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Grover’s quantum searching algorithm is optimal
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| show that for any number of oracle lookups up to abei# N, Grover's quantum searching algorithm
gives the maximal possible probability of finding the desired element. | explain why this is also true for
guantum algorithms which use measurements during the computation. | also show that unfortunately quantum
searching cannot be parallelized better than by assigning different parts of the search space to independent
guantum computer$S1050-294{©9)09209-4

PACS numbdps): 03.67.Lx, 03.65.Bz

I. QUANTUM SEARCHING algorithm. | show that we cannot do better.
Grover's quantum searching algorithm distinguishes be-

Imagine we haveN cases of which only one fulfills our tween theN possible one-yes oracleges = 1) using
conditions. E.g., we have a function which gives 1 only for 7/4 N oracle calls(that is, evaluations of the functipnit
one out ofN possible input values and gives 0 otherwise.makes the same sequence of operatisf% N times. The
Often an analysis of the algorithm for calculating the func-sequence consists of four simple operations. The input state
tion will allow us to find quickly the input value for which to the algorithm is theeasily constructgduniform ampli-
the output is 1. Here we consider the case where we do ndtde state: initial state
know better than to repeatedly calculate the function without N-1
looking at the algorithm, e.g., because the function is calcu- ¢0:i E 1X). 1)
lated in a black box subroutine into which we are not al- JN $=0

lowed to look. In computer science this is called an oracle, ol . )
Here | consider only oracles which give 1 for exactly one 'Ne[X) are theN=2' computational basis statéshere ev-

input. Quantum searching for the case with several input ry one of the qubits is either 0 or lwhich correspond to

- . ; the possible inputs to the oracle. Thus for Grover’s algorithm
Wh'Ch give 1 anql even with an unknown number of SUChN has to be a power of 2. AgaJi] have generalized this to
inputs is treated ifl].

Obviously on a classical computer we have to quer thearbitraryN.
) P query The four operations of Grover’s algorithm are then

oracle on averagd/2 times before we find the answer.
Grover[2,5] has given a quantum algorithm which can solve (1) |y)——]y) forthe one markeg,
the problem in aboutr/4 N steps. Bennetét al. [3] have

[
shown that asymptotically no quantum algorithm can solve (2) H,
the problem in less than a number of steps proportional to (3) [x)——I[x) forall x#0,
\/N. Boyeret al.[1] have improved this result to show that, (4) H".

e.g., for a 50% success probability no quantum algorithmcan ) _ ) )
do better than only a few percent faster than Grover's algolThe first step is really the invocation of the oracle. The input
rithm. | improve the proof, showing that for any number of We are looking for ig. An oracle giving 0 or 1 can easily be
oracle |ookups Grover's a|gorithm is exacmand not on|y Changed into an oracle which Condltlona"y Changes the sign
asymptotically optimal. of the input. This can be done by preparing the qubit into
The above-mentioned proofs have shown that asymptotiwhich the oracle output bit will be XORed in the stat@x
cally proportional toyN steps are necessary for quantum —|1))/+2. Of course the oracle will need work space, but as
searching. They have not said whether these steps can oriNe expect these work qubits to be reset to their precall value
be carried out consecutively or whether they cofplartially) ~ after each oracle call, we do not really have to care about
be done in parallel. If they could be done in parallel, then ghem in the quantum algorithm as they “factor outdfter
guantum computefQC) containingS oracles(thus S physi-  the oracle call they form a tensor product with the rest of the
cal black boxes running for T time steps could search a guantum computer The requirement that the work qubits
search space OD(SZTZ). Now any unstructured search have to be “Uncomputed” means that the algorithm in the
problem can simply be parallelized by assigning differemo_racle may take longer than its conventional irreversible ver-
parts of the search space to independent search engingén. .
(whether quantum or classigaBut using this “trivial” par- The second step applies a Hadamard transform to every
allelization we can on|y search a search Spac@OSTz) one of thel qultS(Shorthand'll). The Hadamard transform
using S independent quantum computers running Grover'ds given by the following matrix:
1/1 1
H=—
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The third step changes the sign of all computational basisvhat further unitary transformations should be applied, can
states except fof0) and the fourth step is the same as thebe delayed to the end. For a practical QC it seems likely that
second. what further unitary transformations will be applied will de-

The following results are straightforward to obtain: After pend on outcomes of intermediary measurements, like, e.g.,
any numbeir of iterations of these four operations the statein error correction. Thus we will probably have a “hybrid”
of the QC can be written as a linear combination of two fixedquantum-classical computer, where the classical part reads
states: measurement outcomes and, depending on that, controls the

exterior fields that induce unitary transforms on the qubits.

1 The point now is thain principle the classical part can sim-
H=A \/ﬁ x;y ) +Bily). () ply be replaced by quantum hardware which does the same.
This may use more space as we are now restricted to revers-
One application of the four operations gives ible computation, but for what concerns us, it of course does
not increase the number of oracle invocations, and this is
N—1 really all we care about here.
Ai+1:(1_ N) Ai_ZTBi’ So we do not care about the cost of any other unitary

transforms; actually we do not even ask whether they can

JN—1 efficiently be composed of elementary gates. Of course once
Bi+1=2TAi+ 1- N)B‘ . we have established that even under this general viewpoint
Grover’s algorithm is optimal, we know that the “auxiliary”
This is simply a S@) rotation with unitary transforms can be realized with just a few elementary
gates. Actually | expect that in any sensible application of
2 N—1 Grover’s algorithm these auxiliary operations are going to be
cogep)=1— N and sifg)=2 N (4 much easiefand fasterthan the oracle call.

The proof gives a limit on the success probability achiev-

Thus g~sing~2/\N and therefore afterr/4 N steps we able with T (for time) oracle lookups. Thereby we average
obtain a state very close {g). over theN possible oracles. In computer science one is usu-
It turns out(and is easy to chegkhat the initial(uniform ally interested in the worst case, that is, the oracle for which

amplitude state can be written in terms of half the abovethe success probability is the smallest. Because the worst

angle: case probability is smaller or equal to the average case prob-
ability, we also get an upper limit on the former. In Grover’'s
1 algorithm the success probability is independent of the
do=coq ¢/2) > |X)+sin(¢/2)]y). (5)  oracle, so the worst case and average case probabilities are
VN—1 xzy the same and thus Grover’s algorithm is also optimal for the

worst case probability.
The proof works by analyzing how the difference of the
pr=si(Te+ ¢/2). (6)  QC states between the cases when we have a specific one-yes
oracle and when we have the empty ordelevays giving 0
(Note that after aboutr/4 N iterations of Grover's algo- evolves. For the empty oracle case | denote the QC state after
rithm the success probability goes down again. i oracle invocations by®; whereas¢! denotes this state
A noteworthy remark is that actually, because towards thavhen we have an oracle that gives yes only for inputore
end the success probability goes very slowly to 1, if we wanprecisely, these are the QC states just before the next oracle
to minimize theaveragenumber of steps,it pays off to end  call; thus in one register of the QC there must be the input to
the computation earlier and run the risk to have to start overthe oracle.
A simple calculation shows that the average number can The proof consists of two parts. The central part of the
thereby be reduced by some 12.14% relative to the aboveroof gives a bound on how far from the empty-oracle case
result. the state can have diverged aff€roracle calls when the
oracle has one yes. To get a meaningful statement we have to
IIl. TIGHT BOUND ON QUANTUM SEARCHING average over all possible one-yes oracles, as for any given
a special algorithm could be made that would do especially
Here | sketch my version of the proof frofil] which  well for this case. The statement is
gave the tightest limit on quantum searching so far. It is an
renxtensmln of the earlleﬂ_(\_/ﬁ) proof in [3]. Later | obtain E | o2 aT?. o
y results by further refining the same proof. = T
In the proof | assume a quantum computation consisting

only of unitary transformationgplus the final measuremegnt The second part of the proof gives an upper bound on the

without measurements during the computation. This can bguccess probabilitp in terms of the left hand side of the
done without loss of generality: Clearly a measurement of above equation:
gubit, whose outcome will not be used to make decisions on

Thus the success probability aft€roracle calls is exactly

N—-1

1stN-1
2N=2N{p—2NN-1/1-p= ygo | Y= rl?,

As opposed to the maximuffworst casg number of steps. (8)
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where the ‘(1st)” above the “<" is for later discussion. | where we used that

prove this inequality in the Appendix, as it is not central to

the understanding of the proof. -

Both inequalities together then give the desired lower ; [Pyl "=1.

bound onT in terms ofN and p. Asymptotically and forp

=1 the statement i§=/N/2. | now derive the “central”

inequality (7). To simplify the notation | assume that, like in . IMPROVING THIS BOUND

Grover's algorithm, in every iteratiofeach containing one T see how tight the above inequality is, let us look at the

oracle invocation the quantum computer makes the sameoyr (numberedlinequalities in the proof which are then con-

sequence of operations. It is easy to see that the proof worksyienated to yield the final inequality. Let us see how well

just as well without this restrictiofjust add additional indi-  Grgver's algorithm(after any number of steps and for any

ces toU andU,). By markedy) does on these four inequalities. It turns out that it
AU=U—-U ©) saturates all but the second inequality. For the first inequality

v this is shown in the Appendix. The thifah)equality is easily

| denote the difference between the unitary transformatiofy€'ified. Itis true because in the first of Grover's four opera-
corresponding to the empty oracle and the unitary transfortions the sign ofly) is changed, thus maximizing the dis-
mation corresponding to the oracle giving 1 only for ingut tance betweerly) and —|y). ,The fourth meque}llty Is satu-
The transformationd) and U, will act identically on all ~fated because for Grovers algorithm thg'’s are all
computational basis states except those where the registéentical. So let us now concentrate on tsecond inequal-
holding the input to the oracle is in stageTo get an upper %Y

bound on| ¢¥— ¢/, consider the following:

2.
$r=(U,+AU) ¢y, | % — b1l = E. (Uy) T AU, $Ei (U T AU |
=Uy(Uy+AU)pr_p+AUpr =" (10) (15)
T-1 _ For Grover's algorithmy is the identity and thug; = ¢, so
= ¢+ 2, (Uy)'AUGr 1. (1D
a 2
AU ¢ =2P,pi=—y). 16
Then bi ybi N ly) (16)
T-1 . . . .
L As mentioned beford), just carries out a S@) rotation on
_ _ T-1 ) y
| ¢ — ¢l = ;0 (Uy) ‘AU, the space spanned By) and (14/N—1)2,.,|x). Thus for

Grover's algorithm the vectors in the second inequality do
2nd . not all point in the same direction; rather, if drawn one after
= [(U)T AU | the other(to form the vector sum they form an arc. This

' prevents the inequality from being saturated and explains the
discrepancy of the tight bound {i] from the performance
of Grover’s algorithm.
So let us try to find a tightefupped bound on| ¥

. . , . —¢1]. To this end | write Eq.(10) a little bit differently
where Py is the projector onto those computational bas's(where of coursd does not mean “transposg’”

states which are going to query the oracle on imputThe

numbering of the inequality signs is again for later discus- , _ Y +(U.U —U.U T
sion. For the next step | need the inequaliBa)?’<T=a?, $r=(Udr-1=Uydr-)+(UUdr-2=U,Uydr-2)
where thea;’s are anyT real numbers. It follows from the +[(Uy)T‘1U ¢>0—(Uy)T¢>0]+¢¥.

equality

’

3rd
:Z |AU¢|< 22 Py

2 4 This has the form
. Z _a.)2= 2
2a+ 2 ; (8=2))"=T2 o, 12 o= = (o= th1) + (f1— th2) + (Y2 ¥h3)

which is easy to verify. So now we get o (o1 dr), 17

2 4th where ally;’s are normalized. The question now is how we
| p%— ¢T|2$<22 |Py¢i|) s4TZ |py¢i|2_ (13y have to choosey,i,, ... .¢¥r_1 _in order to minimize
[ [ S| i— i 41)> when g and ¢ are fixed. Note that the rela-
) ) i tive phases of different states of the QC have no physical
By summing this over aly’s we get meaning and are therefore only a matter of convention. This
N—1 is because quantum states are really given by one-
— b2<aT P, |2=4T2, 14 dimensional subspacérys of a Hilbert space and not by
y§=:0 |#1= ] Z Ey: [Pyl a4 vectors. We can thus assume thago|y) is real and
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non-negativé. Intuitively it is clear that for the minimum the IV. LIMITS ON PARALLELIZING GROVER'S
#i’s have to be evenly spaced along the arc betwggeand ALGORITHM
¢r. (Note that this is obviously the case for Grover’s algo-

rithm.) Formally this can be established by setting the de- Assume we hav& (S for “space”) |dent|cal'orac!es with
A . exactly one marked element. Thus we can imagine that we
rivative with respect to the components @f equal to zero,

haveS identically constructed physical black boxes. In par-

which yields ticular | assume that all oracles take the same time to answer
-1t i aquery. : -
Y= (18 We want to find the fastest way to obtain the marked
i1t il element with a quantum computer that is allowed to use all

these oraclesand may input entangled states to theifio
formalize this in a “query complexity” way and assuming
that querying will take much more time than the other op-
erations in the algorithm, | only consider the “querying
time,” which is the time during the algorithm when any one

a |12 of the oracles is working.
2sif 5.

We can imagine all these vectors to lie in a two-
dimensional real vector space spanned/gyand . From
planar trigonometry we then gédraw a picture with a line
bisecting the angle betweefy, and /1)

2
2 Si"(g” =i ial?=

The quantum computer could query the individual oracles
at any time; in particular it can start querying an oracle while
another one is still running. In the following | give an argu-
ment that without loss of potential power of the algorithm,
we can assume that the oracles are always queried synchro-
nously.

First imagine that we have just two oracles. We begin by

querying the first one and while it is still working we start
|pr— ¢¥|2$f(4T2 |Py¢i|2> vy, (200 querying the second one. We can assume that while an oracle
' is working, only the oracle interacts with its input register.
(If necessary, this can be assured by XORing the input state
to a register reserved for the oragl&hen it follows that the
second oracle could be queried as soon as the first one, pos-
o sibly by doing some preparatory gates ahead of time.
_)):4 sir(al2), (22) Now imagine we haveS oracles. First consider the very
2T first querying of an oracle in the algorithm. All the oracles
which we start querying while the first one is still working
can, by the above argument, be queried simultaneously with
AT?sirA(al2T)~a?, 4 sirf(al2)<a?. the first one. As there is no point in not using the other
oracles during this time, we can assume that we start the

We now want to sum Eq20) over ally’s. We use cal- algorithm by querying als oracles simultaneously. _
culus to get an upper bound on the sum over the right hand BY @Pplying the same argument to what happens after this
side. | claim first step, we get that we can assume that the second step also

consists of querying alb oracles simultaneously. By iterat-
ing this we see that we can assume that the algorithm always
> lpr—iP<> f(4TZ |Py¢>i|2) queries all oracles simultaneously. Say it does Thignes.
y y ! As before[Eq. (22)] we have

[ho— 1l ?=

(19

where« is the angle betweett, and ¢/t and «/T the angle
betweeny; and ;.4 for all i.
So we now have thdicompare to Eq(13)]

where f(x) describes the improvement in our bound. It is
given by (T is a fixed parameter

f(4T2 sir?

where

st(%; 4TEi |py¢i|2)_ (22 .

2 | gYP=NT| 4TS X [Py |?
We know that we have an absolutnd not only a relative Y o
maximum on the right hand side because in the whole area of
interestf’>0 andf”<0. More preciselyf’>0 is true ex- <41 > [Pyoil?, (23
actly as long as the number of stepin Grover's algorithm o
is below the(fractiona) optimum [which can be obtained
from Eq. (6)] of aboutw/4\/N. The above inequality is satu- where on the right | have also included the old unimproved
rated by Grover’s algorithm as there the above optimal situresult. Here¢, is the QC state just before tf®oracles are
ation with equal angles between successive vectors is reatalled[for the (+1)st timg. Now Py is the projector onto
ized with this constant angle equal {o given in Eq.(4).  those computational basis states where any orgdssibly
Thus we have established that Grover’s algorithm is optimalseveral onesis queried on inpuy.

It is easy to see that

2Actually it would be nicer to write the proof in terms of absolute S
L . " K
\(alues of.scalar products only, thus avoiding unphysical quantities |Py¢i|2< E |Py¢i|2- (24)
like the difference of state vectors. k=1
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Here P'; is the projector onto those computational basiscess probability when averaging overldltases. We want to
states where oracle numbleiis queried on inpuy. The in-  prove the following upper bound on this probabiliy
equality becomes an equality when there are no basis states N—1
in ¢; where several oracles are queried on input IN—2/NVD— 2 /NIVN=T/1-p< 2
From that we gefcompare to Eq(14)] VNVp—2VN P y§=:0 |9y = ul*
s T-1 (A1)

T-1
> X IPysilP<> > X |PEgi?=ST, (25  Measurement schemes can in general be such that when the
y =0 k=11=0 "y measurement givesthen one is sure that the state was,
but then in general the answer can also be “I do not know.”
Here we are not interested in such schemes. Because once
we get an answer, we can easily check whether it is correct;

where we used that

> |Pyehi|>=1. all we are interested in is to maximize the probability of
Y getting the right answer, irrespective of whether an unsuc-
So we get the final result cessful measurement yields a wrong answer or “do not
know.”
1
; |pr— ¢¥|2$ Nf(NAfTZS) <4ST. (26) 1. Grover’s algorithm saturates the inequality

i i - Here they,’s are the different final stateglepending on
This shows that to get a certain success probability we cafhe oraclg of the QC just before measurement apds the
gain only a factor ofy/S in T by usingS oracles, but this is  state we get for the “zero” oracle. After any number of
essentially the same performance &sdependent Grover jterations of Grover’s algorithm these states can be written in
searches, each working on oSth of the total search space. terms of some as

If N (the size of the search spadg divisible byS this is an

exact statement; otherwise we still get an asymptotic state- 1
ment. Py=\ply)+V1-p=—= 2 |y)
’ N=1y 2y
V. FINAL REMARKS and
I have here only considered oracles with the promise that 1
there is exactly one marked element. It seems very plausible p=—= >, |y). (A2)
that the proof can be extended to oracles with any known N5

number of marked elements. The same may be true for thﬁ
case where we have a nonunifoenpriori probability for the
different one-yes oracles and we want to maximize the aver-
age success probability. Then one also has to consider a
modified Grover algorithm. In general the Hilbert space of the QC will have dimen-
Also it seems that by reading the proof carefully, one carsion M>N. We must assume this because it may in general
establish that Grover’s algorithm is essentially the only op-gives the possibility of a measurement with a larger success
timal algorithm. probability. On the other hand a von Neumann measurement
As for any no-go theorem which claims implications for on such an enlarged spaisereally the best we can dd]. A
the physical world, we must be careful about the assumpvon Neumann measurement is just a standard quantum mea-
tions we made. Arguably the main assumption made here igurement given by a Hermitian operator or, essentially
that the time evolution of quantum states is exactly linear agquivalently, by a set ofmutually orthogonal eigenspaces
of course it is in standard quantum theory. Most physicistsvhich together span the whole Hilbert space. | write &

is now easy to verify that inequalityAl) is saturated.

2. Proof of the inequality

think this is very likely. and ¢ as follows in terms of some bagis):
M-1 M-1
ACKNOWLEDGMENTS = mzzo C%| m) and y— mE:O ConM). (A3)
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for helpful discussions. This work was supported bywithout loss of generality we can assume that we measure in

Schweizerischer Nationalfonds and LANL. the basigm). | denote byM, the set ofn’s which, when we
obtain them from a measurement, will be interpreted as an-
APPENDIX: PROOF OF INEQUALITY (8) swer “y.” By py | denote the probability of therby correctly

T L jdentifying the statey, :
The situation is as follows: a quantum system is in one o# fying oy

N pure states given by the normalized vectaps, y yi2

=0,...N—1. The task is to find in which of these states it is py:mz(/I [ (A4)
by using any measurement procedure allowed by quantum Y

theory. It is well known that if tha/,’s are not all pairwise To prove inequality(Al) we look for the minimal value its
orthogonal, this can only be done probabilisticdige, e.g., right hand side can assume for a gives 1/NZ,p,. We do
[4]). Here we are interested in maximizing the average sucthe minimization in two steps, First we find thg, (= the
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From that we get the following four candidates for a mini-
mum:

c's) for which |, — 4| is minimal for a given fixecp, and
. Using the Lagrange multiplier technique to fifidntative
extrema under some constraint we get the expression

|, —¥2=2—2(=py\a,=V1—p,V1—a,). (A8)

Of course the minimum is reached when both signs are posi-
tive. Note that we do not have to worry that, — 4|2 might

be even smaller on some boundary of the parameter range we
minimized over. This is because our parameter raogeer

the constraingsdoes not have a boundary; thus it idana
where the first constraintLagrange multiplierh;) comes fide manifold. Also our coordinate system is regular all over
from the requirement that, be normalized and the second the manifold. By summing ovey we get

(Lagrange multipliern,) because we want to minimize for
fixed p,. To find candidate extrema we set the derivatives of
this expression with respect to the real and imaginary parts
of ¢, equal to zero. The well known “trick” that in this case
one can formally treat the complex variable and its complex

M-1 M—-1
[y = =Ml Aapy= 2 [eh—cal® Ny 2 [oh?

N2 2 |el?

me My

(A5)

; | by = ‘MZ?ZN_Z; (Vpyay+V1-pyi-ay).

(A9)

conjugate as the two independent real variables simplifies thQow we look for they (=

calculation to obtain

Cm=(l—7\1—)\2)0¥n Y me My
and
cm=(1—\y)c}, V meM,. (AB)
By satisfying the constraints we get
Va
1_)\1_)\2:i_,
oy
Vi-a,
1-N== , (A7)
\/1—py

where

thea,’s) and thep,’s for which
this becomes minimal. We have the constrainigl?
=2|cm|2=2ay=1 and (IN)X,p,=p for a fixedp. Again
using the Lagrange multiplier technique we get,
=1NYV yandp,=pV y. Then,

N—-1
y§=10 |hy— |?=2N—2N\p—2NYN—-11-p.

(A10)

This time the parameter range over which we have mini-
mized does have a boundary. The boundary is reached when
one of thea,’s or p,’s is either 0 or 1. Still we can show that
we have really found a global minimum by showing that the
second derivative is positive definite over the whole param-
eter range. To avoid having to adapt this argument to the
situation with constraints, we can, e.g., spy=Np
—2y+0Py andag=1—3,.0a, and then check that the sec-
ond derivative of the right hand side of EGA9) is always
positive definite.
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