PHYSICAL REVIEW A

VOLUME 36, NUMBER 2

JULY 15, 1987

Easily calculable measure for the complexity of spatiotemporal patterns

F. Kaspar and H. G. Schuster
Institut fur Theoretische Physik der Universitat Frankfurt, Robert-Mayer-Strasse 8-10,
D-6000 Frankfurt am Main, Federal Republic of Germany
(Received 15 December 1986)

We demonstrate by means of several examples that an easily calculable measure of algorithmic
complexity ¢ which has been introduced by Lempel and Ziv [IEEE Trans. Inf. Theory IT-22, 25
(1976)] is extremely useful for characterizing spatiotemporal patterns in high-dimensionality non-
linear systems. It is shown that, for time series, ¢ can be a finer measure for order than the Liapunov
exponent. We find that, for simple cellular automata, pattern formation can be clearly separated
from a mere reduction of the source entropy and different types of automata can be distinguished.
For a chain of coupled logistic maps, c signals pattern formation which cannot be seen in the spatial

correlation function alone.

I. INTRODUCTION

One of the recent major breakthroughs in the theory of
dynamical systems is the discovery that already-low-
dimensional systems can show chaotic movement in phase
space which can be characterized by a spectrum of dimen-
sions and entropies."> However the numerical effort
needed to extract these spectra is rather large. This limits
their determination to systems with dimensionality lower
than ten.

In order to characterize chaotic motion in high-
dimensional dynamical systems, e.g., spatiotemporal tur-
bulence, poorly stirred chemical reactions, etc.,! it is
therefore necessary to develop new tools. In this article
we want to make a step in this direction. The idea is to
demonstrate by means of several examples that an easily
calculable measure of algorithmic complexity, which has
been introduced mathematically by Lempel and Ziv,’ is a
useful quantity to characterize spatiotemporal patterns.
Our main intention is to provide experimentalists with a
practical tool.

The remainder of this article is organized as follows.
In Sec. I we introduce the measure of algorithmic com-
plexity ¢ (n) for finite strings of symbols of length n which
has been suggested by Lempel and Ziv® and explain the
algorithm which allows its numerical calculation by
means of a flow diagram. In Sec. II we calculate ¢ (n) for
time series generated by simple one-dimensional maps. It
will be shown that for a piecewise linear map c(n) in-
creases with the Liapunov exponent A until it saturates for
a finite value of A, and that for the logistic map ¢ (n) mir-
rors the complexity of the Metropolis-Stein-Stein se-
quences.* Both examples demonstrate that c (n) reflects
the order which is retained in the one-dimensional tem-
poral pattern better than its chaotic behavior. In Sec. III
we use c(n) to characterize the time evolution of some
simple one-dimensional cellular automata (CA’s).” It is
found that, starting from random initial conditions, pat-
tern formation is indicated by a decrease of c(n) with
time (where n now measures the spatial extension of the
CA) and that it can be discriminated from a mere reduc-
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tion of the source entropy. Different types of CA can be
distinguished via ¢ (n). In Sec. IV we compute ¢ (n) for a
chain of coupled logistic maps.*’ Although conventional
measures of pattern formation such as the spatial correla-
tion function and the power spectrum show no indication
that the system reaches a state of dynamical equilibrium,
it is found that the temporal development of ¢ (n) shows
clearly that such a state can be reached within different
time scales which depend on the parameters of the sys-
tem. The dynamical equilibrium corresponds to a situa-
tion where the average number of kinks remains approxi-
mately constant.” This example demonstrates that ¢ (n) is
indeed a useful measure by which the development of spa-
tiotemporal patterns can be characterized. In Sec. VI we
draw our conclusions and discuss the relation of ¢ (n) to
other measures of complexity which have been suggested,
e.g., by Grassberger® and Wolfram.’

II. THE COMPLEXITY MEASURE
OF LEMPEL AND Z1V

In the following we introduce the complexity measure
of Lempel and Ziv.> We consider for simplicity only
strings which are composed of zeros and ones; extensions
to larger numbers of variables can be found in Ref. 3.
According to Kolmogorov'® and others,!! the complexity
of a given string of zeros and ones is given by the number
of bits of the shortest computer program which can gen-
erate this string. A general algorithm which determines
such a program cannot be given.!! Lempel and Ziv® have
chosen from all possible programs one class that allows
only two operations: to copy and to insert (see below).
Furthermore they have not calculated the length of the
program which generates a given string of length n but a
number c(n) which is a useful measure of this length.
We will not repeat here the mathematical proofs of Lem-
pel and Ziv, which show that ¢ (n) is an appropriate mea-
sure of the Kolmogorov complexity. Instead we will ex-
plain the algorithm which is needed to calculate ¢ (n) and
explain the usefulness of ¢ (n) by way of several examples.
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The calculation of ¢ (n) proceeds as follows. Let us as-
sume that a given string s;s, * * * s, has been reconstruct-
ed by the program up to the digit s, and that s, has been
newly inserted (i.e., it was not obtained by simply copying
it from s;s; * * - 5, _1). The string up to s, will be denoted

by S =sys, ' - * 5.+, where the dot indicates that s, is new-
ly inserted. In order to check whether the rest of S, i.e.,
S, +1° " 'S, can be reconstructed by simple copying (or

whether one has to insert new digits), Lempel and Ziv
proceeded with the following steps. First, one takes
Q=s,, and asks whether this term is contained in the
vocabulary (i.e., in one of the substrings or words) of the
string S so that Q can simply be obtained by copying a
word of S. This is, of course, equivalent to the question
of whether Q is contained in the vocabulary v (SQmw) of
SQm where SQm denotes the string which is composed of
S and Q and 7 means that the last digit has to be deleted
(i.e., here SQ7==S). This last formulation of the question
can be generalized to situations where Q also contains two
(i.e., Q =s, 15, 4+2) or more elements. Let us, for exam-
ple, assume that s, ;| can indeed be copied from the voca-
bulary of s. Then, by using the formulation given above,
we next ask whether Q =s, , 5, , is contained in the vo-
cabulary of SQw [i.e., in v (Ss,, )] and so on until Q be-
comes so large that it can no longer be obtained by copy-
ing a word from v (SQw) and one has to insert a new di-
git. The number c of production steps to create a string,
i.e., the number of newly inserted digits (plus one if the
last copy step is not followed by inserting a digit), is used
by Lempel and Ziv as a measure of the complexity of a
given string.

Let us give a few examples. If we have a sequence
which contains only zeros we could intuitively say that it
should have the smallest possible complexity of all strings.
Indeed one has only to insert the first zero and can then
reconstruct the whole string by copying this digit, i.e.,

00000 - - - —0-000 - - - ,

and the complexity of this string is ¢ =2.
Similarly one finds for a sequence which is only com-
posed of units 01, i.e.,

o10101--+-—0-1-0101"--- ,

the value ¢ =3.
The complexity ¢ of the sequence 0010 can, e.g., be
determined via the following steps.

(1) The first digit has always to be inserted —0- .

(2) § =0, Q =0, SQ =00, SQ7=0, QE€v(SQ7)—0-0 .

(3) §=0, Q =01, SQ =001, SQ7w=00, Q&v(SQmw)
—0-01- .

(4) § =001, Q =0, SQ =0010, SQ7=001, QEv(SQ~)
—0-01-0 .

Now c is equal to the number of parts of the string that
are separated by dots, i.e., ¢ =3. Figure 1 shows the flow
diagram of a computer program that determines ¢ (n) for
a given string of length »n.

Finally we consider two analytic results for ¢ (n). It is
well known that the rationals in the interval [0,1], say are
of measure zero. This implies that for almost all numbers
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FIG. 1. Diagram for the algorithm to calculate the complexi-
ty ¢ (n) of a string of length n.

in [0,1] (i.e., for all irrationals) the string of zeros and
ones which represents their binary decomposition is not
periodic. Therefore we expect that almost all strings
which correspond to a binary representation of a number
x €[0,1] should be random and have maximal complexi-
ty. It has indeed been shown by Lempel and Ziv that for
almost all x €[0,1] the complexity c(n) (of the string
which represents the binary decomposition) tends to the
same value:

lim c¢(n)=b(n)=n/logn . (1)

n— oc

b (n) gives, therefore, the asymptotic behavior of ¢ (n) for
a random string and we will often normalize c (n) via this
limit, i.e., we will only consider the finite ratio
O0<c(n)/b(n) <1, instead of ¢ (n).

If we have a string from a random source where, how-
ever, the probability p of finding 1 is different from 0.5,
we could expect that its complexity should be smaller
than that of a random string with p =0.5. It has also
been shown by Lempel and Ziv that in this case c¢(n)
tends to

lim c(n)=hb(n), 2)

n— oo
where h = —[plogyp +(1—pllogr(1—p)]<1 is the so-
called source entropy which has its maximum at p =0.5.
This means that one can decide [by determining p and
h(p)] whether deviation of lim, ., [c(n)/b(n)] from 1
is only due to the fact that the source entropy differs
from 1 (and the string is still as random as possible) or
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due to the formation of a pattern in the string (if
lim,_, [c(n)/b(n)]<h).

These examples show that the complexity measure ¢ (n)
can be calculated easily and its numerical value agrees
with our intuitive notion of complexity. In the following
we will investigate what can be learned about the behavior
of dynamical systems from a computation of c (n).

III. ANALYSIS OF TIME SERIES GENERATED
BY SOME ONE-DIMENSIONAL MAPS

In this section we analyze strings that are generated by
a random-number generator and by simple one-
dimensional maps, in order to answer the following ques-
tions.

(1) How fast does the complexity c (n) of a string pro-
duced by a random-number generator converge to the
asymptotic value n /log,n? This determines the minimum
length n.,;, needed to approach the asymptotic value of
¢ (n)n /logyn if one analyzes a general string.

(2) How does the computer time that is needed to com-
pute ¢ (n) depend on n? This gives an estimate of the
largest length n,,, which can be analyzed by our method.

(3) How is the complexity of a given string related to
the (largest) Liapunov exponent A of the corresponding
time series, i.e., what is the relation between the complexi-
ty measured by c(n) and the conventional measure A of
chaos?

(4) How is the period-doubling route to chaos' mirrored
in the complexity of the corresponding time series? This
should tell us how well different nonchaotic time patterns
are mirrored in ¢ (n).

Let us begin with the answers to the first question. Fig-
ure 2 shows the normalized complexity c¢(n)/b(n) of a
string s;s, - - s, that has been generated by a pseudo-
random-number-generator.'?>  (The program produced
random numbers x; €[0,1] and we took s;=0 if x; <0.5
and s;=1 otherwise.) It follows that the limit
lim, _, .[c(n)/b(n)]=1 is already reached to within 5%
for n >ny=10°. This means that one needs at least
strings with a length n > 10% in order to obtain results for
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FIG. 2. The normalized complexity measure c(n)/b(n) vs
the string length n for random 0-1 strings.

¢(n)/b(n) that are independent of n. For n > 10° one
can compare strings of different length and it makes sense
to speak of a complexity per digit. Figure 3 shows that
the computer time I (n) (Ref. 13) needed to analyze a ran-
dom string of length n increases approximately as nZ.
This can be understood crudely by the argument that the
computer program for c (n) has to compare, at most, each
number in the string with the rest of the string in order to
find out which new digit has to be added, i.e., one has ap-
proximately n? elementary operations. For a string of
only zeros or ones [i.e., for ¢(n)=2] the computer time
needed is of course of order n. This means one has
n <I(n)<n? which implies that one can analyze, e.g., on
a Univac 1091 within one minute a string of length
n~10°

Next we analyzed the complexity c(n) of strings
$183 - * 5, generated by the piecewise linear map

x; y1=rx;modl; x;€[0,1] (3)

as a function of the control parameter r which is for this
example related to the Liapunov exponent A via A =logyr.
Again we used s; =1 if x; > x,, [where x,, =(1/n)37_,x;
is the mean value of x;] and s; =0 otherwise. In order to
avoid computational artifacts we added to Eq. (3) a small
random-noise term &, where the &, were homogeneous-
ly distributed in 0 <&, <1 and 0 =10"%. Figure 4 shows
that ¢ (n) increases monotonically with r, i.e., with the
Liapunov exponent A until it saturates at r =2, i.e,
A=log2. This can be understood as follows. For r =1
Eq. (3) is the identity. All x; are equal and we obtain a
string which contains only zeros and therefore has the
complexity ¢ (n)=2.

For r =2 the generated string is just the binary repre-
sentation of the initial point xo which is with probability 1
an irrational number such that the string has the com-
plexity of a random number lim,_, ,c(n)=n /log,n. Be-
tween ¥ =1 and r =2 c(n) increases with r because one
interpolates between ¢ (n)=2 and c¢(n)=n /logyn. Since
n /logyn which is reached at r =2, is already the largest
possible value of c(n), the complexity remains constant
for r > 2.
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FIG. 3. The computer time I (n) needed to calculate the com-
plexity c¢(n) of random strings of length n with (x) A =1 and
(0) h =0.5. The solid line denotes I(n)~n?.
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FIG. 4. The normalized complexity measure c(n)/b(n) vs
the control parameter » =e* for O-1 strings given by the noisy
piecewise linear map.

Figure 5 shows the bifurcation diagram, the Liapunov
exponent and the complexity c(n) as a function of the
control parameter 3 <r <4 for the logistic map

xip1=rx;(1—x;); x; €[0,1] . 4)

The string sys, - - -5, was generated by taking s;=0 if

{Xn}

0.0
Nr)
-1.O

10000)

cirn
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FIG. 5. (a) Attractor; (b) Liapunov exponent; and (c) com-
plexity vs control parameter r for the logistic map.

x; <0.5, s;=1 otherwise, i.e., for superstable fixed points
of the m-fold—iterated Eq. (4) these strings represent just
the Metropolis-Stein-Stein* (MSS) sequences with L« —0
and R<——1. The lengths of the MSS sequences increase
with r as one approaches 7, from below. This is nicely
mirrored by the increasing values of c¢(n). For values
above r =r_, c(n) shows minima at the windows, as ex-
pected and reaches again its largest possible value at r =4
where the Liapunov exponent of the logistic map has also
its maximum.

This means that three different kinds of behavior of
¢ (n) have been found for the logistic map.

(i) For periodic orbits, ¢ (n) reaches a finite value for
large n.

(i) At r =r, c(n) diverges with n, but the normalized
complexity c(n)/b(n), i.e., the complexity per digit goes
to zero.

(iii) For chaotic orbits the normalized complexity
¢ (n)/b (n) asymptotically reaches a finite positive value.

All marginally stable periodic orbits including »r=r
have the Liapunov exponents A=0. However c¢(n) < o
for r <r, and c¢(n)— « for r—r_. This means that the
complexity ¢ is a more precise measure than the Liapunov
exponent for characterizing order or disorder.

IV. PATTERN SELECTION IN SIMPLE
CELLULAR AUTOMATA

In this section we want to investigate the question of
how the selection of spatial patterns is mirrored in the
complexity c(n). We take as simple examples several
one-dimensional, two-state (0,1), nearest-neighbor cellular
automata® and start at time t =0 with random strings.
One would conclude at first sight that pattern selection al-
ways takes place if the complexity ¢ (n)=n /logyn of the
initial spatial string of length n decreases with time be-
cause a random string has maximum complexity and
reduction in complexity means more order, i.e., pattern
formation. However it could happen that the initial value
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FIG. 6. The normalized complexity measure
c(t,n =10000)/b (n) of the 0-1 string given by the CA evolution
with rule 90.
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TABLE I. Summary of the CA results. p,(1) denotes the average fraction of sites with value 1 for 1— « taken from Ref. 5.
Pioo(1) denotes our observed fraction of sites with value 1 for t =100. 4, and /100 denote the normalized entropy calculated from
P (1) and pioo(1), respectively. The results concerning the minimal number of nodes in deterministic finite automata (DFA) represent-
ing regular languages defined by the CA rules are taken from Table 1 of Ref. 9.

Expected Observed Expected Observed Pattern Nodes of minimal DFA
Rule? Figure P(1) Ppioo(1) ho h100 selection t=1 t=2 t=3
18 7 0.25 0.25 0.83 0.83 yes 5 47 143
22 8 0.35 0.35 0.93 0.93 yes (two time 15 280 4506
scales)
90 6 0.5 0.5 1 1 no 1 1 1
122 analog to 7 0.25 0.5 0.83 1 yes 15 179 5080
126 analog to 7 0.25 0.5 0.83 1 yes 3 13 107
150 analog to 6 0.5 0.5 1 1 no 1 1 1

?Reference 5.

c¢(n)=n/logn decreases only to hn/logon with h <1.
That means that the only thing which changes during the
time evolution of the CA is the probability of finding 1 (p
becomes different from 0.5). Otherwise the string remains
completely random, i.e., there is no order within the 1’s
and 0’s. We say that a CA shows pattern selection only if
¢ (n) decreases below klogsn /n, i.e., if the string becomes
ordered (a mere change of p is not enough).

Figures 6—8 show the time evolution of ¢ (n =10*) for
several legal class-3 CA’s. Our observations are summa-
rized in Table I. They agree—with one exception— with
previous results obtained by other methods.®® The excep-
tion is the CA which corresponds to rule 22. It displays
two time scales in the development of ¢ (n). In the first
four time steps ¢ (n) decreases rather rapidly until p takes
the value 0.35, then the decay slows down considerably
(see Fig. 8). This result is new.

Indeed Grassberger!® found that rule 22 shows a totally
different behavior compared to the other legal class-3
two-state CA with nearest-neighbor interaction by map-
ping the CA onto one-dimensional maps. This result con-
cerned the behavior for all times. Wolfram® introduced
an algorithmic complexity (AC) measure to investigate the
time evolution of the complexity of a CA. The AC for
the CA at a specific time is given in terms of the minimal
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FIG. 7. Same as Fig. 6 with rule 18.

graph of the regular language defined by a CA. Because
of the limitation of available computer time Wolfram was
only able to calculate the AC for three time steps.
Grassberger followed this idea and calculated the AC and
a similar measure [the set complexity (SC)] for t =1,2,3.
But this method yielded no evidence for his conjecture
that rule 22 is the most complex among those mentioned
above. Our approach clearly reveals the reason for this.
The difference between rule 22 and the other rules shows
up only if more than four time steps are investigated.

A statistical approach to the investigation of pattern
formation which differs from our approach is to calculate
block entropies, i.e., probabilities for the occurrence of
substrings of specific length in a string. Block entropies
were used in Ref. 8 to define the so-called effective mea-
sure complexity (EMC) denoted C(n). In the case of
dynamical systems block entropies can be viewed as ap-
proximants of the Kolmogorov entropy'® and the EMC
can be understood as measuring how fast these approxi-
mants converge to the Kolmogorov entropy.

Grassberger investigated with the EMC the spatiotem-
poral behavior of some CA’s. For two-state CA’s the
determination of block entropies for spatial, temporal, or
spatiotemporal patterns of length n requires the computa-
tion of 2" probabilities which correspond to the possible
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FIG. 8. Same as Fig. 6 with rule 22.
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FIG. 9 The  normalized complexity measure

c(t,n =10000)/b (n) for spatial strings given by the time evolu-
tion of coupled logistic maps. r =3.62, e=0.1.

configurations of a chain of length #n. Thus the computer
time needed for a calculation of C(n) increases like 2" as
compared to n? for ¢ (n). If the dynamics of the CA does
not generate long-range spatial correlations it is enough to
analyze C(n) for a short substring (with n of the order of
the correlation length) and C(n) can be determined with a
reasonable amount of computer time. But for long corre-
lated strings (n >>1) C(n) becomes difficult to compute
whereas c (n) can still be calculated with reasonable effort.

V. COUPLED LOGISTIC MAPS

Coupled-map lattices provide a convenient tool for in-
vestigating the development of temporally induced spatial
patterns.%” In this section we calculate the time develop-
ment of the spatial complexity ¢ (n) for a one-dimensional
chain of elastically coupled logistic maps:
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FIG. 10. Same as Fig. 9; r =4.0.
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FIG. 11. The spatial autocorrelation function
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n-y i
for n =10.000 coupled logistic maps for four different times.
r=4.0,e=0.1.

fxX)=rx(1—x); x€[0,1]; t,i integers , (5b)

where € measures the strength of the spatial coupling and
r the “strength” of temporal disorder generated by the in-
dividual logistic map. We used chains of length n =10*
with cyclic boundary conditions, and started from a set of
random values for {xo(i)}. In order to reduce x,(i) to
two values we took s,(i)=1 if x,(i) was above the spatial
average X; =(1/n)3" -4 x,(i) and s,(i)=0 otherwise. Fig-
ures 9 and 10 show the time development of c¢(n) for
r =3.62. (i.e., before the last band merging point) and for
r =4 (where the Liapunov exponent of the individual map
has its largest possible value). In both cases ¢ (n =10%)
decreases with time to a stable value. This indicates a
pattern selection process which leads to a stable dynami-

e L 1 LB U

I M,N»‘.WWWHW»M., e ] 12600
M*MMMWMWWVWWW+AM~WN,wwWW,“% t =400

Mwﬂwmmsmwwﬂﬁmwwww t =200

0 200 400 600 800 1000
J

d(j) in arb. units

FIG. 12. The coefficient d; where d;=a; for 1 <j <500 and
dj=—b; for 501<j <1000 of the fast Fourier transform
(=32 _,x(k)e™”?" %,(j)=a;+ib; of n=1000 coupled
logistic maps. Times and parameters are as in Fig. 11.
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cal equilibrium which is probably characterized by a
dynamical kink structure with a conserved number of
kinks.” However the time scale differs in the two cases by
three orders of magnitude. It is important to note that
this pattern selection process leaves no trace at all in more
conventional measures of spatial pattern selection such as
the spatial correlation function or its Fourier transforma-
tion (see Figs. 11 and 12). This shows that ¢ (n) can be
used generally (and not only for CA’s) as a convenient
tool to obtain new results about spatial pattern formation.
But it is, of course, of vital importance to encode the vari-
able (which varies in space and time) efficiently, i.e.,
without loss of important information into a finite alpha-
bet. 16This problem will be considered in a forthcoming pa-
per.

VI. CONCLUSIONS AND DISCUSSION

It has been shown that the complexity measure ¢ (n) al-
lows an analysis of spatiotemporal patterns which indi-
cates (i) whether a dynamical equilibrium state is reached
and what its complexity is as compared to a random pat-
tern, (i1) how this state is reached in the course of time,
and (iii) whether true pattern selection takes place or only
the true source entropy shows up. This analysis concerns
only the pattern in real space and time but not the motion
in phase space, i.e., it tells nothing about the structure of
a possible strange attractor of the system (as do other
methods).

Another complexity measure, the EMC, was proposed
recently by Grassberger. It was discussed briefly in Sec.
III in connection with the characterization of CA’s. Let
us summarize the most important differences to our mea-
sure: EMC works best for “strongly chaotic” systems
with short correlation length and is less suited for an
analysis of long-range patterns. c¢(n) is suited best to
detect order, i.e., pattern selection, in long chains and
does not discriminate very sharply among different
strengths of chaos in short chains.

It should also be noted that it is easier to compute ¢ (n)
via the algorithm shown in Fig. 1 than to determine the
probabilities which enter C(n). Both methods ‘“suffer”
from the problem that before they can be applied the
measuring variable, space, and time all have to be discre-
tized appropriately. For the case of ¢ (n) we will discuss
the influence of different partitioning on the results, as
well as an extension of our method to higher dimensional
patterns in a future publication.
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