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Beyond the Fermi pseudopotential: A modified Gross-Pitaevskii equation
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We present an effective potential and the corresponding modified Gross-Pitaevskii equation, which account
for the energy dependence of the two-body scattering amplitude through an effective-range expansion. For the
ground-state energy of a trapped condensate, the theory leads to what we call a shape-dependent confinement
correction that improves agreements with diffusion Monte Carlo calculations. The theory illustrates, for rela-
tively strong confinement and/or high density, how the shape dependence on atom-atom interaction can come
into play in a many-atom quantum system.
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I. INTRODUCTION

The Gross-Pitaevskii equation~GPE! has in recent years
played a central role in our understanding of gaseous B
Einstein condensates~BECs! @1,2#. Its astonishing succes
has to do with the fact that in most experiments to date, b
the gaseous parameterna3 ~heren is the number density an
a is the scattering length! and the parametera/L0, which
characterizes the strength of confinement~with L0 being a
measure of the size of the trap!, have been very small. Re
cently, a new breed of experiments@3# have emerged tha
take advantage of Feshbach resonances in cold atomic c
sion @4# to make the scattering lengtha tunable through a
magnetic field. Such experiments promise to take us
parameter regimes in which the validity of the GPE and
underlying assumptions, such as the shape-indepen
pseudopotential approximation@1,2#, have to be carefully ex-
amined.

Most of the existing theories going beyond the GPE@5–7#
have focused on quantum fluctuation that is responsible
the lowest-order correction inna3. But it has become clea
that eventually, a better description of atom-atom interact
beyond the pseudopotential approximation that is the bas
the GP theory, will be required. For homogeneous syste
this has been demonstrated in a recent work by Cowellet al.
@8#, which shows that different potentials having the sa
scattering lengtha can lead to a vastly different ground-sta
energy forna3 of the order of 0.05 or greater. For inhom
geneous systems, recent works on two atoms in a trap h
shown that the shape-independent approximation beco
less valid under strong confinement@9–11#.

Neither of these results are surprising. The sha
independent approximation assumes the two-body scatte
amplitude to be a constant over the momentum~or energy!
range of interest. For largerna3 or stronger confinement,
greater range of momentum states become involved and
assumption becomes less applicable. This point has alre
been illustrated for two-atom systems under strong confi
ment, where it has been shown that the inclusion of the
ergy dependence of scattering amplitude leads to much
proved results for the energy levels of the system@9–11#.
The goal of this paper is to show how a similar idea can
generalized to anN-body system.

In the light of the success of the GP theory@1,2#, we focus
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here on a perturbative approach around the GPE. An ef
tive potential is proposed that incorporates the energy dep
dence of the two-body scattering amplitude through
effective-range expansion. A corresponding modified
equation is derived. By taking advantage of the relations
between effective range and scattering length as implied
the quantum-defect theory~QDT! @12,13#, no new inputs
from scattering calculations are required other than the s
dard scattering length and theC6 coefficient. For the ground-
state energy of an inhomogeneous system, our numerica
sults show that the modified equation leads to be
agreements with diffusion Monte Carlo~DMC! results @7#
than theories that consider only the quantum fluctuation c
rection. More importantly, the theory introduces the conc
of shape-dependent confinement correction, an origin
shape dependence on the interaction potential that is ab
in a homogeneous system.

II. MODIFIED GP EQUATION

In a second-quantization formulation, a system ofN
bosons in an external trapping potentialVext(r ) is described
by a Hamiltonian

Ĥ5E dr Ĉ†~r !F2
\2

2m
¹21Vext~r !GĈ~r !

1
1

2E dr1E dr2 Ĉ†~r1! Ĉ†~r2!V~r12r2!Ĉ~r2…Ĉ~r1!.

~1!

HereV is the interaction between particles.Ĉ(r ) andĈ†(r )
are the bosonic annihilation and creation operators that
isfy the commutation relations

@Ĉ†~r1!,Ĉ†~r2!#5@Ĉ~r1!,Ĉ~r2!#50, ~2!

@Ĉ~r1!,Ĉ†~r2!#5d~r12r2!. ~3!

Taking the interparticle potentialV to be that of a mean
field,

VMF5gd~r12r2!, ~4!
©2003 The American Physical Society12-1
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where

g5
4p\2a

m
, ~5!

and ignoring quantum fluctuation, one arrives at the usual
equation@1,2#

i\
]

] t
FS r ,t…5F2

\2

2m
¹21Vext~r !1guFu2GF~r ,t !. ~6!

Here F5^Ĉ& and is nomalized by*dr uFu25N, with N
being the total number of particles.

From a two-body scattering point of view, the mean-fie
potential, given by Eq.~4!, is such that it gives, in the firs
Born approximation, the correct foward scattering amplitu
at zero energy. It is a shape-independent approximation
ignores completely the energy dependence of the scatte
amplitude. While this may be a good approximation f
small values ofna3 and for weak confinement, it become
less valid for strong confinement and/or greaterna3. This is
true even at zero temperature, as confinement and/or q
tum depletion invariably involve nonzero momentum stat

For a better treatment of atomic interaction, while p
serving much of the structure of the GP theory, an effect
interaction is proposed here that incorporates the energy
pendence of the scattering amplitude through an effect
range expansion. Specifically, we look for aV̂eff that gives, in
the first Born approximation, the correct real part of thefor-
ward scattering amplitude,

2
m

4p\2E dr e2 ik•rV̂eff e
1 ik•r5Re@ f ~k,u50!#, ~7!

to the order ofk2 ~the first order in energy!. This requirement
basically ensures a better optical potential for an atom m
ing in the medium of others@14#.
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For the range of energies of interest here, only thes-wave
scattering is important. In this case, the scattering amplit
can be written in terms of thes-wave phase shiftd0(k) as

f ~k,u!5
1

k

1

cotd0~k!2 i
. ~8!

From the standard effective-range expansion

kcotd0~k!52
1

a
1

1

2
r ek

21•••, ~9!

wherer e is the effective range, we have, to the order ofk2,

Re@ f ~k,u!#52a1a2~a2 1
2 r e!k

2. ~10!

It is straightforward to verify that theV̂eff satisfying Eq.
~7! can be written as

V̂eff5VMF~r12r2!1V̂mod~r12r2!, ~11!

where

V̂mod5
g2

2
@d~r12r2!¹ r12r2

2 1¹ r12r2

2 d~r12r2!# ~12!

and

g25

4p\2a2S a2
1

2
r eD

m
. ~13!

This potential is consistent with the pseudopotential exp
sion of Huang and Yang@15#, except that it is Hermitian and
is represented in the coordinate space. It is worth noting
g2 is not zero forr e50. This is because unlike the expansio
for kcotd0, the real part of the scattering amplitude has ak2

dependence even whenr e50.
With this effective interaction, the many-body Hami

tonian becomes
Ĥ[ĤMF1Ĥmod

[H E drĈ†(r )F2
\2

2m
¹21Vext(r )GĈ(r )1

1

2E dr1E dr2 Ĉ†(r1) Ĉ†(r2)VMF (r12r2)Ĉ(r2)Ĉ(r1…J
1

1

2E dr1E dr2 Ĉ†~r1! Ĉ†~r2!V̂mod~r12r2!Ĉ~r2!Ĉ~r1!. ~14!
s,

the
The term associated withV̂mod can be simplified in the two-
body center-of-mass frame@r5r12r2 , R5(r11r2)/2], in
which Ĥmod takes the form

Ĥmod5
1

4
g2E dRE dr Ĉ†S R1

r

2D Ĉ†S R2
r

2D @d~r ! ¹ r
2

1¹ r
2 d~r !#ĈS R2

r

2D ĈS R1
r

2D . ~15!
After integrating overr and some integrations by part
Ĥmod can be written as

Ĥmod5
1

4
g2E dR Ĉ†~R!@¹2

„Ĉ†~R!Ĉ~R……#Ĉ~R….

~16!

Note that the Laplacian operator operates only on
2-2
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number-density operatorĈ†(R)Ĉ(R…. Simplification of
ĤMF follows the usual procedure, and leads finally to

Ĥ5E dR Ĉ†~R!F2
\2

2m
¹21Vext~R!G Ĉ~R!

1
1

2E dR Ĉ†~R!Fg„Ĉ†~R!Ĉ~R!…

1
1

2
g2¹2

„Ĉ†~R!Ĉ~R!…GĈ~R!. ~17!

From this Hamiltonian, both the static and the dynamic pr
erties of a many-atom Bose system can be studied. We fo
here on the ground-state energy of the system.

Ignoring both quantum fluctuation andĤmod, Eq. ~17!
leads to the standard GP energy functional

EGP@F#5E dr F \2

2m
u¹Fu21Vext~r !uFu21

1

2
guFu4G ,

~18!

which corresponds to a time-independent GP equation for
ground-state wave function with a chemical potentialm,

F2
\2

2m
¹21Vext~r !1guFu2GF~r !5mF~r !. ~19!

Inclusion of the lowest-order term due to quantum flu
tuation leads to an energy functional@6,16#

EMGPI@F#5E drF \2

2m
u¹Fu21Vext~r !uFu21

1

2
guFu4

3S 11
128

15

1

Ap
a3/2uFu D G , ~20!

where the extra term due to quantum fluctuation was fi
derived by Lee, Huang, and Yang@16#, and will be called the
LHY term. This functional corresponds to a modified G
equation that we call MGPI@6,7#,

F2
\2

2m
¹21Vext~r !1guFu21g1uFu3GF~r !5mF~r !,

~21!

where

g15g
32

3Ap
a3/2. ~22!

Inclusion of both quantum fluctuation andĤmod to the
lowest order leads to an energy functional

EMGPII@F#5E dr F \2

2m
u¹Fu21Vext~r !uFu21

1

2
guFu4

1
2

5
g1uFu51

1

4
g2uFu2¹2~ uFu2!G . ~23!
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The corresponding modified GP equation, which we c
MGPII, is

F2
\2

2m
¹21Vext~r !1guFu21g1uFu31

g2

2
¹2~ uFu2!GF~r !

5mF~r !. ~24!

MGPII incorporates the shape dependence on the inte
tion potential through the effective ranger e . This additional
parameter does not, however, add much extra complexit
the theory, asr e and a are generally related. For a hard
sphere potential@V(r )5` for r<a, V(r )50 for r .a], we
have the well-known relation

r e5~2/3!a. ~25!

For atoms with a long-range van der Waals interact
@V(r )→2C6 /r 6 for r→`], r e can be determined froma by
@12#

r e /b65S 2

3xe
D 1

~a/b6!2
$11@12xe~a/b6!#2%, ~26!

whereb65(mC6 /\2)1/4 is a length scale associated with th
van der Waals interaction, andxe[@G(1/4)#2/(2p). Similar
relations for other long-range potentials should also exist
assertion that can be deduced from a more general Q
consideration@13#.

The physical meaning of the correction due toĤmod can
be better understood by estimating the order of magnitud
each term in Eq.~23! or ~24!. Consider a system ofN bosons
confined to a length scaleL0. The order of magnitude for the
number density isn;N/(L0)3. Let eMF;na3(\2/2m)
3(1/a)2 to represent the energy per particle due to the me
field. It is easy to show that the LHY quantum fluctuatio
term is of the order ofeLHY;eMF(na3)1/2, while the Ĥmod
term is of the order ofemod;eMF(a/L0)2. It is thus clear that
the two corrections are of different origin. TheĤmod correc-
tion has an order of magnitude that is determined prima
by the strength of confinement. It depends also on the sh
of the interaction potential throughg2 and r e . We will call
this correction the shape-dependent confinement correc
It is a new source of shape dependence that is absent
homogeneous system (L0→` with n being fixed!. In this
regard, it differs substantially from the shape depende
that can come at higher densities from a two-body corre
tion at shorter length scales@8,17#.

A further comparison of the magnitudes of the LHY an
the shape-dependent confinement corrections reveals o
interesting features. From the estimates above, we h
emod/eLHY;(a/L0)2/(na3)1/2;(a/L0)1/2/N1/2. This means,
for instance, that relative to the LHY correction, the shap
dependent confinement correction is more important
small N than for largeN, a point that will be further demon
strated numerically.

We have chosen, up to this point, a formulation that m
closely parallels the standard GP formulation@1,2#. For a
small particle numberN, a number-conserving Hartree-Foc
2-3
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formulation is in fact more appropriate@2,18#. The corre-
sponding results are easily derived. For example, at the l
of MGPII, we have

EMGPII@f#5NE dr F \2

2m
u¹fu21Vext~r !ufu21

1

2
g

3~N21!ufu41
2

5
g1~N21!3/2ufu51

1

4
g2

3~N21!ufu2¹2~ ufu2!G ~27!

and

F2
\2

2m
¹21Vext~r !1g~N21!ufu21g1~N21!3/2ufu3

1
g2

2
~N21!¹2~ ufu2!Gf~r !5mf~r !, ~28!

where f is normalized according to*dr ufu251. It is the
Hartree-Fock formulation that we actually implement in o
numerical calculations, but the difference is small for largeN
~betweenN and N21). Settingg2, or both g2 and g1, to
zero in Eqs.~27! and~28! leads to the Hartree-Fock results
MGPI and GP, respectively.

III. NUMERICAL RESULTS

We present here our numerical results for the ground-s
energy of a BEC in different approximations. They are o
tained using an imaginary time evolution method w
alternating-direction implicit~ADI ! algorithm@19#. The code
has been tested by reproducing the GPE results of Ref.@20#.

A. Results for hard spheres

A many-body system of hard spheres is an ideal
ground for various theoretical models, as accurate results
its ground-state energy are available from DMC calculatio
for both homogeneous@21# and inhomogeneous cases@7#.

Figure 1 shows the relative differences of the energy fu
tional between the GP and DMC forN bosons in a spherica
harmonic trap characterized by a length scaleL0

5A\/2mv. It is clear from these results that the groun
state energy of the system can differ substantially from th
predicated by the GP theory, for either strong confinem
~largea/L0) and/or high density~largeN).

As shown in Ref.@7#, most of these differences, at lea
for the range of parameters considered, can be accounte
by the LHY quantum fluctuation correction@16#, at a level
corresponding to MGPI. This is illustrated in Fig. 2~a!. In the
same figure, it is also shown that a consistently better ag
ment with DMC is achieved by MGPII, which includes th
shape dependent confinement correction. This means th
the remaining difference between MGPI and DMC, at le
part of it is shape-dependent and requires a better descrip
of atom-atom interaction. Note that in the case of ha
spheres,g2 is always positive. The sign of the shap
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FIG. 1. Relative differences between ground-state energies
dicted by the GP theory and by diffusion Monte Carlo calculatio
@7#. The results are forN bosons in a spherically symmetric trap o
sizeL05A\/2mv. Herea is the scattering length.

FIG. 2. Relative differences between ground-state energies
dicted by modified GP theories and by diffusion Monte Carlo c
culations@7#. ~a! A sample comparison of MGPI and MGPII, bot
of which lead to much better results than the GP theory.~b! More
results of MGPII. Note that they scale of these figures are about
factor of ten smaller than that of Fig. 1.
2-4
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dependent confinement correction is then determined by
expectation value of¹2(ufu2), which is negative for the
ground state.

More results of MGPII are presented in Fig. 2~b!. It shows
that at the level of MGPII, the relative difference from DM
has been reduced from up to 20% for the GP theory~see Fig.
1! to less than 2% for the range of parameters considere

B. Results for atoms with van der Waals interaction

With the introduction ofĤmod, the ground-state energ
becomes dependent upon the shape of the long-range p
tial through the relationship betweenr e and a. For atoms
with the van der Waals interaction,r e and a are related by
Eq. ~26!. Figure 3 is a graphic illustration of this relation
Note thatr e diverges fora50, corresponding to the fact tha
in this particular case, the energy dependence of the sca
ing amplitude around zero energy cannot be described b
effective-range expansion@22#. Also note that unlike the cas
of hard spheres, theg2 for a van der Waals potential ma
become negative for sufficiently smalla/b6. Consequently,
the shape-dependent confinement correction to the gro
state energy may, in principle, be positive.~Both points sug-
gest that something interesting happens arounda50 that
may deserve a separate investigation.!

Figure 4~a! gives a comparison of ground-state energ
predicted by MGPII and by the GP theory for a realis
experimental configuration. Specifically, it is for a85Rb con-
densate in a cylindrical trap with an aspect ratio of«
56.8/17.5 @23#. A C6 value of 4698 a.u. is used@24#. It
shows that deviations from the GP theory can become s
stantial for either high density and/or strong confineme
With the tunability of the scattering length via a Feshba
resonance@23#, such many-body effects beyond the G
theory may soon become observable. Figure 4~b! shows
more explicitly the shape-dependent confinement correct
Its magnitude increases witha/L0, as expected. For a fixe
a/L0, its relative contribution is more significant for smallN
than for largeN, consistent with our earlier discussion. Th
corrections are mostly negative~except for very smalla),

FIG. 3. The universal relationship betweenr e /b6 anda/b6 for
atoms with a long-range van der Waals interaction@12#.
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since g2 is greater than zero for most of the data poin
shown. „BecauseL0534 850 a.u. is much greater thanb6
5164.2 a.u., most of the data points correspond toa/b6
@1. The r e is then approximately a constantr e
'(3p)21@G(1/4)#2b6, and the correspondingg2’s are posi-
tive.…

IV. CONCLUSION

In conclusion, an effective interaction and the correspo
ing modified GP equation have been proposed that take
account the energy dependence of the two-body scatte
amplitude through an effective-range expansion. The res
ing theory, called MGPII, leads to better agreements w
diffusion Monte Carlo calculations@7# than either the GP
theory, or MGPI that considers only the quantum fluctuat
correction. The theory expands, considerably, the param
space~specified byna3 and a/L0), in which a GP type of
formulation can be applied. It introduces the concept
shape-dependent confinement correction and shows that
fixed confinement, its relative contribution is more signi
cant for smallN than for largeN.

FIG. 4. ~a! Relative differences between ground-state energ
predicted by MGPII and by the GP theory for a85Rb condensate in
a cylindrical trap of aspect ratio«56.8/17.5. HereL0 is defined by
the transverse frequency:L05A\/2mv'. ~b! Relative contribution
from the shape-dependent confinement correction.
2-5
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Finally, we point out that both MGPI and MGPII are pe
turbative expansions around the GP theory. They will ev
tually fail for sufficiently largena3 and/or sufficiently strong
confinement. For high density, the shape dependence
different origin will eventually emerge from two-body corre
lations at short length scales@8,17#. For strong confinement
the local-density approximation, implicit in both MGPI an
MGPII, will eventually fail. Exploration into those regime
will require theories that differ much more substantially fro
the GP formulation.
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