
PHYSICAL REVIEW A OCTOBER 1999VOLUME 60, NUMBER 4
Grover’s quantum searching algorithm is optimal

Christof Zalka*
T-6, Theoretical Astrophysics, MS B288, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 20 February 1998; revised manuscript received 28 December 1998!

I show that for any number of oracle lookups up to aboutp/4 AN, Grover’s quantum searching algorithm
gives the maximal possible probability of finding the desired element. I explain why this is also true for
quantum algorithms which use measurements during the computation. I also show that unfortunately quantum
searching cannot be parallelized better than by assigning different parts of the search space to independent
quantum computers.@S1050-2947~99!09209-4#

PACS number~s!: 03.67.Lx, 03.65.Bz
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I. QUANTUM SEARCHING

Imagine we haveN cases of which only one fulfills ou
conditions. E.g., we have a function which gives 1 only
one out ofN possible input values and gives 0 otherwis
Often an analysis of the algorithm for calculating the fun
tion will allow us to find quickly the input value for which
the output is 1. Here we consider the case where we do
know better than to repeatedly calculate the function with
looking at the algorithm, e.g., because the function is ca
lated in a black box subroutine into which we are not
lowed to look. In computer science this is called an orac
Here I consider only oracles which give 1 for exactly o
input. Quantum searching for the case with several inp
which give 1 and even with an unknown number of su
inputs is treated in@1#.

Obviously on a classical computer we have to query
oracle on averageN/2 times before we find the answe
Grover@2,5# has given a quantum algorithm which can sol
the problem in aboutp/4 AN steps. Bennettet al. @3# have
shown that asymptotically no quantum algorithm can so
the problem in less than a number of steps proportiona
AN. Boyeret al. @1# have improved this result to show tha
e.g., for a 50% success probability no quantum algorithm
do better than only a few percent faster than Grover’s al
rithm. I improve the proof, showing that for any number
oracle lookups Grover’s algorithm is exactly~and not only
asymptotically! optimal.

The above-mentioned proofs have shown that asymp
cally proportional toAN steps are necessary for quantu
searching. They have not said whether these steps can
be carried out consecutively or whether they could~partially!
be done in parallel. If they could be done in parallel, the
quantum computer~QC! containingS oracles~thusS physi-
cal black boxes! running for T time steps could search
search space ofO(S2T2). Now any unstructured searc
problem can simply be parallelized by assigning differe
parts of the search space to independent search en
~whether quantum or classical!. But using this ‘‘trivial’’ par-
allelization we can only search a search space ofO(ST2)
using S independent quantum computers running Grove

*Electronic address: zalka@t6-serv.lanl.gov
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algorithm. I show that we cannot do better.
Grover’s quantum searching algorithm distinguishes

tween the N possible one-yes oracles~yes 5 1! using
p/4 AN oracle calls~that is, evaluations of the function!. It
makes the same sequence of operationsp/4 AN times. The
sequence consists of four simple operations. The input s
to the algorithm is the~easily constructed! uniform ampli-
tude state: initial state

f05
1

AN
(
x50

N21

ux&. ~1!

The ux& are theN52l computational basis states~where ev-
ery one of thel qubits is either 0 or 1! which correspond to
the possible inputs to the oracle. Thus for Grover’s algorit
N has to be a power of 2. Again@1# have generalized this to
arbitraryN.

The four operations of Grover’s algorithm are then

~1! uy&→2uy& for the one markedy,

~2! Hl ,

~3! ux&→2ux& for all xÞ0,

~4! Hl .

The first step is really the invocation of the oracle. The inp
we are looking for isy. An oracle giving 0 or 1 can easily b
changed into an oracle which conditionally changes the s
of the input. This can be done by preparing the qubit in
which the oracle output bit will be XORed in the state (u0&
2u1&)/A2. Of course the oracle will need work space, but
we expect these work qubits to be reset to their precall va
after each oracle call, we do not really have to care ab
them in the quantum algorithm as they ‘‘factor out’’~after
the oracle call they form a tensor product with the rest of
quantum computer!. The requirement that the work qubit
have to be ‘‘uncomputed’’ means that the algorithm in t
oracle may take longer than its conventional irreversible v
sion.

The second step applies a Hadamard transform to e
one of thel qubits~shorthandHl). The Hadamard transform
is given by the following matrix:

H5
1

A2
S 1 1

1 21D . ~2!
2746 ©1999 The American Physical Society
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PRA 60 2747GROVER’S QUANTUM SEARCHING ALGORITHM IS OPTIMAL
The third step changes the sign of all computational ba
states except foru0& and the fourth step is the same as t
second.

The following results are straightforward to obtain: Aft
any numberi of iterations of these four operations the sta
of the QC can be written as a linear combination of two fix
states:

f i5Ai

1

AN21
(
xÞy

ux&1Bi uy&. ~3!

One application of the four operations gives

Ai 115S 12
2

NDAi22
AN21

N
Bi ,

Bi 1152
AN21

N
Ai1S 12

2

NDBi .

This is simply a SO~2! rotation with

cos~w!512
2

N
and sin~w!52

AN21

N
. ~4!

Thus w'sinw'2/AN and therefore afterp/4 AN steps we
obtain a state very close touy&.

It turns out~and is easy to check! that the initial~uniform
amplitude! state can be written in terms of half the abo
angle:

f05cos~w/2!
1

AN21
(
xÞy

ux&1sin~w/2!uy&. ~5!

Thus the success probability afterT oracle calls is exactly

pT5sin2~Tw1w/2!. ~6!

~Note that after aboutp/4 AN iterations of Grover’s algo-
rithm the success probability goes down again.!

A noteworthy remark is that actually, because towards
end the success probability goes very slowly to 1, if we w
to minimize theaveragenumber of steps,1 it pays off to end
the computation earlier and run the risk to have to start o
A simple calculation shows that the average number
thereby be reduced by some 12.14% relative to the ab
result.

II. TIGHT BOUND ON QUANTUM SEARCHING

Here I sketch my version of the proof from@1# which
gave the tightest limit on quantum searching so far. It is
extension of the earlierV(AN) proof in @3#. Later I obtain
my results by further refining the same proof.

In the proof I assume a quantum computation consis
only of unitary transformations~plus the final measuremen!
without measurements during the computation. This can
done without loss of generality: Clearly a measurement o
qubit, whose outcome will not be used to make decisions

1As opposed to the maximum~worst case! number of steps.
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e
t

r.
n

ve

n

g

e
a
n

what further unitary transformations should be applied, c
be delayed to the end. For a practical QC it seems likely t
what further unitary transformations will be applied will de
pend on outcomes of intermediary measurements, like, e
in error correction. Thus we will probably have a ‘‘hybrid
quantum-classical computer, where the classical part re
measurement outcomes and, depending on that, control
exterior fields that induce unitary transforms on the qub
The point now is thatin principle the classical part can sim
ply be replaced by quantum hardware which does the sa
This may use more space as we are now restricted to rev
ible computation, but for what concerns us, it of course d
not increase the number of oracle invocations, and this
really all we care about here.

So we do not care about the cost of any other unit
transforms; actually we do not even ask whether they
efficiently be composed of elementary gates. Of course o
we have established that even under this general viewp
Grover’s algorithm is optimal, we know that the ‘‘auxiliary’
unitary transforms can be realized with just a few element
gates. Actually I expect that in any sensible application
Grover’s algorithm these auxiliary operations are going to
much easier~and faster! than the oracle call.

The proof gives a limit on the success probability achie
able with T ~for time! oracle lookups. Thereby we averag
over theN possible oracles. In computer science one is u
ally interested in the worst case, that is, the oracle for wh
the success probability is the smallest. Because the w
case probability is smaller or equal to the average case p
ability, we also get an upper limit on the former. In Grover
algorithm the success probability is independent of
oracle, so the worst case and average case probabilitie
the same and thus Grover’s algorithm is also optimal for
worst case probability.

The proof works by analyzing how the difference of th
QC states between the cases when we have a specific on
oracle and when we have the empty oracle~always giving 0!
evolves. For the empty oracle case I denote the QC state
i oracle invocations byf i whereasf i

y denotes this state
when we have an oracle that gives yes only for inputy. More
precisely, these are the QC states just before the next or
call; thus in one register of the QC there must be the inpu
the oracle.

The proof consists of two parts. The central part of t
proof gives a bound on how far from the empty-oracle ca
the state can have diverged afterT oracle calls when the
oracle has one yes. To get a meaningful statement we ha
average over all possible one-yes oracles, as for any givy
a special algorithm could be made that would do especi
well for this case. The statement is

(
y50

N21

ufT
y2fTu2<4T2. ~7!

The second part of the proof gives an upper bound on
success probabilityp in terms of the left hand side of th
above equation:

2N22ANAp22ANAN21A12p<
1st

(
y50

N21

ufT
y2fTu2,

~8!
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2748 PRA 60CHRISTOF ZALKA
where the ‘‘~1st!’’ above the ‘‘< ’’ is for later discussion. I
prove this inequality in the Appendix, as it is not central
the understanding of the proof.

Both inequalities together then give the desired low
bound onT in terms ofN and p. Asymptotically and forp
51 the statement isT>AN/2. I now derive the ‘‘central’’
inequality~7!. To simplify the notation I assume that, like i
Grover’s algorithm, in every iteration~each containing one
oracle invocation! the quantum computer makes the sa
sequence of operations. It is easy to see that the proof w
just as well without this restriction~just add additional indi-
ces toU andUy). By

DU5U2Uy , ~9!

I denote the difference between the unitary transforma
corresponding to the empty oracle and the unitary trans
mation corresponding to the oracle giving 1 only for inputy.
The transformationsU and Uy will act identically on all
computational basis states except those where the reg
holding the input to the oracle is in statey. To get an upper
bound onufT

y2fTu, consider the following:

fT5~Uy1DU !fT21

5Uy~Uy1DU !fT221DUfT215¯ ~10!

5fT
y1 (

i 50

T21

~Uy! iDUfT212 i . ~11!

Then

ufT
y2fTu5U(

i 50

T21

~Uy!T212 iDUf iU
<
2nd

(
i

u~Uy!T212 iDUf i u

5(
i

uDUf i u<
3rd

2(
i

uPyf i u,

where Py is the projector onto those computational ba
states which are going to query the oracle on inputy. The
numbering of the inequality signs is again for later disc
sion. For the next step I need the inequality ((ai)

2<T(ai
2 ,

where theai ’s are anyT real numbers. It follows from the
equality

S ( ai D 2

1
1

2 (
i , j

~ai2aj !
25T( ai

2 , ~12!

which is easy to verify. So now we get

ufT
y2fTu2<S 2(

i
uPyf i u D 2

<
4th

4T(
i

uPyf i u2. ~13!

By summing this over ally’s we get

(
y50

N21

ufT
y2fTu2<4T(

i
(

y
uPyf i u254T2, ~14!
r

e
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n
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ter
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-

where we used that

(
y

uPyf i u251.

III. IMPROVING THIS BOUND

To see how tight the above inequality is, let us look at t
four ~numbered! inequalities in the proof which are then con
catenated to yield the final inequality. Let us see how w
Grover’s algorithm~after any number of steps and for an
markedy) does on these four inequalities. It turns out tha
saturates all but the second inequality. For the first inequa
this is shown in the Appendix. The third~in!equality is easily
verified. It is true because in the first of Grover’s four ope
tions the sign ofuy& is changed, thus maximizing the dis
tance betweenuy& and 2uy&. The fourth inequality is satu-
rated because for Grover’s algorithm thef i ’s are all
identical. So let us now concentrate on the~second! inequal-
ity:

ufT
y2fTu5U(

i
~Uy!T212 iDUf iU<2.

(
i

u~Uy!T212 iDUf i u.

~15!

For Grover’s algorithm,U is the identity and thusf i5f0, so

DUf i52Pyf i5
2

AN
uy&. ~16!

As mentioned before,Uy just carries out a SO~2! rotation on
the space spanned byuy& and (1/AN21)(xÞyux&. Thus for
Grover’s algorithm the vectors in the second inequality
not all point in the same direction; rather, if drawn one af
the other~to form the vector sum!, they form an arc. This
prevents the inequality from being saturated and explains
discrepancy of the tight bound in@1# from the performance
of Grover’s algorithm.

So let us try to find a tighter~upper! bound on ufT
y

2fTu. To this end I write Eq.~10! a little bit differently
~where of courseT does not mean ‘‘transpose’’!:

fT5~UfT212UyfT21!1~UyUfT222UyUyfT22!1•••

1@~Uy!T21Uf02~Uy!Tf0#1fT
y .

This has the form

c02cT5~c02c1!1~c12c2!1~c22c3!

1•••1~cT212cT!, ~17!

where allc i ’s are normalized. The question now is how w
have to choosec1 ,c2 , . . . ,cT21 in order to minimize
(uc i2c i 11u2 whenc0 andcT are fixed. Note that the rela
tive phases of different states of the QC have no phys
meaning and are therefore only a matter of convention. T
is because quantum states are really given by o
dimensional subspaces~rays! of a Hilbert space and not by
vectors. We can thus assume that^c0ucT& is real and
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non-negative.2 Intuitively it is clear that for the minimum the
c i ’s have to be evenly spaced along the arc betweenc0 and
cT . ~Note that this is obviously the case for Grover’s alg
rithm.! Formally this can be established by setting the
rivative with respect to the components ofc i equal to zero,
which yields

c i5
c i 211c i 11

uc i 211c i 11u
. ~18!

We can imagine all these vectors to lie in a tw
dimensional real vector space spanned byc0 andcT . From
planar trigonometry we then get~draw a picture with a line
bisecting the angle betweenc0 andcT)

uc02cTu25F2 sinS a

2 D G2

⇒uc i2c i 11u25F2 sinS a

2TD G2

,

~19!

wherea is the angle betweenc0 andcT anda/T the angle
betweenc i andc i 11 for all i.

So we now have that@compare to Eq.~13!#

ufT2fT
y u2< f S 4T(

i
uPyf i u2D ; y, ~20!

where f (x) describes the improvement in our bound. It
given by (T is a fixed parameter!

f X4T2 sin2S a

2TD C54 sin2~a/2!, ~21!

where

4T2 sin2~a/2T!'a2, 4 sin2~a/2!<a2.

We now want to sum Eq.~20! over all y’s. We use cal-
culus to get an upper bound on the sum over the right h
side. I claim

(
y

ufT2fT
y u2<(

y
f S 4T(

i
uPyf i u2D

<N fS 1

N (
y

4T(
i

uPyf i u2D . ~22!

We know that we have an absolute~and not only a relative!
maximum on the right hand side because in the whole are
interest f 8.0 and f 9,0. More precisely,f 8.0 is true ex-
actly as long as the number of stepsT in Grover’s algorithm
is below the~fractional! optimum @which can be obtained
from Eq. ~6!# of aboutp/4AN. The above inequality is satu
rated by Grover’s algorithm as there the above optimal s
ation with equal angles between successive vectors is
ized with this constant angle equal tow given in Eq. ~4!.
Thus we have established that Grover’s algorithm is optim

2Actually it would be nicer to write the proof in terms of absolu
values of scalar products only, thus avoiding unphysical quant
like the difference of state vectors.
-
-

d

of

-
al-
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IV. LIMITS ON PARALLELIZING GROVER’S
ALGORITHM

Assume we haveS (S for ‘‘space’’! identical oracles with
exactly one marked element. Thus we can imagine that
haveS identically constructed physical black boxes. In pa
ticular I assume that all oracles take the same time to ans
a query.

We want to find the fastest way to obtain the mark
element with a quantum computer that is allowed to use
these oracles~and may input entangled states to them!. To
formalize this in a ‘‘query complexity’’ way and assumin
that querying will take much more time than the other o
erations in the algorithm, I only consider the ‘‘queryin
time,’’ which is the time during the algorithm when any on
of the oracles is working.

The quantum computer could query the individual orac
at any time; in particular it can start querying an oracle wh
another one is still running. In the following I give an arg
ment that without loss of potential power of the algorithm
we can assume that the oracles are always queried sync
nously.

First imagine that we have just two oracles. We begin
querying the first one and while it is still working we sta
querying the second one. We can assume that while an or
is working, only the oracle interacts with its input registe
~If necessary, this can be assured by XORing the input s
to a register reserved for the oracle.! Then it follows that the
second oracle could be queried as soon as the first one,
sibly by doing some preparatory gates ahead of time.

Now imagine we haveS oracles. First consider the ver
first querying of an oracle in the algorithm. All the oracle
which we start querying while the first one is still workin
can, by the above argument, be queried simultaneously
the first one. As there is no point in not using the oth
oracles during this time, we can assume that we start
algorithm by querying allS oracles simultaneously.

By applying the same argument to what happens after
first step, we get that we can assume that the second step
consists of querying allS oracles simultaneously. By iterat
ing this we see that we can assume that the algorithm alw
queries all oracles simultaneously. Say it does thisT times.

As before@Eq. ~22!# we have

(
y

ufT2fT
y u2<N fS 1

N
4T(

y
(

i
uPyf i u2D

<4T(
y

(
i

uPyf i u2, ~23!

where on the right I have also included the old unimprov
result. Heref i is the QC state just before theS oracles are
called @for the (i 11)st time#. Now Py is the projector onto
those computational basis states where any oracle~possibly
several ones! is queried on inputy.

It is easy to see that

uPyf i u2<(
k51

S

uPy
kf i u2. ~24!s
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Here Py
k is the projector onto those computational ba

states where oracle numberk is queried on inputy. The in-
equality becomes an equality when there are no basis s
in f i where several oracles are queried on inputy.

From that we get@compare to Eq.~14!#

(
y

(
i 50

T21

uPyf i u2<(
k51

S

(
i 50

T21

(
y

uPy
kf i u25ST, ~25!

where we used that

(
y

uPy
kf i u251.

So we get the final result

(
y

ufT2fT
y u2<N fS 1

N
4T2SD<4ST2. ~26!

This shows that to get a certain success probability we
gain only a factor ofAS in T by usingS oracles, but this is
essentially the same performance asS independent Grove
searches, each working on oneSth of the total search space
If N ~the size of the search space! is divisible byS, this is an
exact statement; otherwise we still get an asymptotic st
ment.

V. FINAL REMARKS

I have here only considered oracles with the promise
there is exactly one marked element. It seems very plaus
that the proof can be extended to oracles with any kno
number of marked elements. The same may be true for
case where we have a nonuniforma priori probability for the
different one-yes oracles and we want to maximize the a
age success probability. Then one also has to consid
modified Grover algorithm.

Also it seems that by reading the proof carefully, one c
establish that Grover’s algorithm is essentially the only o
timal algorithm.

As for any no-go theorem which claims implications f
the physical world, we must be careful about the assum
tions we made. Arguably the main assumption made her
that the time evolution of quantum states is exactly linear
of course it is in standard quantum theory. Most physic
think this is very likely.
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APPENDIX: PROOF OF INEQUALITY „8…

The situation is as follows: a quantum system is in one
N pure states given by the normalized vectorscy , y
50, . . . ,N21. The task is to find in which of these states it
by using any measurement procedure allowed by quan
theory. It is well known that if thecy’s are not all pairwise
orthogonal, this can only be done probabilistically~see, e.g.,
@4#!. Here we are interested in maximizing the average s
s

tes

n

e-

at
le
n
he

r-
a

n
-

p-
is
s
s

f

m

c-

cess probability when averaging over allN cases. We want to
prove the following upper bound on this probabilityp:

2N22ANAp22ANAN21A12p< (
y50

N21

ucy2cu2.

~A1!

Measurement schemes can in general be such that whe
measurement givesy then one is sure that the state wascy ,
but then in general the answer can also be ‘‘I do not know
Here we are not interested in such schemes. Because
we get an answer, we can easily check whether it is corr
all we are interested in is to maximize the probability
getting the right answer, irrespective of whether an uns
cessful measurement yields a wrong answer or ‘‘do
know.’’

1. Grover’s algorithm saturates the inequality

Here thecy’s are the different final states~depending on
the oracle! of the QC just before measurement andc is the
state we get for the ‘‘zero’’ oracle. After any number o
iterations of Grover’s algorithm these states can be written
terms of somep as

cy5Apuy&1A12p
1

AN21
(

y8Þy

uy8&

and

c5
1

AN
(

y
uy&. ~A2!

It is now easy to verify that inequality~A1! is saturated.

2. Proof of the inequality

In general the Hilbert space of the QC will have dime
sion M.N. We must assume this because it may in gene
gives the possibility of a measurement with a larger succ
probability. On the other hand a von Neumann measurem
on such an enlarged spaceis really the best we can do@4#. A
von Neumann measurement is just a standard quantum m
surement given by a Hermitian operator or, essentia
equivalently, by a set of~mutually orthogonal! eigenspaces
which together span the whole Hilbert space. I write thecy’s
andc as follows in terms of some basisum&:

cy5 (
m50

M21

cm
y um& and c5 (

m50

M21

cmum&. ~A3!

Without loss of generality we can assume that we measur
the basisum&. I denote byM y the set ofm’s which, when we
obtain them from a measurement, will be interpreted as
swer ‘‘y.’’ By py I denote the probability of therby correctl
identifying the statecy :

py5 (
mPMy

ucm
y u2. ~A4!

To prove inequality~A1! we look for the minimal value its
right hand side can assume for a givenp51/N(ypy . We do
the minimization in two steps, First we find thecy ~5 the
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cm
y ’s! for which ucy2cu2 is minimal for a given fixedpy and

c. Using the Lagrange multiplier technique to find~tentative!
extrema under some constraint we get the expression

ucy2cu22l1ucyu22l2py5 (
m50

M21

ucm
y 2cmu22l1 (

m50

M21

ucm
y u2

2l2 (
mPMy

ucm
y u2, ~A5!

where the first constraint~Lagrange multiplierl1) comes
from the requirement thatcy be normalized and the secon
~Lagrange multiplierl2) because we want to minimize fo
fixed py . To find candidate extrema we set the derivatives
this expression with respect to the real and imaginary p
of cm

y equal to zero. The well known ‘‘trick’’ that in this cas
one can formally treat the complex variable and its comp
conjugate as the two independent real variables simplifies
calculation to obtain

cm5~12l12l2!cm
y ; mPM y

and

cm5~12l1!cm
y ; m¹M y . ~A6!

By satisfying the constraints we get

12l12l256
Aay

Apy

,

12l156
A12ay

A12py

, ~A7!

where

ay5 (
mPMy

ucmu2.
s-

es
f
ts

x
he

From that we get the following four candidates for a min
mum:

ucy2cu25222~6ApyAay6A12pyA12ay!. ~A8!

Of course the minimum is reached when both signs are p
tive. Note that we do not have to worry thatucy2cu2 might
be even smaller on some boundary of the parameter rang
minimized over. This is because our parameter range~under
the constraints! does not have a boundary; thus it is abona
fide manifold. Also our coordinate system is regular all ov
the manifold. By summing overy we get

(
y

ucy2cu2>2N22(
y

~ApyAay1A12pyA12ay!.

~A9!

Now we look for thec ~5 the ay’s! and thepy’s for which
this becomes minimal. We have the constraintsucu2

5(ucmu25(ay51 and (1/N)(ypy5p for a fixed p. Again
using the Lagrange multiplier technique we getay
51/N ; y andpy5p ; y. Then,

(
y50

N21

ucy2cu252N22ANAp22ANAN21A12p.

~A10!

This time the parameter range over which we have m
mized does have a boundary. The boundary is reached w
one of theay’s or py’s is either 0 or 1. Still we can show tha
we have really found a global minimum by showing that t
second derivative is positive definite over the whole para
eter range. To avoid having to adapt this argument to
situation with constraints, we can, e.g., setp05Np
2(yÞ0py anda0512(yÞ0ay and then check that the sec
ond derivative of the right hand side of Eq.~A9! is always
positive definite.
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