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Beyond the Fermi pseudopotential: A modified Gross-Pitaevskii equation
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We present an effective potential and the corresponding modified Gross-Pitaevskii equation, which account
for the energy dependence of the two-body scattering amplitude through an effective-range expansion. For the
ground-state energy of a trapped condensate, the theory leads to what we call a shape-dependent confinement
correction that improves agreements with diffusion Monte Carlo calculations. The theory illustrates, for rela-
tively strong confinement and/or high density, how the shape dependence on atom-atom interaction can come
into play in a many-atom quantum system.
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[. INTRODUCTION here on a perturbative approach around the GPE. An effec-
tive potential is proposed that incorporates the energy depen-
The Gross-Pitaevskii equatiq®PE has in recent years dence of the two-body scattering amplitude through an
played a central role in our understanding of gaseous Boseffective-range expansion. A corresponding modified GP
Einstein condensated8ECS [1,2]. Its astonishing success €quation is derived. By taking advantage of the relationship
has to do with the fact that in most experiments to date, botfpetween effective range and scattering length as implied by
the gaseous parametea® (heren is the number density and the quantum-defect theorfQDT) [12,13, no new inputs
a is the scattering lengthand the parametea/L,, which from scattering calculations are required other than the stan-
characterizes the strength of confineméwith L, being a  dard scattering length and tii® coefficient. For the ground-
measure of the size of the trahave been very small. Re- State energy of an inhomogeneous system, our numerical re-
cently, a new breed of experimenit3] have emerged that sults show that the modified equation leads to better
take advantage of Feshbach resonances in cold atomic colfgreements with diffusion Monte Carl®MC) results[7]
sion [4] to make the scattering length tunable through a than theories that consider only the quantum fluctuation cor-
magnetic field. Such experiments promise to take us intéection. More importantly, the theory introduces the concept
parameter regimes in which the validity of the GPE and itsof shape-dependent confinement correction, an origin of
underlying assumptions, such as the shape-independef’hape dependence on the interaction potential that is absent
pseudopotential approximatidm,2], have to be carefully ex- in @ homogeneous system.

amined.
Most of the existing theories going beyond the GBE7] Il. MODIFIED GP EQUATION
have focused on quantum fluctuation that is responsible for o )
the lowest-order correction ina®. But it has become clear !N @ second-quantization formulation, a system Nof

that eventually, a better description of atom-atom interaction@0S0ns in an external trapping potentigl(r) is described

beyond the pseudopotential approximation that is the basis & a Hamiltonian

the GP theory, will be required. For homogeneous systems,

this has been demonstrated in a recent work by Costedl. 1 _ | 4, P(r)

[8], which shows that different potentials having the same

scattering lengtta can lead to a vastly different ground-state

energy forna® of the order of 0.05 or greater. Fpr inhomo- + lf dflf dr, UT(r) U )V(r—r) W (r)W(ry).

geneous systems, recent works on two atoms in a trap have 2

shown that the shape-independent approximation becomes 1)

less valid under strong confinemd®t11].

indgre)g?lg:en?faptgreoieim;?i?)ﬂt:s;:;ezuti]peni\l/\?g-.bog;escsa?tae ?ieHereV is the ir)teract.io'n petween partigleﬁ(r) andlif*(r)

amplitude to be a constant aver the momenkanenergy 'jegre the bosonic a_nnlhllathn and creation operators that sat-
. 3 . isfy the commutation relations

range of interest. For largera® or stronger confinement, a

greater range of momentum states become involved and this

2

- 2m

V2+vext(r)}xir(r)

assumption becomes less applicable. This point has already [W1(ry) Wi(r) ] =[¥(ry), ¥(r2)]=0, @
been illustrated for two-atom systems under strong confine- R R
ment, where it has been shown that the inclusion of the en- [W(ry), Wi(ry)]=8(r,—ry). 3
ergy dependence of scattering amplitude leads to much im-
proved results for the energy levels of the systé&w11]. Taking the interparticle potentidl to be that of a mean
The goal of this paper is to show how a similar idea can bdield,
generalized to alN-body system.

In the light of the success of the GP thedty2], we focus Vue=0gd8(ri—ry), (4)
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where For the range of energies of interest here, onlysheave
scattering is important. In this case, the scattering amplitude

4mhi’a can be written in terms of thewave phase shif6y(k) as
g=——. (5)
1 1
. . . . f(k,O)=v —F7—. (8)
and ignoring quantum fluctuation, one arrives at the usual GP k cotdy(k)—i

equation[1,2 . .
quation{1,2] From the standard effective-range expansion

iﬁicb rt)= —ﬁ—2v2+v {r)+g|®[?|D(r,t). (6) 1
el > ex{f)*9 0. kcot&o(k)=—5+§rek2+---, C)

Here ®=(¥) and is nomalized byfdr|®|?=N, with N wherer, is the effective range, we have, to the ordeikdf
being the total number of particles. 5 L )

From a two-body scattering point of view, the mean-field Re f(k,0)]=—at+a“(a—3re)k”. (10
potential, given by Eq(4), is such that it gives, in the first _ _ . ~ .
Born approximation, the correct foward scattering amplitude It is sbtra|ghtforward to verify that th¥/eq satisfying Eq.
at zero energy. It is a shape-independent approximation thzg) can be written as
ignores completely the energy dependence of the scattering Voo V(P F )+ (Faer 11
amplitude. While this may be a good approximation for o= VMF('1 = 12) ¥ Vimod 1= 2), (D
small values ofna® and for weak confinement, it becomes where
less valid for strong confinement and/or greatef. This is g
true even at zero temperature, as confinement and/or quan- ¢ _Y2r o g2 Ly2  sipo—r 12
tum depletion invariably involve nonzero momentum states. mod=75 (811 =12) Vi, ¢, ¥V, - 81— r2)] - (12

For a better treatment of atomic interaction, while pre- d
serving much of the structure of the GP theory, an effectivé”!

interaction is proposed here that incorporates the energy de- 1

pendence of the scattering amplitude through an effective- 4mhi%a®l a— Ere)

range expansion. Specifically, we look fof/@ﬁ that gives, in 0= m . (13

the first Born approximation, the correct real part of foe

ward scattering amplitude, This potential is consistent with the pseudopotential expan-

sion of Huang and YanfL5], except that it is Hermitian and

is represented in the coordinate space. It is worth noting that
g, is not zero forr ,=0. This is because unlike the expansion
for kcot, the real part of the scattering amplitude hae’a

to the order ok? (the first order in energy This requirement  dependence even whep=0.

basically ensures a better optical potential for an atom mov- With this effective interaction, the many-body Hamil-
ing in the medium of otherkl4]. tonian becomes

m
Amh?

f dre Vet k=R f(k,6=0)], (7)

H I:IMF_" Hmod

fdr\i”(r)[—ﬁ—zv2+v t(r)}\if(r)+1J dr fdr W) W) Ve (ri—r)W(ry) ¥ (ry)
2m ex 2 1 2 1 2 MF\'1 2 2 1

1 n “ “ R n
‘*‘EJ dr1f dry WT(ry) UT(rp)Viea(ri—r) W (rp)W(ry). (14

The term associated witlf,,q can be simplified in the two- ~ After integrating over and some integrations by parts,

body center-of-mass framg=r,—r,, R=(r{+r5)/2], in Hoq C2N be written as
which H .4 takes the form

. 1 N r . r N 1 A N N -
Hmod=zngde dr ¥ R+ \PT(R—E)[&(r)V? Hmod=zngdRW(R)[VZ(\PT(RMR))]WR>.
; ; (16
+Vv? V| R—=|¥| R+ =]|.
Vi 5(r)]\P<R 2)\1, R 2 (15 Note that the Laplacian operator operates only on the
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The corresponding modified GP equation, which we call
MGPII, is

hZ
__V2+Vext(r)+g|q)|2+gll(b|3 V2(|®| (I)(r)

number-density operatoﬁifT(R)\if(R). Simplification of
Hye follows the usual procedure, and leads finally to

R h? N
=f dR\PT(R)[—%W#—VeXI(R)}‘P(R)
1 =ud(r). (24)

+=| dR¥T(R)| g(¥T(R)¥ (R . :
Zf ( )[g( (RIF(R) MGPII incorporates the shape dependence on the interac-
1 tion potential through the effective rangg. This additional
+ 2g,V2(PT(R)F(R) | T (R). (17) parameter does not, however, add much extra complexity to
2 the theory, ag, and a are generally related. For a hard-

. . . . sphere potentiglV(r forr=<a, V(r)=0 forr>a], we
From this Hamiltonian, both the static and the dynamic prophgve thg well- I?210\(/vr)1 rgloatlon (r) ]

erties of a many-atom Bose system can be studied. We focus

here on the ground-state energy of the system. r.=(2/3)a. (25
Ignoring both quantum fluctuation ariamod, Eq. (17)
leads to the standard GP energy functional For atoms with a long-range van der Waals interaction
[V(r)—>—Cslr6 for r— ], r, can be determined fromby
7 2 ,, 1 4 [12]
Ecd @1 [ dr| 5 [V B+ VoD@ ol

(18 {1+[1-x(a/Be) 1%}, (26)

e ,86

>( alBe)?

which corresponds to a time-independent GP equation for the

ground-state wave function with a chemical potential whereBs=(mCq/h2) 4 is a length scale associated with the

van der Waals interaction, ang=[T"(1/4)]%/(2r). Similar
O(r)y=pd(r). (19 relations for other long-range potentials should also exist, an
assertion that can be deduced from a more general QDT

Inclusion of the lowest-order term due to quantum fluc-Consideratior{13].
tuation leads to an energy functior&l, 16| The physical meaning of the correction duefg,q can
be better understood by estimating the order of magnitude of
5 , 1 4 each term in Eq(23) or (24). Consider a system & bosons
ol VR[5 Vex(N)|@[*+ 5 9| P confined to a length scalg,. The order of magnitude for the
number density isn~N/(Lo)3. Let ey=~nad(#2/2m)
128 X (1/a)? to represent the energy per particle due to the mean
1+——a3/2|d>|) , (200  field. It is easy to show that the LHY quantum fluctuation

15 N
Jm term is of the order ofeLHY~eMF(na3) Y2 while the H g

where the extra term due to quantum fluctuation was firsferm is of the order oy~ evr(alLo)?. Itis thus clear that
derived by Lee, Huang, and Yahg6], and will be called the the two corrections are of different origin. Tlhe,,,q COrrec-
LHY term. This functional corresponds to a modified GPtion has an order of magnitude that is determined primarily
equation that we call MGH6,7], by the strength of confinement. It depends also on the shape
42 of the interaction potential througlp, andr.. We will call
2 2 3 -~ this correction the shape-dependent confinement correction.
= 5 Vot Ve 1) +0| @7+ gy D] }(I)(r)—,ufl)(r), It is a new source of shape dependence that is absent in a
(21 homogeneous systent {—o with n being fixed. In this
regard, it differs substantially from the shape dependence

ﬁZ
- ﬁvz+vext(r)+g|(b|2

Emerl[P]= f dr

1

where that can come at higher densities from a two-body correla-
tion at shorter length scalg8,17].
9:=9 £a3/2 (22) A further comparison of the magnitudes of the LHY and
3\/_ the shape-dependent confinement corrections reveals other

interesting features. From the estimates above, we have

Inclusion of both quantum fluctuation arfd,.q to the  €moa/ €Ly~ (a/Lo)%/(na%) Y2~ (a/Ly) Y4NY2 This means,
lowest order leads to an energy functional for instance, that relative to the LHY correction, the shape-
dependent confinement correction is more important for
small N than for largeN, a point that will be further demon-
strated numerically.

We have chosen, up to this point, a formulation that most
closely parallels the standard GP formulatigh2]. For a
small particle numbeN, a number-conserving Hartree-Fock

2

h 2 2, 1 4
Evepl[®]= | dr %|V¢| + Vex(1)| D +§g|¢)|

2 1
+§91|‘I’|5+ Zgz|q’|2V2(|¢|2) . (23
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formulation is in fact more appropriate,18]. The corre-
sponding results are easily derived. For example, at the leve 0.00 - —~ ety
of MGPII, we have - \XQ' G
< 0\
004} NN .
h? 1 g '\‘\
EMGPH[¢]:NI dr[ﬁ|v¢|2+vext(r)|¢|2+ 59 W « .
e -0.08 |- \{
> 1 u —m—N=2
X(N=1)|¢*+ 291 (N=1)*% ¢+ 79, M RCY S -
—~¥—N=10 *
—6—N=20
X (N— l)| ¢|2V2(| ¢|2)} (27) -0.16 | —4—N=50
4
0.20 L . ! . ! . !
and 0.0 0.2 04 06
, al,
- %Vz"_vext(r)"_g(N_ || +g1(N—=1)¥4 |3 FIG. 1. Relative differences between ground-state energies pre-

dicted by the GP theory and by diffusion Monte Carlo calculations
[7]. The results are foN bosons in a spherically symmetric trap of
d(r)=po(r), (28)  sizeLo=Al2me. Herea is the scattering length.

+ZIN-DV(|9f)

where ¢ is normalized according tgdr|¢|?=1. It is the

Hartree-Fock formulation that we actually implement in our 0.030
numerical calculations, but the difference is small for laxge A . (a)
(betweenN andN—1). Settingg,, or bothg, andg, to 0025] | “m_ Mopll (vest) .
zero in Eqs(27) and(28) leads to the Hartree-Fock results in R L | --A-MGPI (N=10)
MGPI and GP, respectively. WP ooof —A— MGPII (N=10) '
= ! £
IIl. NUMERICAL RESULTS ,_UE 0.015 | ll-
We present here our numerical results for the ground-stateu_lg 0.010 L
energy of a BEC in different approximations. They are ob-~ |
tained using an imaginary time evolution method with 0.005 1
alternating-direction implicitADI) algorithm[19]. The code |
has been tested by reproducing the GPE results of[Ré¥. 0.000 L
Y X
A. Results for hard spheres alL,
A many-body system of hard spheres is an ideal test
) . 0.020
ground for various theoretical models, as accurate results fo (b)
its ground-state energy are available from DMC calculations [ :::::gg
for both homogeneou21] and inhomogeneous cageq. o MO A N=T0 .
Figure 1 shows the relative differences of the energy func-mﬁ | ®N=5 /
tional between the GP and DMC fét bosons in a spherical =, o010} L * N*2 J -
harmonic trap characterized by a length scalg LUE I / .
=Vhl2mw. It is clear from these results that the ground- 'z ;5051 /’ / .
. . Q "
state energy of the system can differ substantially from those, | / o /
predicated by the GP theory, for either strong confinemen{™ - ,/ ‘z/o/’
(largealL,) and/or high densitylargeN). 00001 % - TRy
As shown in Ref[7], most of these differences, at least *
for the range of parameters considered, can be accounted fc ~ -0.005 - \
by the LHY quantum fluctuation correctidii6], at a level S RN A
corresponding to MGPI. This is illustrated in Figa® In the 0.01 all 01
same figure, it is also shown that a consistently better agree- 0

ment with DMC is achieved by MGPII, which includes the g 2. Relative differences between ground-state energies pre-
shape dependent confinement correction. This means that gi:ted by modified GP theories and by diffusion Monte Carlo cal-
the remaining difference between MGPI and DMC, at leastyiations[7]. (a) A sample comparison of MGPI and MGPII, both
part of it is shape-dependent and requires a better descriptigi which lead to much better results than the GP thedyMore

of atom-atom interaction. Note that in the case of hardresults of MGPII. Note that thg scale of these figures are about a
spheres,g, is always positive. The sign of the shape- factor of ten smaller than that of Fig. 1.
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6 0.25
a
5L —m— N=1000 .
020+ |—e—N=500 Jo
i . —A—N=200 s
| & " |—v—N=100 .
) Y oasl  |e—N=50 vf
e I g —4—N=20
~ 3} ur —»—N=10 2 /4
hq’ g e/ Y h
- 2 o10f /
2t Y s
v/ //
- a
0.05 | P /%»
1r »
0 I I 0.00 i, » PR J AP |
0 2 4 6 1E-3 0.01 0.1
alp, alL,

FIG. 3. The universal relationship betweetf 8 anda/ B¢ for

atoms with a long-range van der Waals interacfid®). 0.000 | b
g -0.002
dependent confinement correction is then determined by the € -
expectation value oWV?(|¢|?), which is negative for the Y -0.004
ground state. $ i ‘\ ~
More results of MGPII are presented in FigbR It shows 4l 0006 ~5~N=1000 \.
that at the level of MGPII, the relative difference from DMC ¢ 0,008 | |—a—N=200 .
has been reduced from up to 20% for the GP théseg Fig. £ I —v—N=100 .
1) to less than 2% for the range of parameters considered. -0.010 |- ;’:::gg \
r —»—N=10 <
B. Results for atoms with van der Waals interaction 0012
With the introduction ofH g, the ground-state energy 0.0 0.1 0.2 03 0.4 05
becomes dependent upon the shape of the long-range pote alL,
tial through the relationship between and a. For atoms
with the van der Waals interaction, and a are related by FIG. 4. (a) Relative differences between ground-state energies

Eq. (26). Figure 3 is a graphic illustration of this relation. predicted by MGPII and by the GP theory fo?Rb condensate in
Note thatr, diverges fora=0, corresponding to the fact that @ cylindrical trap of aspect ratio=6.8/17.5. Herd. is defined by
in this particular case, the energy dependence of the scattehe transverse frequencly= y#/2me, . (b) Relative contribution
ing amplitude around zero energy cannot be described by dfP™m the shape-dependent confinement correction.

effective-range expansid22]. Also note that unlike the Case ginceg, is greater than zero for most of the data points
of hard spheres, thg, for a van der Waals potential may ghown. (Becausel,=34 850 a.u. is much greater thgh,
become negative for sufflc_lently small B. _Consequently, —164.2 a.u., most of the data points corresponcatgy
the shape-depend_ent qon_fmement correction to the grounds 1 The r. is then approximately a constant,
state energy may, in p.r|n0|plel, be positiyBoth points sug- ~(37) Y T'(1/4)]?B6, and the correspondingy’s are posi-
gest that something interesting happens aroard) that tive.)
may deserve a separate investigation.

Figure 4a) gives a comparison of ground-state energies
predicted by MGPII and by the GP theory for a realistic
experimental configuration. Specifically, it is for’2Rb con- In conclusion, an effective interaction and the correspond-
densate in a cylindrical trap with an aspect ratio ©f ing modified GP equation have been proposed that take into
=6.8/17.5[23]. A C4 value of 4698 a.u. is use[P4]. It  account the energy dependence of the two-body scattering
shows that deviations from the GP theory can become sulamplitude through an effective-range expansion. The result-
stantial for either high density and/or strong confinementing theory, called MGPII, leads to better agreements with
With the tunability of the scattering length via a Feshbachdiffusion Monte Carlo calculation§7] than either the GP
resonance[23], such many-body effects beyond the GPtheory, or MGPI that considers only the quantum fluctuation
theory may soon become observable. Figufb) 4hows correction. The theory expands, considerably, the parameter
more explicitly the shape-dependent confinement correctiorspace(specified byna® anda/L,), in which a GP type of
Its magnitude increases widL,, as expected. For a fixed formulation can be applied. It introduces the concept of
ally, its relative contribution is more significant for smhll  shape-dependent confinement correction and shows that for a
than for largeN, consistent with our earlier discussion. The fixed confinement, its relative contribution is more signifi-
corrections are mostly negatiexcept for very smalh), cant for smallN than for largeN.

IV. CONCLUSION
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Finally, we point out that both MGPI and MGPII are per-

PHYSICAL REVIEW A67, 053612 (2003
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