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Quantum random-walk search algorithm
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Quantum random walks on graphs have been shown to display many interesting properties, including
exponentially fast hitting times when compared with their classical counterparts. However, it is still unclear
how to use these novel properties to gain an algorithmic speedup over classical algorithms. In this paper, we
present a quantum search algorithm based on the quantum random-walk architecture that provides such a
speedup. It will be shown that this algorithm performs an oracle search on a datataigerns withO(y/N)
calls to the oracle, yielding a speedup similar to other quantum search algorithms. It appears that the quantum
random-walk formulation has considerable flexibility, presenting interesting opportunities for development of
other, possibly novel quantum algorithms.
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[. INTRODUCTION the continuous-time quantum random walk, introduced in
Refs.[4-6]. In the continuous-time walk, the adjacency ma-
Recent studies of quantum random walks have suggestdtx of the graph is used to construct a Hamiltonian which
that they may display different behavior than their classicabives rise to a continuous-time evolution. This model differs
counterpart§1-5]. One of the promising features of these from the discrete-time walk in that even for small times there
quantum random walks is that they provide an intuitiveiS an(exponentially smajlprobability of transition to non-
framework on which to build novel quantum algorithms. adjacent nodes. In this paper, we will consider the discrete-
Since many classical algorithms can be formulated in term§me model only.
of random walks, it is hoped that some of these may be The paper is organized as follows. Section Il provides a
translated into quantum algorithms which run faster tharPrief introduction to discrete-time quantum random walks.
their classical counterparts. However, previous to a very reSection Il describes the random-walk search algorithm and
cent paper by Childst al. [6], there had been no quantum Provides a proof of its correctness. Section IV summarizes
algorithms based on the random-walk model. In this pape}he similarities and differences between the random-walk
we show that a quantum search algorithm can be derivegearch algorithm and Grover’s search algorithm. Conclusions
from a certain kind of quantum random walk. Optimal quan-are presented in Sec. V.
tum search algorithms are already well knof-9]. The Notation. Following standard computer science notation
search algorithm from a quantum random walk we present€ Will use the following to characterize the growth of cer-
here shows some differences from the established search &in functions: We will sayf(n) =0(g(n)) if there are posi-
gorithms and may possess useful properties with respect f#ve constantx andk such that 6<f(n)<cg(n) for n=k.
robustness to noise and ease of physical implementation. &imilarly f(n)=Q(g(n)) if 0<cg(n)<f(n) for constants
also provides a new direction for design of quantum algo€,k=0 andn=k.
rithms from random walks, which may eventually lead to
entirely new algorithms.
Current research uses two distinct models for quantum
random walks, based on either discrete-time steps or on The discrete-time random walk can be described by the
continuous-time evolution. Discrete time quantum randonfepeated application of a unitary evolution operdtorThis
walks were introduced as a possible new tool for quantun@perator acts on a Hilbert spage“® 5, whereH © is the
algorithms generalizing discrete classical Markov chfjs ~ Hilbert space associated with a quantum c(énin space
The discrete-time walk can be thought of as a succession ¢id ° is the Hilbert space associated with the nodes of the
unitary operations, each of which has a nonzero transitio@raph. The operatdd can be written a2]
amplitude only between neighboring nodes of the graph. The
relation of these to classical Markov chains provides consid- U=SC (1)
erable motivation for exploration of discrete random walks.
Within the field of classical algorithms, the application of whereSis a permutation matrix which performs a controlled
classical Markov chains irtlassical algorithms has been shift based on the state of the coin space, @rid a unitary
quite revolutionary, providing new approximation and opti- matrix which corresponds to “flipping” the quantum coin.
mization algorithms. By analogy, it might reasonably beWe will call C the quantum coin. This operation can be vi-
hoped that similar algorithmic advances could be obtainedualized by analogy to a classical random walk. In each it-
for quantum algorithms from development of the quantumeration of a discrete-time classical random walk on a graph,
random walks. The second quantum random-walk model ighe coin is flipped. The walker then moves to an adjacent

II. BACKGROUND
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node specified by the outcome of the coin flip. An equivalentspecifies the state of the coin. The shift oper&anaps a

process occurs in the quantum random walk, with the modistate|d,>'(’> onto the statéd,x& é;% wheree, is thedth basis
fication that the coin is a quantum coin, and can therefor&ector on the hypercub& can be written explicitly as
exist in a superposition of states. This modification can lead
. . . . . n—-1

to dramatic differences in behavior between the classical and
quantum random walks. However, it should be noted that if S= (,20 2
the state of the coin is measured after each flip, then the
qguantum random walk reverts to a classical random walk To completely specify the unitary evolution operatdy
(and similarly if the state of the nodes is measured aftethe coin operato€ must also be chosen. Normally, the coin
every step. operator is chosen such that the same coin action is applied

An important feature of the discrete-time quantum ran-to each node on the graph. This is the case in previous stud-
dom walk that has significance for its use in the developmenies of discrete quantum walks on the lif3,14 and on the
of quantum algorithms is that by virtue of its definition on a hypercubg[11,12. In other words, the coin operat@ can
quantum computer this walk will be efficiently implement- P& written in a separable way as
able whenever its classical counterpart is efficiently imple- C=C.®T &)

. . . 0 ’

mentable on a classical computy efficient we mean that
the walk can be simulated by a circuit with a number of gatesvhereC, is anXn unitary operator acting on the coin space
that is polynomial in the number of bitgubits.] This is due €. In this case the action on the coin spd¢& does not
to the very similar structure of both these walks. To illustratedepend on the state of the node spate If C is separable
this, assume that we have an efficient way to implement theccording to Eq(3) then the eigenstates bf are simply the
classical random walk on the underlying graph, i.e., to pertensor product of the eigenstates of an oper&pron the
form the coin flip and subsequent shift. The shift is condi-coin space and of the Fourier modes of the hyperdide
tional on the outcome of the coin fliwhich determines the beled byn-bit stringsk) [11]. One frequently chosen sepa-
direction of the next stgpi.e., we have a classical efficient rable coin is Grover’s “diffusion” operator on the coin
circuit that performs a controlled shift on the basis states. Igpace, given by
is straightforward 10] to translate this circuit into a quantum
circuit that performs the unitary controlled shift of Ed). Co=G=—T+2|s°)s"|, (4)

Similarly, if there is an efficient procedure to flip the classi- Cr s . ) .
cal coin of the random walk, there will be an efficient way to where |s”) is the equal superposition over alldirections,

implement a quantum coin. Hence implementation of thd-€-|S©)=1/n=g_y|d) [11]. This coin operator is invariant

discrete-time random walk is automatically efficient if the t0 all permutations of thea directions, so it preserves the

underlying classical walk is efficiently implementable. permutation symmetry of the hypercube. The use of the
Note that if no measurement is made, the quantum walk i§rover diffusion operator as a coin for the hypercube was

controlled by a unitary operator rather than a stochastic ond’foposed in Ref[11], where it was pointed out that this

This implies that there is no limiting stationary distribution OPerator is the permutation invariant operator farthest away

[2,11]. Nevertheless, several recent works have shown thdfom the identity operatof11]. So, heuristically, it should

consistent notions of mixing time can be formulated, andProvide the most efficient mixing over states, from any given

have shown polynomial speedup in these quantum mixin%"t'a' stgte. The nontrivial eigenvalues and eigenvectors of

times relative to the classical analf®y11]. Another quantity are given by[11]

for which quantum walks have shown speedup relative to ok 2i

their classical analogs is the hitting tifh&2,13. Under cer- etiok=1— —+—k(n—k), (5)

tain conditions this speedup can be exponential compared to n n

the classical analog. We refer the reader to the recent papers

d,x@eg)(d,x|. 2

X

[2,3,11], and[12] for some results obtained from discrete- N - ez
time quantum random walks. |vk>’|vk>*:Zd (=D V2 |d.x)
Our random-walk search algorithm will be based on a x
random walk on the cube, i.e., the hypercube of dimension 1/\/E if kg=1 6
. e v
n[11,12. The hypercube is a graph witli=2" nodes, each Si/nTK if kg=0. (6)

of which can be labeled by ambit binary string. Two nodes
on the hypercube described by bitstringsandy are con-
nected by an edge {k—y|=1, where[x| is the hamming ®|sS), where|sS) is the equal superposition over thé 2
weight of x. In other words, ifx andy differ by only a hq4es is an eigenvector bfwith eigenvalue 1. So repeated
single-bit flip, then the two corresponding nodes on the

application ofU leaves the statp/,) unchanged.
graph are connected. Thus, each of tffenbdes on then In order to create a search algorithm using the quantum
cube has degree (i.e., it is connected tm other nodes so

, random-walk architecture, we now consider a small pertur-
the Hilbert space of the algorithm i¥="®H?. Each  pation of the unitary operatdy. In the standard setting of a
state in can be described by a bit strixg which specifies search algorithm we have an oraclg, which “marks” a

the position on the hypercube, and a directidnwhich  single bitstringX,,q4e- More specifically the oracle com-

Note that the equal superposition over all statgg)=|s)
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IIl. RANDOM WALK SEARCH ALGORITHM

Ix> -
b node-space A. Overview of the algorithm

We define the search space of the algorithm to be the set
of all n-bit binary stringsx={0,1}". We consider the func-
tion f(x)={0,1}, such thatf(x)=1 for exactly one input
Xiarget- OUr goal is 10 findXager. Using the mapping of
n-bit binary string to nodes on the hypercube, this search

FIG. 1. Modified standard oracle that simulates the coin oracleProblem is then equivalent to searching for a single marked
The standard oracle acts on the node spactl@sx)®|y)—|x) node amongst thbl=2" nodes on the cube. For purposes
®|y®f(x)). The controlled coin operation, denoted ®y/C,, ap- of the proof, we have set the marked node tgigeget: 6,
pliesCy on the coin space if the control qubit is in the sfdp and  but the location of the marked node has no significance.

C, ifitis in the state|1). The random-walk search algorithm is implemented as fol-
lows.

10> If(x)>

—e

coin—space G, /C,

putes a functiorf such thatf (X,arge) =1 andf(x)=0 if x
#)?target. The query complexity of a search algorithm is
defined to be the number of queries @ that need to be

made to find the marked strinaa,get_wifth high probabi!ity. Hadamard operations to tH8) state. A similar procedure
In the quantum case the oradé; is implemented via a works for the direction space.

reversible unitary operation; in the standard setting the oracle (2) Given a coin oracleC’ which applies th iC
shifts the phase of the marked item. For our implementation pPlIeS ne Ccoirt-o
the coin operator will take the function of the oracle. Spe—:G to the unmarked states and the C@i,:_z to the
cifically, we consider “marking” a single arbitrary node by Marked state, apply the perturbed evolution operatdr,
applying a special coin action to that node. The oracle will=SC', ty=m/2\2" times. )
act by applying a “marking coinC, to the marked node and (3) Measure the state of the computer in fdex) basis.
the original coinC, to the unmarked nodes, i.e., the coin
action will be conditioned on the nodéNote that this modi-
fied coin is still unitary) It is our claim that with probability — O(1/n), the out-
This “coin oracle” can be easily obtained from the stan- come of the measurement will be the marked state. By re-
dard oracle of quantum search. To simulate the coin oraclpeating the algorithm a constant number of times, we can
we setup the standard oracle on the node space, and then agstermine the marked state with an arbitrarily small degree
a conditionalC, or C, operation, respectively, at the output. of error. In the remainder of this section we provide a proof
This is illustrated in Fig. 1. of this algorithm.
Without loss of generality, we can assume that the marked The general outline of the proof that we will present is the
node corresponds to the all-zero strixg;e=0. Then our  following. We need to determine the result of the operation

(2) Initialize the quantum computer to the equal superpo-
sition over all states,y)=|s®)®|s®). This can be accom-
plished efficiently on the node space by applymsgingle-bit

coin operator becomes (U’)! on the initial statg ). To do this, we will first sim-
plify the problem by showing that the perturbed walk on the
C'=Co®I+(Cy—Cg)®|0)(0. (7)  hypercube can be collapsed to a walk on the [ifilkeorem

1). Next, by constructing two approximate eigenvectors of
The marking coinC, can be anynxn unitary matrix. For U’» [#%0) and[¢1), we will show that there are exactly two
simplicity, we will consider here the case whefg=—7. elgen\_/alues ob)’ that are relevari.e., the initial staté )
Numerical studie§15] have shown that other choices for the Nas high overlap with the space spanned by the correspond-
coin C, yield similar results. As seen from E() the coin g €igenvectordsee Theorem 2 and Theorem].3We de-
operator is now a composite unitary and its action is condifote these eigenvalues by ande™'“o. We will then show
tioned on the node register. Our perturbed unitary evolutiothat the corresponding eigenvectdig,)) and|—w;) can be

operatorU’ is given by well approximated by linear combinations of the initial state
| o) and the second states;) (Theorem 4. As a result, our
U'=sc random walk search algorithm can be approximated by a

two-dimensional rotation in théwg),|—wg) plane away
from the initial statd o)~ 1/v2 (| w() + | — wg)) and towards
| ) =i/V2(—|w()+| — wg)), which constitutes a very close
approximation to the target stalné[arget). Finally, we show
=U—25(|s®)(s%| @]0)(0]). (8) that each application of the evolution operatdf corre-
sponds to a rotation angle of approximately/2?~* Theo-
Analysis of the effects of this perturbation leads directly torem (5). Hence, the search is completed after approximately
the definition of the random-walk search algorithm, as is(7/2)y/2" ! steps, i.e., aftetO(y/N) calls to the oracle,
described in the following section. whereN=2" is the number of nodes.

=S(GR®I—(G+1)®|0)0|)
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B. Proof of correctness

In general, analytic determination of the eigenspectrum of
a large matrix is a daunting task, so we will take advantage
of the symmetries inherent i’ to simplify the problem.
Let us first show that the perturbed random walk on the < =000 x=111
hypercube can be collapsed onto a random walk on the line.
Let Pij be the permutation operator which swaps the bits
andj, in both the node space and the coin space. In other
words given a statéd, x) _under the permutation operator,

Pij, theith andjth bits ofx are swapped and the directions
d=i andd=| are swapped. Clearly, the unperturbed evolu- x| = 0 1 2 3
tion operatorU commutes withP;; since every direction in
the unperturbed walk is equivalent.

Theorem 1 U’ commutes withP;;, i.e., the perturbed
walk on the hypercube can be effectively regarded as a walk

on the line.
Proof L L2 LY
PIU'P;=PlUP; —2P!S: (|s®)(s|®]0)(C|)P;; IR.0) R.1) IR,2)
FIG. 2. Collapsing a random walk on the hypercube to a random
=U- 7 E P |d ed><d 0 Pij walk on the line. The states on the hypercube are mapped to the
state on the line based on their Hamming weight and the direction
—Uu’. (9) in which they point(see text
n .
/ _ CoSw Sinw
So,[U’,P;;]=0. o _ _ | COZE ( ) X X ®[x){x|, (13
Because the initial statgy,) is an eigenvector oPj; Sinwy, — COSwy

with eigenvalue 1 for alli andj, and[U’,P;]=0, any
intermediate statéy,)=(U")"o) must also be an eigen- where coso,=1-2x/n and sinw=(2/n)yx(n—x) and
vector of eigenvalue 1 with respect ®;. Thus, U’)"  where the first part acts on the space spanne|Ry,|L)}

preserves the symmetry ofio) with respect to bit and the second part acts on the positi¢i®, . .. ,|n)} on
swaps. It is therefore useful to definen 2basis states, the line. Note that the coin of the collapsed walk is not ho-
|R,0),|L,1),|R,1), ... |R,n—=1),|L-n), where mogeneous in space any more. The unitary opetaton the

restricted space acts as

B n—-1
R.x)= ‘X‘EX 2, ldx, o U= |Rx)(—coswy, 1(Lx+ 1|+ sinay, (Rix+1])

(n—x) « x=0
+2 IL,x)(sinwy_1(L,x— 1|+ cosw,_1{R,x—1|).

IL,x)= > 3 dx), (11) o

X( )|x| x Xg=1 (14)
X
Similarly,

which are also invariant to bit sway; . These states span
the eigenspace of eigenvalue 1 Bfj. Using these basis
states, we can project out all but one spatial degree of fre
dom and effectively reduce the random walk on the hyper-
cube to a random walk on the line. This is illustrated in Fig.
2. The marked node corresponds now|/®0). We can re-
write U, U’, and| ) in this collapsed basis. First note that
the shift operatoS in this basis acts as

U'=U+AU=U-2|L,1(R,0. (15
Ei\lote that the only difference betweghandU’ is in the sign
of the matrix element in positionI(,1),|R,0)). Finally,

n—1

|Ln>+2

o |¢0> \/— \/—

S= ZO IR X)L, x+ 1|+ |L,x+1)(R,X| (12 (n—l)

. IRX) | . (16)
and the unperturbed coin acts as
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o X X o o,
X Xe Re(E <w(|u'|w(>>:Re<Z e""i(wi'|wi’)>>3—2/n.
| I

& 3 (19
3! Let us define) to be the subspace spanned|by), |w;),
Al |w;). Then we can write Eq19) as the partial trace dfl’

X 3 over(Q,

X ¥

Re TrpU’'>3—2/n. (20

Let us now definéy_)=1/y2(|0,R)—|1.L)). We can ex-
« » pand thd w(), |w1), and|wj) in terms of| ), |_), and a
o < residual vector,

.x X ¢ ! ! ! ! !
|g) = Cool tho) + Codl ) +CodlT o),
FIG. 3. The results of numerical spectral analysitJoandU’

for n=8. The circles indicate eigenvalues df The crosses indi- lwi)=c1ol o) +Crg Y +ciqlri), (21
cate eigenvalues df’.

SinceU and P;; are mutually diagonalizable, the eigenvec- |@3) = Caoltho) +Corl ) + €241 5),

tors of U in the reduced space are also bit-flip invariant.where|ri'> is a normalized vector orthogonal tqj;o> and

Examining Eq.(5), it is clear that if we take the equal super- |,;_). We now observe that, due to the basis invariance of

positions of all eigenvectors of same eigenvalug) such  ihe trace, Eq(20) holds for any linear combination ¢é),

that|k|=Kk, the resulting eigenvector will be bit-swap invari- |w}), and|w)). Thus, we can construct three new orthonor-

ant. Thus we define mal vectors]ag), |a;), and|a,) by taking linear combina-
tions of |wg), |w1), and|wj), such that

1
|wk>:ﬁ P &7 (sl o) =zl ) =0, 22
(k) In other words, we can expandy), |a;), and|a,) as
which are the eigenvectors bfwith eigenvalue®'“k in the |ero) = Cool o) + Coal - )+ Cod o),
collapsed(symmetrig space.
Note that botHJ andU’ are represented by real matrices; |ay)=C1olho) + Cral ¢y ) +CaJlT 1), (23
therefore, their eigenvalues and eigenvectors will come in
complex-conjugate pairs. lag)=[r2).

Having determined these general properties of the per-. . .
turbed matrixU’, we now turn to the problem of analyzing Since|ag), |a1), and|a) still form a basis for2, from Eq.
the eigenvalue spectrum &f . Let A be the arc on the unit (20) it follows that
circle containing all complex numbers of unit norm with real
part greater than 4 2/(3n). In other words, 3-2Ih< Rez (a;|U"] ;). (24)

I

2
A={zRez>1- 3—,|z|=1 . (18  SinceU’ is a unitary operator, we know that Rg|U’|«;)
n <1 for all |@;). Thus, applying this inequality to the first

Figure 3 shows the geometrical representatiotddbgether two terms in the sum, we obtain

with the eigenvalue spectra of the unperturbed and perturbed
matrices fom=8. We will prove that4 contains exactly two Rez (a;i|U'|a))<2+Reay|U’|ay). (25
eigenvalues'“o ande o of U’. First, we will prove that '
there areat mosttwo eigenvalues with real part greater than Since .U’ =
1-2/(3n). Then we will show that there arat leasttwo '
eigenvalues od. From these facts, it follows that there are Re(a5|U’|ay)=Re(ay|U|a,) + Re(as| AU | ). (26)
exactly two eigenvalues df’ on A.

Theorem 2There are at most two eigenvalueslof with  Let us first consider a,|U|a,). We can expanda,) in
real part greater than-12/(3n). terms of the unperturbed eigenstates;)=2;b;|w;). So,

Proof. We will prove by co'nt/rad'ict,ion. Let us assume that R€<a2|U|a2>=2j|bj|2COSwJ. However, since a,|iy)=0,
there are three eigenvalues;’, €'“1, ande'“2, with real  there is no contribution from the eigenvalue with value 1.
part greater than 1 2/(3n). Let|w}), |w1), and|w;) be the  The eigenvalue with the next-largest real partel§1=1
corresponding eigenvectors. Then, —2In+i(2)yn—1. Thus,

U+ AU, we can write
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Re a,|U|ap)<1—2/n. (27)  Hence,

Next, we consider{a,/AU|a,). Let |4,)=1/2(|0OR)
+|1.L)). Using Eq.(15 we can expresaU in terms of
|¢—> aﬂd|(/l+>,

AU:|9”—><‘//—|+|‘/’—><‘//+|_|l/f+><l//—|_|l/f+><‘//+|-
(28

(U |gy=1-———— (36

2
2¢ ( n/2)

Expanding Eq.(34) we find 1<c?<1+2/n for sufficiently
large n. Thus, except for a small residudl,) is “almost”
an eigenvector o)’ with eigenvalue 1.

Now let us verify that there is at least one eigenvalue of
U’ on A. Let us assume that there are no eigenvaludg’of
on A. Then cosw{ <1-2/(3n) for all j. Then using Eq(32),

But since{a,|¢_)=0 [see Eq(22)],
(@p|AUJaz)=(— (¢ |az)|?)=<0.

Then, Réa,|U’|a,)<1—2/n. Combining Egs.(25), (27),
and(29), we obtain

(29

1- 12" =Re(tho|U’ | o)

ReY, (ai|U’|a;)<3-2/n. (30

=2 Ktolo])|*coso]
Since this contradicts Eq24), our assumption must be )
false. u INE
Theorem 3There are at least two eigenvaluesWf on <(1—2/(3”)); (ol @])]
A.
Proof. We will construct two approximate eigenvectors of

U’, | o) and| ). | o) is given by Eq(16). Using Eq.(15),

=1-2/(3n), (37)

which is wrong forn>3. Hence our assumption is false and

! — _ n
U'[0) = | o) —212"|L.2), (31) there must be at least one eigenvaludJdfon A.
and Now let us assume that there is exactly one eigenvalue of
U’, ei“o, on A. Then,
(olU' o) = (ol ho) — (ol L, )(R, 0l ¢ho)
=1-1/2""1, (32

1
1—F=Re(¢o|U'|l//o>
So, apart from a small residudly,) is also “almost” an
eigenvector ofJ’ with eigenvalue 1. Now, we need to find a
second approximate eigenvectar;). Let

=; (ol w])|*cosw|

n/2—1
1
)= 2 ——IRX) =[( ol wg)|*coswy+ 2, (ol wj)|cosew]
x=0 <n— 1) j#0
\/2
X <|(whol o) *+ (1= [{ ol wg)|*) (1~ 2/(3n)).
1 (38)
- ————|L,x+1) /c, (33
/2 n-1 Rearranging terms,
X
wherec is a normalization constant, (ol wg)|?=1— 3_n (39)

2"
(34) If we use|#,) as a trial vector and follow the same argu-
ments, we obtain the inequality

Using this definition and Eq.14), we see that 2 3n
[(¢] wo)| Zl-—F 7 (40
4c2<
(|R,n/2—1)+|L,n/2+1)). n/2

1
V') =) = ——=—==
¢ Z(nn_lzl)

(39

But since o) and |¢4) are orthonormal, this leads to a
contradiction, since,
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1=(wgl wg)= (ol wg) |+ (] wg)|? 3n
po=1/2— —. (44)
3n 3n 2"
=2— T —_1, (41)
2 4c2 n Using Eq.(36) and the same arguments as above we obtain
n/2
which is not true for largen. Hence, there must be at least p;=1/2— 1\ (45)
two eigenvalues on the ard. | 802< )
As noted above, the eigenvalues and eigenvectotd’of n/2

come in complex-conjugate pairs. In particular, the two ei- , )
genvalues ond must be a complex-conjugate pair; &stivo  UP to a global phasfwo) can be written as

be the two eigenvalues aA. The corresponding eigenvec- .

tors ObGY|_“?6>:|w6>* (if ei“’é=e_i“’6=pL thegn v\?e can lwo)=[{wol o)l o) + [ wol 1) €7 4hr) + Vl_Po—p1|r2>6'
construct linear combinations ¢&() and|— () for which (46
this statement is tryeWe will now show that+ wg) can be  \ynich yields Eq.(42) for |wg) and|— w}).
well approximated by linear combinations |af,) and| ). To estimatee'” note that sincéw}) and|— w}) are eigen-

Theorem 4The two eigenvectors with eigenvalues close, gciors of a unitary matrix, they must be orthogonal. Conse-
to 1 can be well approximated by linear combinations of thequently

initial state|y,) and the statéy;), as|* wp)~1/\2(|¢o)
+il)). More precisely, 0=~ whlwg)=Pot Pa(€)?+ (1-po—po)(r5Iro).

_ (47)
| @by = Pol tho) + VP1€' 7| ¢h1) + V1= po— palro), ,
_ Solving fore'”, we obtain
| — wb)=\Pol o) + VP17 ¢h1) + V1 —po— palro)*, Py (1- py— poRE(rE o)
(42 Re(6i7)2= Po Po—P1 olfo/ (48)

, , ~, P1
where Po=(wo| o) =~ wolgho)|?,  p1=[{w"oly1)|?
=|{—wg|¥1)|% and|ry) is a normalized vector orthogonal Assume Rég|rg)=0. Then, using 1/(+x)<1+2x for
to | o) and| ). Furthermore, 1/2p,=1/2—3n/2"*1 and  smallx, we get

1/2=p;,=1/2 Sl L1 P
ZPElem T TR
8c?
n/2 >Rdei7])2
with e'7=i+A, where 3n 3n
n p0+ 2r‘|+1+8 5 n—1
[A[=0| o7 |- _ “A e
n/2 P1
; / 2 3n 3n
Proof. Since | i) and |;) are real vectorsl|{wg| )| =_1-2 +
=~ wglue)?<1/2 and [(wglun)l?=|(~ wglyn)*<1/2. 2 g
Using Eq.(32), n/2
1 3n
1= 2n—1:Re<</fo|U'|‘r’fo> —4 o2 n-1\ |’ (49)
¢ n/2
= cosw’ ! 2 :
; wjl(w]|4or] which in turn implies tha7=i+A with |A|=0(",1). A
similar reasoning holds if Reg|ry)=<0. [ |
=2p, COS“’(’)“LE COSw]-’|<wJ-'|¢/O>|2 This means that the initial state can be approximately
j#0 written as |o)~12(|wp)+|— wl)) and evolves as
<2po+ (1—2/(3n))(1—2py). 43 (U)go)=~112(e" 0| wp) +e 0| — wp)).
As a last ingredient we need to bound the anglg.
Rearranging terms, we obtain These bounds are provided in the following final theorem.
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Theorem 5Each application of the evolution operatdf

corresponds to a rotation of angle approxya7 ! in the . 1
basis of the two eigenvectors+ wg). More precisely \wi‘\ ey
—1/(cV2" ) - B<swi=s—-1U(cy2""Y)+B, where g ; : !

3/2j9n e \ ! -
=0(n>92") . oc? :/—21]
Proof. We will approximate €'“o=(wo|U’|wg) by
(a|U’|a), where|a)=1/2(|po)+€7y)). Let us first
evaluate|e'“o—(a|U’|a)|. We can expand)’ in terms of
its eigenvectors to obtain
|0 (a|U’|a)| = 0= [(w]|a)|?e“i]. (50)
We then note that from Ed42),
|<w6|01>|2: ‘/p0/2+ p,/2. (51 FIG. 4. Geometric representation of Theorem 5, which proves
that the eigenvalueei‘"é, must be located on a disc of radius
So, n/8c3(D;,") centered ata|U’|a). The position of the eigenvalue is

denoted by a cross.

e (P2 P

"o (a|U’ )| =

Next, we evaluate Ifw|U’|a) using Egqs(31) and(35),

IM{a|U’[a)=Im(e' "(go|U’ | ) — (41 |U’ [ 4ho))

+ 2 [oflee
o)) #]wg) 1 e
- =Im [ = ————=((wlRn/2-1)
<[e'*o(1-po/2—p/2)| AL
n/2
+ ,2 , |<wj,|a>|2 5
fepzleo +<¢0||—,n/2+1>)_em<_\/_—n<¢1|L,1>)
<2(1—po/2— p:/2) 2
3n 3n A
2n+1+ n—-1 (52 . e'”
8c? —-m n—1
n/2 cV2
with 1—x=1—x for 0<x=1. Using the fact that the bi- 1 n
nomial coefficients approach the Gaussian distribution for - c 2n_1—0 n-1\ |- (56)
largen, such that \/E( o )
n 2
x) = /—ne*(X*”’Z)’”’ZZ“, (53)  Then, using Theorem 4, Eq&4) and (56), we can write
a
. . . , . 1 n n3/2
we can rewrite Eq(52) taking the leading order terms im sinwg+ ——=+0 ——— | [=0| —|.
Recalling thatc>1, we obtain cy2n1t & n-1 2"
a0 n/2
o ) n (57)
|e' 0—<a|U |a>|=0<?) (54)

Using sinx=x+0(x%) and keeping only leading order terms

. ;o
Equation(54) is an explicit formula which bounds the dis- SCIViNg for wg gives us
tance in the complex plane between the eigenvalue of inter-

est,e'“0, and the matrix elemerfiz|U’|a). Figure 4 shows —

( 3/2
—_O R
the geometric representation of E§4). Note that cy2nt 2"

n

1 n3/2
|

ot Ol o)

)$a)6$—

, (58
[sinwg—Im(a|U’|a)|=|Im(e'o—(a|U’|a))]|
., We can now quantitatively describe the overall operation

<|e'?o—({a|U’|a)|. (55  of the algorithm. Starting with initial stafes,), we consider
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the state of the computer afteérapplications ofU’. Then
using Theorem 4 we can expahgl,) as

[#0)=Po(lwg) +] = wg)) + 8lr),

whered=\1—2p,=0(y/n/2") and|r) is a residual normal-
ized vector orthogonal tfwg) and|— wg). Now

(59

(U") 90y = Vpo(€“ot| wp) + 7190 — wg)) + o|r )
=2po Coswqt| o) —2\/PoP1(Sinwgt
+Ree “otA)|¢h) + V1= po— Py (€ “ol|ro)

+e 1@o!|r¥))+ 8|r)

= coswgt| i) — sinwot| 1) +O

3/4 -
),
(60)

where|?> is some residual normalized vect@rot necessar-
ily orthogonal to| ) and|)).

Starting with| ) and applyingJ’ for t;= /2| wg| steps,
we approximately rotate fromys) to |¢,). From|y,) we
can obtain|Xya,ger =|0) with high probability p using Eq.
(33) and 1+ 1/(2n)<c?<1+ 2/n for largen [following from
Eq. (34)],

p=3 |(a.0lu)?

=KROy)I?
1/2

==
C2

1/2
1+2/n

(61)

! O(1/
57 (1/n).

Finally, to obtaint; in terms ofn, we make use of the bounds
on w{ provided by Theorem 5,

C
AN

(62

32
Using the inequality #1/(2n)<c?<1+2/n to get 1
+1/(4n)<c=<1+1/n, we obtain

1

ﬁ .

If we set the number of time steps to te= (7/2)2" 1 (or
the closest integeithen

n
ol

1+0 (63

(=2

1
n2

. (64)

) T 1
—smw(’,tf:smil—o(ﬁ”:l—o

PHYSICAL REVIEW A 67, 052307 (2003

So the probability to measure|>?targe9 after t;
=(7/2)\2" T steps is stillpgyccess 1/2—O(1/n). Hence,
by repeating the algorithm a constant number of times, the
probability of error can be made arbitrarily small. Note the
periodic nature of the evolution undét’ [Eg. (60)]; this
means that if we measure &att; the probability of success
will decrease and later increase again.

In summary, we arrived at the final result that the marked
state is identified afte®(/N) calls to the oracle.

IV. CONNECTION TO GROVER'S ALGORITHM

The main point of this paper is to give a first algorithm in
the discrete-time random-walk setting. We have shown how
to realize quantum search in this scenario, without losing any
of the quantum speedup obtained in Grover's search algo-
rithm. Although the layout of our algorithm is very different
from Grover’s search, there are several similarities to Grov-
er’s algorithm.

Both algorithms begin in the equal superposition state
over all bit strings. Both algorithms make use of the Grover
diffusion operatorG (sometimes known as the Grover iter-
ate). Both algorithms can be viewed as a rotation in a two-
dimensional subspace. Both algorithms use an oracle which
marks the target state with a phase-o1. Both algorithms
have a running time o®(y/N). In both algorithms we have
to measure at a specific time to obtain maximum probability
of success. However, there are several important differences
between the two search algorithms. In this section, we call
attention to the ways in which the random-walk search algo-
rithm is distinct from Grover’s algorithm, and consider how
these differences affect performance and implementation.

It is well known that Grover’s algorithm can be mapped
exactly onto a rotation in the two-dimensional subspace
spanned by the equal-superposition sté#g) and the
marked statd0) [7]. Each iteration in Grover’s algorithm
corresponds to a rotation in this subspace. In this paper, we
have shown that the random-walk search algorithm can also
be viewed as a rotation in a two-dimensional subspace. How-
ever, there are two important distinctions. First, the random
walk search algorithm can only bepproximatelymapped
onto a two-dimensional subspace. Unlike Grover’'s algo-
rithm, this mapping is not exact. Second, the two-
dimensional subspace in which the random-walk search al-
gorithm is approximately contained is spanned| i) and
|#1), not by|,) and|0). Hence, the final state of the algo-
rithm is not exactly the pure marked std®) as it is in
Grover’s algorithm. It is a linear combination of states which
is composed primarily of the marked state, but also possesses
small contributions from its nearest neighbors, second-
nearest neighbors, etc. Thus, the random-walk search algo-
rithm contains traces of the underlying topology of the hy-
percube on which it is based.

Another crucial difference is the locality of the unitary
transformations used during the algorithm. In the random-
walk search algorithm the shift operator is local in the topol-
ogy of the hypercube, i.e. it shifts amplitude only between
the n nearest neighbors. The coin operator shifts amplitudes
only on then-dimensional coin space. So we can say that all
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our operations in an iteration arelocal. Compared to this though after repetition of the algorithm a constant number of
the reflection operator used in Grover’s algorithm is highlytimes the result is arbitrarily close to the result of Grover’s
nonlocal. search, the random-walk search algorithm is not identically
Another difference between the two algorithms is theirequivalent to Grover’s algorithm. In particular, the final so-

use of the Grover diffusion operat@. In Grover's algo- lution obtained by the random-walk search still retains some
rithm, this operator is applied to the entird-@imensional  Of the underlying character of the hypercube on which it was
search space(corresponding to the node space in thebased, with a small admixture of states other than the solu-
random-walk search algorithmOn the other hand, Grover’s tion at the marked node.

diffusion operatoiG in the random-walk algorithm is used as . The random walk search analyzed here was b.ased on a
the quantum coin, and acts only on thalimensional coin discrete walk on the hypercube. In general, a similar meth-
space. This fact may be of practical use for certain physicafd0/09y can be applied to any regular graph, e.g., a wo-
implementations since many physical implementations oﬁlmensmnal hexagonz_al latttice with penodlc_boun_dary C(_)nd_"
guantum computers contain multiple types of qubits whichllons’ a three-ghlmensmnal rectangular Iat_t|ce W!th per|(_)d|g
have different natural gate sets. We could exploit this variety oundary conditions, etc. We have numerical evidence indi-

using the random-walk search algorithm by choosing thecatlng that this methodology will yield quantum search algo-

coin space to be represented by qubits on which it is conv rithms when applied to other regulardimensional lattices.

nient to implement the Grover diffusion operator. SimiIarly,ezﬁéﬁriei[rlﬂeaslg\:)v:li![h'gvsesngate the extent of optimality of

I might be ”at“rf"" and easy for some physical systems 10 The intriguing possibility of finding novel algorithms
implement the shift operator rather than the gates required Rased on the random walk also remains an open question.

Grover’s search algorithm. It is ultimately the physical sys- . o
tem that will determine which of the search algorithms ISThe results _descrlbed_ here |nd|cate_ that the random-walk
search algorithm provides a suggestive framework for new
more advantageous. : o . .
A , . algorithms. Though the optimality of Grover’s algorithm pre-
Another similarity between the two algorithms is the . .
cludes the construction of an improved oracle-based search

implementation of the oracle. In Grover's algorithm, the .
i . algorithm based on a quantum walk, nevertheless, many
oracle marks the target state with a phase-@f. To arrive at : . .
other oracle problems still exist for which a quantum walk

this random walk search algorithm, we chose the markinqﬂay be advantageous. For instance, the lower bound on

coin C, to be the—_I coin. This choice was actually moti- uantum search holds only for oracles that provide “yes/no”
vated because it yielded a result that was amenable to analy-

sis. and while the emeraence of Grover's algorithm appear formation[9]. Our choice of marking coin here has a clear
' e erg : 9 PPearR, ation to an identifiable component of Grover’s algorithm.
natural in hindsight, it was not obvious at the outset. How-

ever, more generally, it is not clear whether this choice otm general, the marking coin can be an arbitraryn unitary
marI;ed coingis eithg} optimal or unique. In fact numericalmatrix' The marking coin provides a intuitive means by
. : b que. ’ ]yvhich to introduce a large amount of information to an
simulations have shown us that many different types o o : . . .

) . S . oracle problem. Thus, it is possible that unique coins with
marking coins will yield search algorithmd5]. Unfortu- interesting properties may give rise to an entirely new algo-
nately, analytic treatment of the quantum random walk for g prop o~ y 9

d . . .rithm. Overall we conclude that the quantum random walk
more complicated coins has proven substantially more diffi-

. _ . provides a means for insight into existing quantum algo-
cult than the instance analyzed her_e EOq_ Z. Itis an rithms and offers a potentially vast source for development
open question whatonstant factgrgains might be made by .

) . . , . of new algorithms.
using different marking coins to implement the search.
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