated by the calculation of each product PiQi in turn. The
polynomials Pi and Qi can be calculated locally, and hence
privately by Alice and Bob respectively. All that is required
in addition is the ability to compute PiQi = AND(Pi,Qi) for
each value of i. Our first protocol exploits the correlations of
a GHZ state to achieve this.

The protocol proceeds in the following steps, all addition
is performed modulo 2:

1. Repeat steps 2–7 for all the terms present in Eq. (4),
starting with i = 1.

2. Alice and Bob calculate Pi and Qi locally.
3. Alice and Bob generate a private shared random bit ri ,

for example, by suitable measurements on a Bell state, or via
a secure communications channel.

4. Alice transmits to Charlie the bit value Pi ⊕ ri .
5. Bob transmits to Charlie the bit value Qi ⊕ ri .
6. Charlie adds together these bits to reconstruct Pi ⊕ Qi =

(Pi ⊕ ri) ⊕ (Qi ⊕ ri).
7. Alice, Bob, and Charlie measure their qubits of the GHZ

state |ψ〉 as determined by bit values Pi , Qi , and Pi ⊕ Qi ; for
bit value 0, they measure σz; and for bit value 1, they measure
σx .

8. Once this has been completed for all i terms, Alice
and Bob sum their local measurement outcomes. They send
their summation bits to Charlie, who sums them with his own
measured outcomes.

9. Charlie reveals the value of f (�x,�y).
The correctness of the protocol follows simply from the

analysis in the previous section. Due to the correlations of
the GHZ state, the value of PiQi is encoded in shared secret
form across the three parties. We analyze the privacy in the
following section.

IV. PRIVACY ANALYSIS OF SCHEME A

In this section we examine scheme A, step by step, and
identify how much each party learns about the inputs of Alice
and Bob at each stage.

In steps 1–3 all operations are local; therefore, no informa-
tion about the private bits can be obtained. After steps 4–6,
Charlie receives the parity of Alice and Bob’s private bits Pi

and Qi . By use of private channels, no third party could learn
these bit values. By use of random bit r , Charlie does not
learn anything about the individual values Pi and Qi other
than their parity. In steps 7–9 the three parties exchange bits
which, individually, carry no information about either the input
or the outputs of the function. After the value of the function
is announced, Alice has learned nothing about Bob’s inputs
more than she would in the ideal scenario. Bob has learned a
similar amount about Alice’s inputs.

The only deviation from the ideal scenario is the parity
information for each term learned by Charlie. This information
could, under certain circumstances, be used by Charlie to
reconstruct some of Alice and Bob’s input data. As an
extreme example of this, consider the two-input function
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f (x1,y1) = x1y1. If the function outcome is 0 and the parity of
the bits is even, Charlie knows with certainty that both Alice
and Bob’s inputs were 0. We therefore say this protocol is
nearly but not completely private.

Since Charlie knows the parity of Alice and Bob’s Pi and Qi

bits at every stage, the protocol is intrinsically insecure against
any coalition. If Charlie and Bob collaborate, for example, they
can learn all of Alice’s Pi bits. The protocol, and indeed any
protocol where Charlie learns similar parity information, is
therefore not passively secure above a trivial threshold t = 1.
In Sec. VI, we modify the preceding scheme such that Charlie
never learns such parity information, and in doing so, introduce
a scheme which is passively secure.

V. MODEL FOR PASSIVE SECURITY

Passive security is an important security model in classical
SMPC. In this section we introduce a variant “quantum passive
security,” a generalization of the classical model, where the
participants’ behavior with respect to quantum resources is
specified.

In classical passive security, which we again summarize
in what follows, corrupted parties can exploit the information
they gain throughout the execution of an SMPC protocol, even
collaboratively by forming coalitions, but do not deviate from
the protocol. In classical SMPC this means that corrupted
parties can exchange classical information and use the total
information they infer to learn the private data of honest parties;
this approach is also known as “honest but curious.”

In our quantum passive security model, similarly to the clas-
sical models, corrupted adversaries are allowed to exchange
classical information; however, they are not permitted to
exchange quantum data and do not possess any shared quantum
resources additional to the GHZ states provided through the
protocol. In general, we consider SMPC protocols that are
n-sided; that is, all parties learn the computation outcome.
However, we discuss a one-sided variation of our protocol in
Sec. VII to show that it parries so-called EPR attacks.

The preceding are summarized in the following table:

Classical Quantum
Property passive security passive security

Private data are not inferred � �
by corrupted parties
Corrupted parties do not � �
lie—their outputs are true
the protocol
Corrupted parties exchange � �
classical information
Corrupted parties exchange N/A ×
quantum information

The restriction on the exchange of quantum information
is important. It is this assumption which means that Lo and
Colbeck’s unitary black-box models (and hence their no-go
theorems) do not apply. In what follows, we explain how
allowing such communication does indeed break the presented
protocol.

VI. SCHEME B: PASSIVELY SECURE MULTIPARTY
COMPUTATION PROTOCOL

In the previous section, we saw that scheme A is prevented
from fulfilling requirements for passive security by Charlie’s
knowledge of the parity of Alice and Bob’s input bits. Here,
we extend the protocol described in Sec. III and enhance it
in order to make it passively secure, that is, secure in the
case where party members create coalitions and are allowed
to share their data but still do not deviate from the protocol. It
is clear that we must modify the protocol such that Charlie
never learns the value of the parity of Pi and Qi bits.
Initially, this seems problematic, since Charlie needs this parity
information to perform the needed measurement, as described
in Sec. II. We can avoid this if we allow Alice and Bob to
prepare the entangled states used in a special way, “padding”
them with additional random Hadamard tranformations H =
|0〉+|1〉√

2
〈0| + |0〉−|1〉√

2
〈1| known only to themselves. If the parity

bit received by Charlie is similarly padded, he can perform the
required measurement on this state without ever learning the
parity value.

The protocol thus proceeds as follows:
1. Repeat steps 2–11 for all terms present in Eq. (4), starting

with i = 1.
2. Alice and Bob will calculate Pi and Qi locally.
3. Alice and Bob each generate a local random “prepara-

tion pad” bit, pa and pb.
4. Acting simultaneously, the three parties cyclically per-

mute their qubits. Charlie gives his qubit to Alice, Alice gives
hers to Bob, and Bob gives his to Charlie.

5. If pa = 1, Alice applies a Hadamard to Charlie’s original
qubit.

6. They cyclically permute the qubits again, Alice to Bob
to Charlie to Alice.

7. Now Bob possesses Charlie’s original qubit. If pb = 1,
Bob applies a Hadamard to this qubit.

8. They cyclically permute the qubits again, and each
regains their initial qubit. (Note that the scheme can be
amended such that no quantum communication is needed
during the protocol—see later in this article.)

9. The state held by the parties is now 1 ⊗ 1 ⊗
Hpa⊕pb |ψ〉.

10. Alice and Bob privately give Charlie the bit values Pi ⊕
pa and Qi ⊕ pb, respectively.

11. Alice, Bob, and Charlie measure their qubits in bases
according to bit values, Pi , Qi , and Pi ⊕ Qi ⊕ pa ⊕ pb.

12. When all i terms are completed, Alice and Bob sum their
local measurement outcomes. They send their summation bits
to Charlie, who sums them with his own measured outcomes.

13. Charlie reveals the value of f (�x,�y).
This scheme can be shown to be passively secure with a

threshold t = 2.
To see that the scheme produces the correct out-

put, note that Charlie’s measurement is in the basis
HPi⊕Qi⊕pa⊕pbZHPi⊕Qi⊕pa⊕pb . This measurement is equiva-
lent to first applying the operator Hpa⊕pb , and thus effectively
undoing the extra Hadamards applied by Alice and Bob,
and then performing a measurement determined via bit value
Pi ⊕ Qi . Thus, the output of the protocol is equivalent to
scheme A.
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We show in the next section that the scheme is passively
secure with threshold t = 2. The scheme, as described previ-
ously, has the undesirable feature that Charlie’s qubit needs to
be transmitted coherently between Charlie, Alice, and Bob.
However, this is not necessary. Instead, the parties could
prepare an ensemble of five-qubit states:

ρ =
∑

pa,pb

|pa〉〈pa| ⊗ |pb〉〈pb|

⊗ (1 ⊗ 1 ⊗ Hpa⊕pb ) |ψ〉〈ψ | (1 ⊗ 1 ⊗ Hpa⊕pb ). (5)

The first qubit is held by Alice, the second by Bob, the
latter three by Alice, Bob, and Charlie, respectively. Instead of
generating preparation pads, Alice and Bob simply measure
their first qubits in the computational basis and use the
outcomes as their pad bits. The state of the remaining qubits
is then already 1 ⊗ 1 ⊗ Hpa⊕pb |ψ〉. This replaces steps 3–8
of the protocol and Alice, Bob, and Charlie can continue the
protocol from step 9.

VII. PASSIVE SECURITY ANALYSIS OF SCHEME B

In this section, we analyze scheme B step by step,
considering for each step, the information which each party
learns about the others’ private data and the information which
they will gain if they form a coalition. We assume at each
point that the parties follow the protocol precisely; thus, any
cheating is restricted to additional (classical) communication
between corrupted parties. This is the standard setting for
passive security in the SMPC literature.

In steps 1–3 no data is shared, thus no information can be
learned by the parties in any case. In steps 3–9 the three parties
cyclically permute their qubits, and Alice and Bob apply
local transformations dependent on their private data. Since
we are assuming that the protocol is followed by all parties,
they may not measure their qubits. Even if they did make
measurements, the local state of each qubit is maximally mixed
and no information can be gained from the measurement. It is
important that at no time does any party possess two qubits,
since, after Alice or Bob have applied their pad-Hadamard, a
joint measurement of the padded qubit together with one other
qubit can reveal the pad bit. The reason for this is that the full
stabilizer set of the GHZ state |ψ〉 contains bipartite operators
such as −1 ⊗ Y ⊗ Y , which transforms to +1 ⊗ Y ⊗ Y when
a Hadamard is applied the second or third qubit. Any applied
Hadamard would thus be detectable via a measurement of
1 ⊗ Y ⊗ Y . Furthermore, this attack would be hidden to the
other party since it does not change the state. In the passive
model, we assume that coalitions do not have the power to
perform joint measurements, since that would require quantum
communication between parties, which is considered an active
deviation from the protocol. Thus, in this model, such an attack
is disallowed.

In step 10, Charlie receives the bit values Pi ⊕ pa and
Qi ⊕ pb. From this information he obtains neither the values of
Pi or Qi nor their parity. In order to obtain this, he would need
to obtain the values of pa and/or pb. He cannot obtain these
values in the previous round, and his sole qubit at this stage
is, from his perspective, maximally mixed. Also, he cannot
obtain these values by forming a coalition, which would, at

best, provide him the private data of the coalition partner. In
step 11, Alice, Bob, and Charlie measure their qubits, and
learn bit values whose parity encodes the product PiQi . This
is an example of a “shared secret.” All three parties must come
together to learn the value of PiQi so this step is again secure,
even under coalitions of two parties. In steps 12 and 13, Alice
and Bob sum their measured bits and send them to Charlie,
who then announces the value of f (�x,�y). This is secure, even
under passive coalitions, for the same reason as step 11.

A. EPR-type attacks

EPR-type attacks (named for the seminal Einstein-
Podolsky-Rosen article) [24] have a special significance for
passively secure quantum SMPC protocols because if a
corrupted party can infer information about the honest parties’
data without being caught, by using a quantum computer and
delaying measurements, the role of passive security would
be of reduced value in the context of quantum systems. This
is because, essentially, the private data of honest parties can
leak even when the corrupted party is just performing local
operations.

EPR attacks have been demonstrated in the case of one-
sided protocols and while our protocol as presented in Sec. VI
is n-sided, a one-sided variant can be easily created if steps 11
and 12 are modified as follows:

1. When all i terms are completed, Alice and Bob sum their
local measurement outcomes. Alice sends her summation bit
to Charlie, who sums it with his own measured outcomes.

2. Charlie sends the parity of his summed bits to Bob, who
calculates the value of f (�x,�y).

The question in such attacks is can Bob learn the function
outcomes for many values of his vector �y without someone
noticing? Bob is allowed to perform any quantum operation
on his qubit(s) while he is attempting to infer the value of
f for Alice’s given �x and many possible �y’s. As proven by
Lo in [24], if the entire protocol can be modeled as a unitary
black box, then this attack successfully allows Bob to break
the protocol, by applying unitary transformations to his part
of the Hilbert space, which allow him to “poll” the black box
for the output of the function for many input vectors and hence
learn information about Alice’s input.

The reason why this attack fails in our protocol is that the
repeated polling by any party is impossible; parties commit
to an input value in two ways: first in the classical bit sent
to Charlie in step 10, and second in the unbiased nature of
the measurements corresponding to different input values.
This means that consecutive polling by any corrupted party
is impossible.

If, on the other hand, corrupted parties were allowed
to communicate quantumly, Bob could, for example, send
his qubit to Charlie. Now Charlie could poll both possible
input values. In possessing both qubits, he could make a
joint measurement, and the relevant joint measurement pairs
(X ⊗ X,Z ⊗ Z or X ⊗ Z,Z ⊗ X) commute. Thus, if quantum
communication were allowed between corrupted parties, the
EPR attack would succeed.

This feature is related to the property that GHZ-type
paradoxes occur in tripartite but not in bipartite systems and
illustrates that it is the inability to model the quantum passive
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secure model via a unitary black box, which is the key to
avoiding the no-go theorem.

VIII. NO QUANTUM CHEATING CHANNEL
SECURITY MODEL

We have now shown scheme B to be passively secure.
However, there is a problem with the notion of pure passive
security in the quantum case. Assuming all parties are perfectly
honest provides bit commitment for free, and in combination
with the results by Yao [38], where it is proven that quantum
bit commitment provides oblivious transfer, and Kilian [39],
where is it proven that classical oblivious transfer provides
classical SMPC, the definition of passive security itself would
imply SMPC. Therefore, we expand our notion of security to
include the case where corrupted parties are allowed to lie.

In this section we introduce the notion of No Quantum
Cheating Channel (NQCC) security model, where no re-
striction is imposed on the corrupted parties but the use of
a quantum channel. We consider a protocol to be NQCC
compliant if, on top of safeguarding the honest party members’
data, it can detect attempts to corrupt the procedure, therefore
allowing the execution of the protocol to be terminated.

The characteristics of NQCC security are summarized in
the following table:

Property NQCC security

Private data are not inferred by corrupted parties �
Corrupted parties are allowed to lie �
Lying is detected �
Corrupted parties exchange classical information �
Corrupted parties exchange quantum information ×

The NQCC model is the most general security model, in
a measurement-based scheme, which remains compliant with
Lo’s no-go theorem. Removing the only restriction imposed
by this model, that is, allowing the use of quantum channels,
would make the system equivalent to a unitary black box and
then the attack invented by Lo compromises security. The value
of NQCC security is that it sheds light on which parts of Lo’s
theorem are the most crucial for measurement-based SMPC.
By highlighting these parts of the theorem, it could be possible
that physical systems can be devised that are compliant
with NQCC restrictions. These physical systems would then
consist of candidates for implementing SMPC at the quantum
level.

IX. SCHEME C: NQCC SECURE PROTOCOL

In this section, we extend scheme B so that it becomes
compliant with the NQCC security model. Since in the
quantum case the definition of passive security automat-
ically implies SMPC, this extension is essential for the
usefulness of our protocol. Furthermore, since NQCC is
the most general form of security consistent with Lo’s
theorem, achieving this security level makes our protocol
maximally secure under the restrictions imposed by quantum
mechanics.

Since Lo/EPR type attacks are not possible, due to restric-
tions imposed by the model, corrupted parties cannot learn the
honest member’s data but they can try to misinform him about
the output by providing 1 ⊕ L, where L is the sum of their
local measurements, during step 12 of scheme B. If they can
do so successfully, then the honest parties learn a false value
of the outcome but the dishonest party member will learn the
correct outcome.

In scheme C this will be detected as follows: If one party
member, for example, Alice, artificially sets all her Pi’s equal
to zero, Pi = 0, then the outcome of the function has to be
zero. If Bob or Charlie are bit flipping the sum of their local
measurements, this would be revealed, as the function outcome
would be nonzero.

Therefore, parties repeat scheme B many times, and in
each execution of the protocol Alice and Bob would have
a probability according to which they set all their Pi’s
and Qi’s, respectively, equal to zero. Instead of privately
giving to Charlie the sum of their measurements, they
announce it, and along with that they announce if they
were measuring as security testers. Since many repetitions
of a scheme B are required, in order to detect cheating, we
introduce one more index, j , which enumerates repetitions of
scheme B.

Scheme C can be summarized in the following steps:
1. Agree on a number of repetitions, Nrep, and have Alice

and Bob choose their probabilities to act as security testers,
ta < 0.5 and tb < 0.5, respectively. Alice and Bob may choose
the probabilities 0 < ta < 1, 0 < tb < 1 during the execution
of protocol.

2. For j = 1 to j = Nrep repeat the following steps:
3. Repeat steps 4–13 for all terms present in Eq. (4), starting

with i = 1.
4. Alice and Bob will calculate Pi and Qi locally. Accord-

ing to the values of ta and tb, they may choose to set Pi = 0,
Qi = 0.

5. Alice and Bob each generate a local random “prepara-
tion pad” bit, pa and pb.

6. Acting simultaneously, the three parties cyclically per-
mute their qubits. Charlie gives his qubit to Alice, Alice gives
hers to Bob, and Bob gives his to Charlie.

7. If pa = 1, Alice applies a Hadamard to Charlie’s original
qubit.

8. They cyclically permute the qubits again, Alice to Bob
to Charlie to Alice.

9. Now Bob possesses Charlie’s original qubit. If pb = 1,
Bob applies a Hadamard to this qubit.

10. They cyclically permute the qubits again, and each
regains their initial qubit. (Note that the scheme can be
amended such that no quantum communication is needed
during the protocol—see later in this article.)

11. The state held by the parties is now 1 ⊗ 1 ⊗ Hpa⊕pb |ψ〉.
12. Alice and Bob privately give Charlie the bit values Pi ⊕

pa and Qi ⊕ pb, respectively.
13. Alice, Bob, and Charlie measure their qubits in bases

according to bit values, Pi , Qi , and Pi ⊕ Qi ⊕ pa ⊕ pb.
14. When all i terms are completed, Alice, Bob, and Charlie

sum their local measurement outcomes. They all concurrently
announce their summation bits and also announce if they were
acting as security testers for the current j .
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15. Everyone calculates the value of f (�x,�y).
16. If either Alice or Bob (or both) announced that they acted

as security testers and f (�x,�y) 
= 0, parties halt the protocol.
An attempt to compromise it is detected.

17. If neither Alice nor Bob announced that they acted as
security testers and the value of f (�x,�y) is inconsistent with
values for previous j ’s when again both were not security
testers, the protocol is halted and an attempt to compromise it
is detected.

Again, the qubit-swapping can be avoided if instead of a
GHZ state the following five-qubit ensemble is shared between
the three parties:

ρ =
∑

pa,pb

|pa〉〈pa| ⊗ |pb〉〈pb|

⊗ (1 ⊗ 1 ⊗ Hpa⊕pb ) |ψ〉 〈ψ | (1 ⊗ 1 ⊗ Hpa⊕pb ). (6)

X. NQCC SECURITY ANALYSIS OF SCHEME C

Here, we examine scheme C and prove that it is compliant
with NQCC security, that is, the private data of honest parties
remain uncompromised and cheating attempts are detected.
The only assumption we make is that no quantum channel is
used.

Since the case of honest but curious corrupted parties was
discussed in Sec. VII, here we focus on attacks where corrupted
parties deviate from the protocol. Except entering their private
data feed to the protocol, parties dynamically interact (provide
input) with the protocol, at steps 7 and 9, step 12, and step
14. The attacks which can be generated in these steps are the
following:

1. Alice or/and Bob provide to Charlie invalid bit values
for Pi ⊕ pa or Qi ⊕ pb.

2. Alice or Bob lie about the sum of their measurement
bits.

3. Alice or Bob are dishonest on whether they acted as
security testers.

A. Provide to Charlie invalid bit values for Pi ⊕ pa or Qi ⊕ pb

In this attack, Alice and/or Bob lie to Charlie and use fake
preparation pads pa and/or pb, respectively, which would lead
Charlie to use an incorrect measurement axis. In this case,
when Charlie is measuring along an incorrect axis, Charlie’s
measurement outcome would be 1 with 50% probability and
0 with 50% probability. This is something detectable during
step 17, as there will be inconsistency in the calculated function
values between different protocol runs.

B. Lie about the sum of their measurement bits

Here, one party member is providing a bit-flipped sum of
his local measurements. This leads the other party members to
learn a wrong (bit-flipped) function value, while the corrupted
member would be able to recover the correct value. This
compromising strategy has to be followed in every run of the
protocol or else, due to step 17, it will be detected. However,
if, without loss of generality, Bob is performing this attack, he
will be detected when Alice acts as a security tester at a run,
during which he does not have the role of a security tester.

This detection has a probability of happening on a repetition
j of the protocol equal to ta(1 − tb) and it happens on average
after 1−tb

ta
steps.

C. Be dishonest on whether they acted as security testers

Here a party member can either act as a security tester,
enforcing a f = 0 output, without announcing it, or they could
announce they acted as security testers without having set their
input equal to zero. If the correct function outcome is f = 0,
this attack does not affect by any means the protocol, and
if the correct outcome is f = 1, it will be detected during
step 16.

Scheme C is therefore NQCC secure and the security
threshold, t = 2, remains the same since the detection methods
work as long as all party members are not corrupted.

XI. ADVANTAGE OVER CLASSICAL SCHEMES

So far, we have presented a scheme for two-party computa-
tion which is passively secure with threshold t = 2. Compared
to classical schemes, our scheme has the disadvantage that
quantum resources and an extra player are needed. However,
by scaling up the scheme to multiparty computation over n

parties, a significant advantage of the quantum scheme is
revealed.

Known passively secure classical schemes [7,11,40,41]
require, in the general case, an honest majority; in other words,
their threshold has an upper bound t < n/2. By modifying our
scheme B, we can construct a scheme which allows secure
multipartite computation over a restricted family of n-party
functions with a threshold at its maximum value, t = n − 1.
The family of functions we consider are most easily described
by considering f (�x,�y) as a polynomial over Z2 (i.e., where
AND represents multiplication and XOR represents addition).
They are polynomials of degree 2 which have the following
form:

f =
⊕

j1>j2

⊕

i

λj1,j2P
j1
i P

j2
i , (7)

where the j1,j2 indices are used to distinguish the n parties and
λj1,j2 is a bit number which indicates if a pair of parties (j1,j2

has a joint computation which is needed in order to evaluate
f . As far as we are aware, there is no proof that a classical
protocol for secure computation of degree 2 functions requires
an honest majority; however, our quantum protocol provides
the highest possible corruption threshold. There exist recent
examples (e.g., voting) of limited classical SMPC protocols
which do not require an honest majority [42]. We hope that
our result motivates more work in this area.

Each term in the sum depends on input bits from two parties
only, and hence scheme B can be adapted to provide a fully
secure computation method. Notably, the threshold for this
scheme will remain n − 1.

The scheme progresses as follows:
1. Repeat steps 2 and 3 for each (j1,j2) term in Eq. (7).
2. Parties j1 and j2 nominate a third party j3. These three

parties share a GHZ state.
3. The three parties follow scheme B up to step 11. The

parties retain their measured bits which are not yet shared.
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4. After this has been completed for every participating
pair, each party computes the parity of their measured bits and
announces the sum.

5. The players compute function f by summing these
public bits.

In the n party scheme, the security of the whole computation
depends on the security of each of the three party computations
performed. Since at each stage prior to the final announcements
each term in the sum (7) is encoded in the parity of bits held
by parties j1, j2, and j3, each party’s input data remain secure,
even if all other n − 1 other parties share data. For this reason,
this scheme is passively secure with a threshold of t = n − 1.
Furthermore, if instead of scheme B, the variant discussed in
Sec. X is used, then the scheme is NQCC secure, again with
t = n − 1.

XII. DISCUSSION AND CONCLUSIONS

In this article we have introduced a scheme for secure n-
party computation. The scheme exploits the intrinsically quan-
tum correlations of the Greenberger-Horne-Zeilinger states to
provide security and privacy. By considering a novel security
model, inspired by the passive secure settings so important
in classical secure computation, we show that unconditionally
SMPC may be enhanced by access to a quantum resource. The
scheme we present depends upon the natural secret-sharing
characteristics of GHZ correlations. Illustrating the potential
of such correlations for private computation with a “nearly
private scheme,” we then upgraded this nearly private scheme
to a scheme (scheme B) which is secure under the conditions
of quantum passive security defined in Sec. V. Afterward,
the protocol was further upgraded to NQCC security, where
the parties are allowed to deviate from the protocol, as long
as they do not use quantum communication. This was then
extended to a scheme for secure n-party computation with
a threshold of n − 1. This n-party scheme is restricted to
quadratic functions, but achieves a security threshold higher
than any known classical scheme.

The (nonphysical) bipartite object with analogous correla-
tions to the GHZ state [33] is the Popescu-Rohrlich nonlocal
box [43]. Thus the nonlocal box (if it existed) would have a
further application for secure computation. This observation
was made independently very recently [44] and used to
calculate better bounds on the number of oblivious transfer
calls needed for secure computation of a function of previous
estimates [45].

Since the block on quantum communication between
cheating players seems the key assumption which allows the
security models we discussed to differentiate from the unitary
black-box model where the Lo-Colbeck no-go theorems

apply, in order to physically realize quantum SMPC, models
which fulfill this assumption need to be further researched,
for example, noisy quantum storage models, which have
recently been shown to have some favorable cryptographic
properties [46].

One limitation of the scheme is its restriction to
degree 2 polynomials. Nevertheless, even for this restricted
class of functions there is no known classical secure scheme
which does not require an honest majority. Proving upper
bounds on the security of classical schemes for restricted
functions would be an interesting research direction, in which
we are not aware that any work has been carried out. A recent
generalization [47] of [33] to higher-degree functions may
provide the means to extend our scheme to higher-degree
functions. It is possible that other families of functions with
particular symmetries and structure are well suited to this kind
of method. A further limitation is the restriction to families
of functions, which when written in the form of (7), have a
number of terms polynomial in the input size. This appears
to be a fundamental limitation of employing the inner-product
decomposition [37] since it can be shown that certain functions
(e.g., the equality of two bit strings) require exponentially
many terms (see [37] for a fuller discussion).

It is natural to ask whether the schemes we have presented
can be developed into schemes for secure quantum compu-
tation, using cluster states [34] in place of the GHZ states.
In fact, it has already been shown that cluster-state-based
quantum computation has promising security features, since a
secure method of “blind quantum computation” [48] has been
developed which utilizes on cluster states measurement-based
quantum computation. In light of this, the application of cluster
states to secure quantum multiparty computation seems a
promising direction.

The development of quantum key distribution has been one
of the most successful aspects of quantum information science
and is certainly the aspect closest to real-world application.
We hope that this work demonstrates that quantum methods
can provide advantages in other cryptographic problems and
inspires further study in this area.
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