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Stable nonequilibrium Fulde-Ferrell-Larkin-Ovchinnikov state in a spin-imbalanced
driven-dissipative Fermi gas loaded on a three-dimensional cubic optical lattice

Taira Kawamura ,1,* Daichi Kagamihara ,2 and Yoji Ohashi 1

1Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
2Department of Physics, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan

(Received 15 May 2023; accepted 19 July 2023; published 31 July 2023)

We theoretically investigate a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) type superfluid phase transition in a
driven-dissipative two-component Fermi gas. The system is assumed to be in the nonequilibrium steady state,
which is tuned by adjusting the chemical potential difference between two reservoirs that are coupled with
the system. Including pairing fluctuations by extending the strong-coupling theory developed in the thermal-
equilibrium state by Nozières and Schmitt-Rink to this nonequilibrium case, we show that a nonequilibrium
FFLO (NFFLO) phase transition can be realized without spin imbalance, under the conditions that (1) the two
reservoirs imprint a two-edge structure on the momentum distribution of Fermi atoms and (2) the system is
loaded on a three-dimensional cubic optical lattice. While the two edges work like two Fermi surfaces with
different sizes, the role of the optical lattice is to prevent the NFFLO long-range order from destruction by
NFFLO pairing fluctuations. We also draw the nonequilibrium mean-field phase diagram in terms of the chemical
potential difference between the two reservoirs, a fictitious magnetic field to tune the spin imbalance of the
system, and the environmental temperature of the reservoirs to clarify the relation between the NFFLO state and
the ordinary thermal-equilibrium FFLO state discussed in spin-imbalanced Fermi gases.
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I. INTRODUCTION

The realization of unconventional superfluid states is one
of the most exciting challenges in the current stage of cold
Fermi gas physics. At present, although various non-s-wave
pairing states have been discovered in metallic superconduc-
tivity [1–3], as well as in liquid 3He [4–7], the simplest
isotropic s-wave superfluid state has only been realized in 40K
[8] and 6Li [9–11] Fermi gases. Since the high tunability is an
advantage of ultracold Fermi gases [12–17], once this chal-
lenge is achieved, one would be able to examine its various
superfluid properties in a wide parameter region. Indeed, in
40K and 6Li superfluid Fermi gases, a tunable pairing interac-
tion associated with a Feshbach resonance [12] has enabled
systematic studies about how the weak-coupling Bardeen-
Cooper-Schrieffer (BCS) type superfluid discussed in metallic
superconductivity continuously changes to the Bose-Einstein
condensation (BEC) of tightly bound molecules, with increas-
ing the s-wave interaction strength [18–21].

Among various candidates discussed in cold Fermi gas
physics, the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state
[22–25] is a promising one. This unconventional Fermi super-
fluid is characterized by a spatially oscillating superfluid order
parameter �(r), which is symbolically written as

�(r) = �eiQFF ·r, (1)

where QFF physically describes the center-of-mass momen-
tum of a FFLO Cooper pair. Although the FFLO state was
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originally proposed in the context of metallic superconduc-
tivity under an external magnetic field [22–25], it has also
recently been discussed in ultracold Fermi gases [20,26–30].
Cooper pairs in the FFLO state are formed between Fermi sur-
faces with different sizes as shown in Fig. 1(a), giving QFF �=
0. Recently, the observation of the FFLO state has been re-
ported in several superconducting materials, such as CeCoIn5

[31–33], CeCu2Si2 [34], KFe2As2 [35], FeSe [36,37], and
κ-(BEDT-TTF)2Cu(NCS)2 [38–40]. Thus the realization of
a FFLO superfluid Fermi gas would be important, in order
for cold atom physics to catch up with this recent exciting
progress in condensed-matter physics.

At a glance, ultracold Fermi gases seem suitable for the
FFLO state. (1) Although the FFLO state is known to be
weak against impurity scatterings, one can prepare a very
clean Fermi gas. (2) The splitting of Fermi surfaces between
↑-(pseudo)spin and ↓-(pseudo)spin components can immedi-
ately be prepared in a spin-imbalanced Fermi gas.

However, in spite of these advantages, the realization of the
three-dimensional FFLO superfluid Fermi gas has not been
reported yet. This seems because the current cold Fermi gas
experiments are facing the following two serious difficulties.
(i) In the presence of spin imbalance, the system undergoes
the phase separation into the BCS superfluid region and the
normal-state region of unpaired excess atoms, before reaching
the desired FFLO phase transition [41–43]. (ii) The spatial
isotropy of the gas cloud anomalously enhances FFLO pairing
fluctuations, which completely destroy the FFLO long-range
order, even in three dimensions [44–53].

Regarding these problems, we have recently proposed the
following two ideas [52–54]. For (i), instead of using a
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FIG. 1. (a) Cooper pair in the thermal-equilibrium FFLO state
in a spin-imbalanced Fermi gas. The large (small) colored circle
with the radius pF↑ (pF↓) represents the Fermi surface of the ↑-spin
(↓-spin) component. The dotted line with two small circles at the
ends denotes a FFLO Cooper pair. (b) NFFLO Cooper pairs. The
color intensity schematically describes the particle occupancy in
momentum space and the edges at pL

F and pR
F (where the occupancy

sharply changes) work like two Fermi surfaces with different ra-
dius. In this case, besides the conventional BCS-type Cooper pairs
with zero center-of-mass momentum (dashed lines), the FFLO-type
Cooper pairs (dotted lines) also become possible. In the latter case,
Cooper pairs are formed between an ↑-spin Fermi atom near the edge
at pL

F and a ↓-spin atom near the edge at pR
F , as well as an ↑-spin

atom near the edge at pR
F and an ↓-spin atom near the edge at pL

F.
(c) Particle occupation in the momentum space in a spin-imbalanced
driven dissipative Fermi gas. When we simply call each edge “Fermi
surface,” this system looks as if there are four Fermi surfaces at pL

F↑,
pR

F↑, pL
F↓, and pR

F↓.

spin-imbalanced Fermi gas, we proposed to use a spin-
balanced driven dissipative Fermi gas, being coupled with two
reservoirs as schematically shown in Fig. 2(a) [53]. This is
a nonequilibrium open system, where losses of particles and
energy are continuously compensated by the two reservoirs
[55–58], and is known to exhibit various interesting phe-
nomena that cannot be examined in the thermal equilibrium
state [59–61]. In this nonequilibrium system, we showed that,
under a certain condition, the momentum distribution of Fermi
atoms has a two-edge structure, originating from the chemical
potential difference between the two reservoirs, as illustrated
in Fig. 2(b). These edges work like two “Fermi surfaces”
with different sizes, which enhances the FFLO pair correla-
tion without spin imbalance. Indeed, we showed within the

FIG. 2. (a) Model driven-dissipative two-component (σ =↑,↓)
ultracold Fermi gas with a tunable s-wave pairing interaction −U
(<0). The central main system is coupled with two reservoirs (α =
L, R) in the thermal equilibrium state, having different values of the
Fermi chemical potentials, μL = μ + δμ and μR = μ − δμ. Both
reservoirs are free Fermi gases at the common environment tem-
perature Tenv. �α denotes a tunneling matrix element between the
main system and the α reservoir. When δμ �= 0, the momentum
distribution np,σ of Fermi atoms has two edges around pL

F = √
2mμL

and pR
F = √

2mμR at low temperatures (where m is an atomic mass),
as shown in panel (b). These edges correspond to the Fermi surface
edges illustrated in Fig. 1(b).

nonequilibrium mean-field theory that the FFLO superfluid
state is obtained [62], where Cooper pairs are formed between
Fermi atoms near the two edges, as schematically shown in
Fig. 1(b). However, we also found that the difficulty (ii) also
exists in this nonequilibrium case, so that this desired mean-
field solution is immediately destroyed once FFLO pairing
fluctuations are taken into account [52,53].

For the difficulty (ii), we clarified in a thermal-equilibrium
spin-imbalanced Fermi gas that the destruction of the FFLO
long-range order by FFLO pairing fluctuations can be
avoided, when the spatial isotropy of the gas cloud is removed
by loading the system on a three-dimensional cubic optical
lattice [54]. However, we also found that, as far as we deal
with a spin-imbalanced Fermi gas, the stabilized FFLO state
competes with the above-mentioned phase separation, so that
careful parameter tuning is still needed.

In this paper, by combining these two ideas, we explore a
possible route to reach the FFLO superfluid phase transition
in ultracold Fermi gases, without facing the phase separation,
as well as the destruction by FFLO pairing fluctuations. For
this purpose, we again consider the model driven-dissipative
two-component Fermi gas shown in Fig. 2(a), but this time
we impose a three-dimensional optical lattice potential to
the system. To include pairing fluctuations, we extend the
strong-coupling theory developed in the thermal-equilibrium
state by Nozières and Schmitt-Rink (NSR) [63] to the case
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when the system is out of equilibrium. Using this, we examine
whether or not the combined two-step structure of the Fermi
momentum distribution with the background optical lattice
can stabilize the nonequilibrium FFLO (NFFLO) state, over-
whelming the above-mentioned difficulties.

We note that the NFFLO state discussed in this paper
is, strictly speaking, somehow different from the ordinary
thermal-equilibrium FFLO state in the spin-imbalanced sys-
tem: as illustrated in Fig. 1(a), the ordinary FFLO Cooper
pairs are formed between ↑-spin particles near a larger Fermi
surface and ↓-spin particles near a smaller one. In the NFFLO
state, on the other hand, since the momentum distribution of
each spin component has two edges [see Fig. 1(b)], Cooper
pairs are formed between not only ↑-spin particles near a
larger Fermi surface edge and ↓-spin particles near a smaller
Fermi surface edge, but also ↑-spin particles near the smaller
Fermi surface edge and ↓-spin particles near the larger Fermi
surface edge.

We also examine how these two kinds of FFLO states
are related to each other, by considering the case with spin
imbalance. In the thermal-equilibrium state, the spin imbal-
ance causes the so-called Zeeman splitting between the ↑-spin
and ↓-spin Fermi surfaces. When the system becomes out
of equilibrium by adjusting the chemical potential difference
between the two reservoirs, the spin imbalance further splits
each edge structure in the momentum distribution into two,
so that the system looks as if there are four Fermi surfaces
[see Fig. 1(c)]. Including these “multiple Fermi surfaces”
within the framework of the nonequilibrium mean-field BCS
theory, we draw a superfluid phase diagram with respect to the
environmental temperature, the chemical potential difference,
and a fictitious magnetic field to tune the spin imbalance.

Before ending this section, we quickly summarize recent
progress in the driven-dissipative system. Recent experimen-
tal progress has enabled us to examine not only classical, but
also quantum many-body driven-dissipative systems, such as
exciton polaritons [64–66], superconducting circuits [67,68],
and optical cavities [69,70], as well as ultracold atomic gases
[13–17]. At present, the same driven-dissipative ultracold
Fermi gas as the model shown in Fig. 2(a) has not been
realized; the realization would be possible within the current
experimental technology by extending the recent transport
experiment on a 6Li Fermi gas in a two-terminal configuration
[71–75] or employing a tilted triple-well optical trap [76–78].
For a more detailed experimental proposal, see Ref. [62].

This paper is organized as follows. In Sec. II, we ex-
plain how to extend the mean-field BCS theory, as well as
the strong-coupling NSR theory, developed in the thermal
equilibrium state to the nonequilibrium steady state of a
driven-dissipative Fermi gas. In this extension, we take into
account the effects of a background optical lattice, as well as
spin imbalance. Using these theories, we examine the NFFLO
phase transition and effects of pairing fluctuations in Sec. III.
We also show how the optical lattice stabilizes the NFFLO
long-range order there. In Sec. IV. we consider a driven-
dissipative lattice Fermi gas with spin imbalance. In the phase
diagram with respect to the environmental temperature, the
chemical potential difference between the reservoirs, and a
fictitious magnetic field to adjust the spin imbalance, we iden-
tify the region where the nonequilibrium BCS, NFFLO, and

ordinary FFLO states appear. Throughout this paper, we set
h̄ = kB = 1 and the system volume V is taken to be unity, for
simplicity.

II. FORMULATION

A. Model driven-dissipative lattice Fermi gas

The model driven-dissipative nonequilibrium Fermi gas in
Fig. 2(a) is described by the Hamiltonian

H = Hsys + Henv + Hmix, (2)

where

Hsys =
∑
k,σ

εka†
k,σ

ak,σ

− U
∑
k,k′,q

a†
k+q/2,↑a†

−k+q/2,↓a−k′+q/2,↓ak′+q/2,↑, (3)

Henv =
∑

α=L,R

∑
p,σ

ξα
p cα†

p,σ cα
p,σ , (4)

Hmix =
∑

α=L,R

Nt∑
l,m=1

∑
p,k,σ

[eiμα,σ t�αcα†
p,σ ak,σ e−ip·Rα

m eik·rl + H.c.].

(5)

Among the three, the attractive Hubbard Hamiltonian Hsys

in Eq. (3) describes the main system, consisting of a two-
component Fermi gas. This main system is loaded on a
three-dimensional cubic optical lattice, in order to remove
the spatial isotropy from the original gas system [54]. ak,σ

describes a Fermi atom with momentum k and pseudospin
σ =↑,↓, which describe two atomic hyperfine states con-
tributing to the Cooper-pair formation. The kinetic energy εk

of this lattice fermion has the form

εk = − 2t
∑

j=x,y,z

[cos(k j ) − 1]

− 4t ′[cos(kx ) cos(ky)

+ cos(ky) cos(kz ) + cos(kz ) cos(kx ) − 3], (6)

where the lattice constant is taken to be unity, for simplicity. t
and t ′ are the nearest-neighbor and the next-nearest-neighbor
hopping parameters, respectively. The on-site s-wave pairing
interaction −U (< 0) in Eq. (3) is assumed to be tunable by
adjusting the threshold energy of a Feshbach resonance [12].

Henv in Eq. (4) describes the left (α = L) and right (α = R)
reservoirs in Fig. 2(a). Here, cα

p,σ is the annihilation operator
of a Fermi atom in the α reservoir, with the kinetic energy
ξα

p = p2/(2m) − ωα (where m is an atomic mass). Each reser-
voir is assumed to be a huge free Fermi gas compared to the
main system (which is satisfied by setting ωα to be much
larger than the bandwidth of the main system) and is in the
thermal equilibrium state at the common environmental tem-
perature Tenv. Thus the particle occupation in each reservoir
obeys the ordinary Fermi distribution function,

f (ξα
k ) = 1

eξα
k /Tenv + 1

. (7)

We briefly note that, since the main system is out of equilib-
rium, the temperature is not well defined there. Thus, in this
paper, we use Tenv as the temperature parameter in considering
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FIG. 3. Energy band in the main system, as well as those in the
left and right reservoirs. The energy is commonly measured from
the bottom (εk = 0) of the band in the main system. −ωα gives the
bottom of the energy band in the α reservoir. In the α reservoir at
Tenv = 0, the σ -spin band is filled up to the Fermi chemical potential
μα,σ , given in Eqs. (8) and (9). We note that, when the reservoirs are
spin imbalanced (h �= 0), the main system is also spin imbalanced.

the superfluid phase transition of the nonequilibrium main
system.

The system-reservoir coupling is described by the Hamil-
tonian Hmix in Eq. (5), where �α=L,R is a tunneling matrix
element between the main system and the α reservoir. For
simplicity, we set �L = �R = � in the following discussions.
In Eq. (5), the particle tunneling is assumed to occur between
ith lattice site at ri and randomly distributing spatial positions
Rα

j in the α reservoir (where i, j = 1, . . . , Nt � 1). Although
the discrete translational symmetry associated with the back-
ground optical lattice is broken by these spatially random
tunnelings, this symmetry property is recovered by taking the
spatial average over the tunneling positions [53,56–58,62,79].
As discussed in Ref. [62], recent two-terminal experiments
in cold atom physics [71–75] may effectively be regarded as
spatially uniform systems. The random tunnelings assumed
in our model are a theoretical trick to mimic such tunneling
processes [53,62].

In Eq. (5), the factor exp (iμα,σ t ) is introduced in order
to describe the situation that the energy band of the σ -spin
component in the α reservoir is filled up to the Fermi chemical
potential μα,σ at Tenv = 0 [53,62] (see Fig. 3). Thus, when we
set μα,↑ �= μα,↓, the main system is in the spin-imbalanced
state. For later convenience, we write μα,σ as

μL,σ = μ + σh + δμ ≡ μσ + δμ, (8)

μR,σ = μ + σh − δμ ≡ μσ − δμ. (9)

Here, h is a fictitious magnetic field to tune the spin imbalance.
δμ is half the chemical potential difference between the two
reservoirs, which makes the main system out of equilibrium.
In particular, this paper focuses on the nonequilibrium steady
state, where the magnitude of the tunneling current from the
left reservoir to the main system is equal to that from the main
system to the right reservoir. We also impose the condition
that the main system has no net current. (Of course, Fermi

FIG. 4. (a) Dyson equation for the 2 × 2 matrix single-particle
nonequilibrium Green’s function ĜNMF,σ (double solid line) in the
main system. The self-energy �̂NMF,σ describes effects of the pair-
ing interaction −U (wavy line) within the NMF level. The thick
solid line denotes Ĝenv,σ , which obeys the other Dyson equation in
panel (b). The self-energy �̂env,σ involves effects of system-reservoir
couplings within the second-order Born approximation. In panel (b),
Green’s functions Ĝ0,σ and D̂α

0,σ , respectively, describe free lattice
fermions in the main system and a free Fermi gas in the α reservoir.

atoms flow across the junctions between the reservoirs and
the main system.)

B. Nonequilibrium mean-field (NMF) theory

We first deal with the model Hamiltonian in Eq. (2) within
the nonequilibrium mean-field (NMF) level. Effects of pairing
fluctuations are separately discussed in Sec. II C. To construct
the NMF theory, we conveniently introduce the 2 × 2 matrix
single-particle nonequilibrium Green’s function [83–86],

ĜNMF,σ (k, ω) =
(

GR
NMF,σ (k, ω) GA

NMF,σ (k, ω)
0 GK

NMF,σ (k, ω)

)
, (10)

where the superscripts “R,” “A,” and “K” represent the re-
tarded, advanced, and Keldysh components, respectively. This
NMF Green’s function obeys the Dyson equation, which is
diagrammatically described as Fig. 4(a). The expression for
this equation is given by

ĜNMF,σ (k, ω) = Ĝenv,σ (k, ω)

+ Ĝenv,σ (k, ω)�̂NMF,σ (k, ω)ĜNMF,σ (k, ω).
(11)

In Eq. (11), the 2 × 2 matrix self-energy �̂NMF,σ (k, ω) has the
form

�̂NMF,σ (k, ω) =
(

�R
NMF,σ (k, ω) �K

NMF,σ (k, ω)
0 �A

NMF,σ (k, ω)

)

= UnNMF,−σ τ̂0. (12)

Here, τ̂0 is the 2 × 2 unit matrix acting on the Keldysh space
and

nNMF,−σ = −i
∑

k

∫ ∞

−∞

dω

2π
G<

NMF,−σ (k, ω) (13)

is the filling fraction of Fermi atoms at each lattice site in the
main system (where “−σ” means the opposite component to
σ ) [84–86]. In Eq. (13), the lesser Green’s function G<

NMF,σ is
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related to GR,A,K
NMF,σ as

G<
NMF,σ (k, ω) = 1

2

[ − GR
NMF,σ (k, ω)

+ GA
NMF,σ (k, ω) + GK

NMF,σ (k, ω)
]
. (14)

The Green’s function Ĝenv,σ (k, ω) in Eq. (11) involves
effects of the system-reservoir couplings �α=L,R (= �) and
obeys the other Dyson equation, which is diagrammatically
drawn as Fig. 4(b). Taking the spatial average over the tun-
neling positions rl and Rα

m to recover the discrete translational
symmetry of the cubic optical lattice [53,62], one finds that
the Dyson equation for Ĝenv,σ (k, ω) can be written as

Ĝenv,σ (k, ω)

= Ĝ0(k, ω) + Ĝ0(k, ω)�̂env,σ (k, ω)Ĝenv,σ (k, ω), (15)

where the self-energy �̂env,σ (k, ω) describes effects of the
system-reservoir couplings. Within the second-order Born ap-
proximation, we have [53,62,87]

�̂env,σ (k, ω)

=
(−2iγ −4iγ [1 − f (ω − μL,σ ) − f (ω − μR,σ )]

0 2iγ

)
.

(16)

Here, γ = πN2
t |�|2ρ works as the quasiparticle damping rate

due to the system-reservoir couplings, where ρ is the single-
particle density of states in the reservoirs. [For the definition
of Nt and �, see the paragraph below Eq. (7).] In obtaining
Eq. (16), we have ignored the α (= L, R) dependence of the
density of states ρ, for simplicity. We have also employed the
so-called wide-band limit approximation [85], which ignores
the ω dependence of ρ.

In the Dyson equation (15),

Ĝ0(k, ω) =
(

1
ω+iδ−εk

−2π iδ(ω − εk)[1 − 2 fini(ω)]
0 1

ω−iδ−εk

)

(17)

is the bare Green’s function in the assumed thermal equi-
librium initial state at t = −∞, where the system-reservoir
couplings �, as well as the pairing interaction −U , were
absent. In Eq. (17), fini(ω) = 1/[eω/Tini + 1] is the Fermi dis-
tribution function at the initial temperature Tini in the main
system and δ is an infinitesimally small positive number.

We briefly note that the bare Green’s function D̂0,α (k, ω)
in the α reservoir, which appears in Fig. 4(b), has the same
form as Ĝ0(k, ω) in Eq. (17) where the single-particle energy
εk and the initial temperature Tini are replaced by ξα

p and Tenv,
respectively.

Solving the Dyson equation (15), one obtains

Ĝenv,σ (k, ω) =
(

1
ω−εk+2iγ

−4iγ [1− f (ω−μL,σ )− f (ω−μR,σ )]
[ω−εk]2+4γ 2

0 1
ω−εk−2iγ

)
.

(18)

Here, we emphasize that the Fermi distribution function
f (ω − μα,σ ) in Eq. (18) has nothing to do with the “ini-
tial” Fermi distribution function fini(ω) appearing in the bare
Green’s function at t = −∞ given in Eq. (17). This means

that Ĝenv,σ no longer has the initial memory of the system at
t = −∞, which is wiped out by the couplings with the two
reservoirs [85].

Substituting Eqs. (12) and (18) into the Dyson equa-
tion (11), we have

ĜNMF,σ (k, ω) =
(

1
ω−ε̃k,σ +2iγ

−4iγ [1− f (ω−μL,σ )− f (ω−μR,σ )]
[ω−ε̃k,σ ]2+4γ 2

0 1
ω−ε̃k,σ −2iγ

)
,

(19)

where the kinetic energy ε̃k,σ involves the Hartree energy as

ε̃k,σ = εk − UnNMF,−σ . (20)

The expression for the filling fraction nNMF,σ of Fermi atoms
in the main system is obtained from Eqs. (13), (14), and (19)
as

nNMF,σ =
∑

k

∫ ∞

−∞

dω

2π

4γ

[ω − ε̃k,σ ]2 + 4γ 2

× [ f (ω − μL,σ ) + f (ω − μR,σ )]

≡
∑

k

f neq
k,σ

. (21)

To grasp how the momentum distribution f neq
k,σ

in the main
system is “engineered” by the two reservoirs (α = L, R), it is
convenient to take the small damping limit γ → 0, giving

f neq
k,σ

|γ→+0 = 1
2 [ f (ε̃k,σ − μσ − δμ) + f (ε̃k,σ − μσ + δμ)].

(22)

Equation (22) is found to exhibit two edges around the mo-
menta kR

Fσ and kL
Fσ , which satisfy, respectively,

ε̃kR
Fσ ,σ = μσ − δμ, (23)

ε̃kL
Fσ ,σ = μσ + δμ. (24)

As mentioned previously, these edges function like two Fermi
surfaces with different sizes [62].

FIG. 5. (a) Nonequilibrium 2 × 2 particle-particle scattering ma-
trix �̂ in Keldysh space. The double solid line is ĜNMF,σ given
in Eq. (19). (b) Truncated Dyson equation giving the NNSR
single-particle Green’s function ĜNNSR,σ (thick solid line) in the
main system. The self-energy �̂NNSR,σ describes effects of pairing
fluctuations.
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In the NMF scheme, we obtain the environmental temper-
ature T c

env at which the main system experiences the superfluid
phase transition. For this purpose, we extend the theory de-
veloped by Kadanoff and Martin (KM) [88,89] to the present
model. In the KM theory, the key is the pole (≡ νq) of the
retarded particle-particle scattering matrix �R(q, ν): in the
normal phase (Tenv > T c

env), �R(q, ν) has a complex pole in
the lower-half complex plain (Im[νq] < 0), which physically
means the stability of the system, because pairing fluctuations
decay in time. When Tenv < T c

env, on the other hand, a pole
appears in the upper half plain (Im[νq] > 0) (see Fig. 4 in
Ref. [53]), indicating the instability of the system against
pairing fluctuations that exponentially grow in time. Thus
the superfluid phase transition is determined from the “KM
condition” that �R(q, ν) has a real pole [53,88,89].

The particle-particle scattering matrix �̂(q, ν) in the
NMF theory is described by the ladder-type diagrams
shown in Fig. 5(a) [53]. Summing up these diagrams, one
has [53]

�̂(q, ν) =
(

�R(q, ν) �K(q, ν)
0 �A(q, ν)

)

=
(

−U
1+U�R (q,ν)

U 2�K (q,ν)
[1+U�R (q,ν)][1+U�A (q,ν)]

0 −U
1+U�A(q,ν)

)
, (25)

where

�R(q, ν) = [�A(q, ν)]∗ = i

2

∑
k

∫ ∞

−∞

dω

2π

[
GR

NMF,↑(k + q/2, ω + ν)GK
NMF,↓(−k + q/2,−ω)

+ GK
NMF,↑(k + q/2, ω + ν)GR

NMF,↓(−k + q/2,−ω)
]
, (26)

�K(q, ν) = i

2

∑
k

∫ ∞

−∞

dω

2π

[
GR

NMF,↑(k + q/2, ω + ν)GR
NMF,↓(−k + q/2,−ω)

+ GA
NMF,↑(k + q/2, ω + ν)GA

NMF,↓(−k + q/2,−ω) + GK
NMF,↑(k + q/2, ω + ν)GK

NMF,↓(−k + q/2,−ω)
]

(27)

are the pair-correlation functions. From the retarded component of Eq. (25), the pole of �R(q, ν) is obtained by solving

1 + U�R(q, νq) = 0. (28)

Since �R(q, ν) in Eq. (26) is a complex function, the pole equation (28) actually consists of two equations, that is,
1 + U Re[�R(q, νq)] = 0 and Im[�R(q, νq)] = 0. Between the two, the latter reads

0 =
∑

α=L,R

∑
k

∫ ∞

−∞

dω

2π

tanh
(ω+νq/2−μα,↑

2T c
env

) + tanh
(−ω+νq/2−μα,↓

2T c
env

)
[(ω − νq/2 + ε̃k+q/2,↑)2 + 4γ 2][(ω + νq/2 − ε̃−k+q/2,↓)2 + 4γ 2]

. (29)

One finds that Eq. (29) is satisfied only when νq = 2μ. Substituting this into the real part of the pole equation (28), we obtain
the T c

env equation [90],

1 = Uγ
∑

k

∫ ∞

−∞

dω

2π

[2ω + ε̃k+q/2,↑ − ε̃−k+q/2,↓ − 2h]
[

tanh
(

ω−δμ

2T c
env

) + tanh
(

ω−δμ

2T c
env

)]
[(ω + ε̃k+q/2,↑ − μ↑)2 + 4γ 2][(ω − ε̃k+q/2,↓ + μ↓)2 + 4γ 2]

. (30)

In the NMF theory, one solves the T c
env equation (30), to-

gether with the equation for the filling fraction in Eq. (21),
to self-consistently determine T c

env and μ(T c
env) for a given

parameter set (δμ, n↑, n↓). In the T c
env equation (30), the mo-

mentum q is chosen so as to obtain the highest T c
env. The

self-consistent solution with QFF �= 0 (QFF is the optimal
value of q) describes the superfluid phase transition into the
spatially nonuniform NFFLO state, where each Cooper pair
has the nonzero center-of-mass momentum QFF. On the other
hand, the uniform solution with QFF = 0 means the nonequi-
librium BCS (NBCS) state.

C. Nonequilibrium Nozières-Schmitt-Rink (NNSR) theory

We now include the effects of pairing fluctuations by
extending the strong-coupling theory developed in the

thermal equilibrium state by Nozières and Schmitt-Rink
(NSR) [63] to the case when the system is out of equi-
librium. In this nonequilibrium NSR (NNSR) scheme, the
single-particle Green’s function in the main system is given
by

ĜNNSR,σ (k, ω) =
(

GR
NNSR,σ (k, ω) GA

NNSR,σ (k, ω)
0 GK

NNSR,σ (k, ω)

)

= ĜNMF,σ (k, ω) + ĜNMF,σ (k, ω)�̂NNSR,σ

× (k, ω)ĜNMF,σ (k, ω), (31)

where ĜNMF,σ is given by Eq. (19). Here, the NNSR self-
energy,

�̂NNSR,σ (k, ω) =
(

�R
NNSR,σ (k, ω) �A

NNSR,σ (k, ω)
0 �K

NNSR,σ (k, ω)

)
, (32)
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is obtained from the evaluation of the second diagram in Fig. 5(b), which gives

�R
NNSR,σ (k, ω) = [

�A
NNSR,σ (k, ω)

]∗ = − i

2

∑
q

∫ ∞

−∞

dν

2π

[
�R(q, ν)GK

NMF,−σ (q − k, ν − ω)

+ �K(q, ν)GA
NMF,−σ (q − k, ν − ω)

]
, (33)

�K
NNSR,σ (k, ω) = − i

2

∑
q

∫ ∞

−∞

dν

2π

[
�A(q, ν)GR

NMF,−σ (q − k, ν − ω)

+ �R(q, ν)GA
NMF,−σ (q − k, ν − ω) + �K(q, ν)GK

NMF,−σ (q − k, ν − ω)
]
, (34)

where the particle-particle scattering matrices �R,A,K(q, ν) are given in Eq. (25).
As usual, the Fermi filling fraction nσ in the main system is obtained from the Keldysh component GK

NNSR,σ (k, ω) in Eq. (31):

nσ = i

2

∑
k

∫ ∞

−∞

dω

2π
GK

NNSR,σ (k, ω) − 1

2

= nNMF,σ + i

2

∑
k

∫ ∞

−∞

dω

2π
[ĜNMF,σ (k, ω)�̂NNSR,σ (k, ω)ĜNMF,σ (k, ω)]K

≡ nNMF,σ + nFL,σ . (35)

Here, nNMF,σ is given in Eq. (21), nFL,σ is the NNSR strong-
coupling correction to the filling fraction, and

[ÂB̂Ĉ]K = ARBRCK + ARBKCA + AKBACA. (36)

As the ordinary (thermal equilibrium) NSR theory [63],
the NNSR theory also solves the T c

env equation (30) that the
NMF theory uses, together with Eq. (35), to self-consistently
determine the superfluid phase transition T c

env, μ(T c
env), and

QFF.
Here, we comment on the values of parameters in our

numerical calculations. (1) For the filling fraction nσ , we
set nσ < 0.5. This is because, although fluctuations in the
particle-hole channel are known to become strong near the
half filling (nσ = 0.5) [92], the NNSR theory only includes
fluctuations in the Cooper channel. (2) For the interaction
strength −U , we deal with the weak-coupling regime, be-
cause the (N)FFLO state requires sharp Fermi edges. (3) The
damping rate is chosen so as to satisfy γ /(6t ) � 0.005, due to
computational problems, the reason for which is explained in
Appendix A.

III. STABILIZATION OF THE NFFLO STATE IN
SPIN-BALANCED DRIVEN-DISSIPATIVE

LATTICE FERMI GAS

In this section, we deal with the spin-balanced case, by
setting h = 0 in Eqs. (8) and (9). The spin-imbalanced case
(h �= 0) is separately discussed in Sec. IV.

The upper panels in Fig. 6 show T c
env in a driven-dissipative

spin-balanced Fermi gas, loaded on the cubic optical lattice.
In this figure, we distinguish between the NBCS and NFFLO
phase transitions from whether |QFF| equals zero or not in the
lower panels in Fig. 6. In contrast to the case with no optical
lattice (where the mean-field NFFLO solution is completely
destroyed by NFFLO pairing fluctuations [52,53], as shown
in Fig. 7), Figs. 6(a1) and 6(b1) show that the NFFLO long-
range order survives against pairing fluctuations in the lattice

system. (We summarize the NMF and the NNSR theories in
the absence of the optical lattice in Appendix B.)

FIG. 6. Calculated T c
env (upper panels) and |QFF| (lower panels) in

a driven-dissipative spin-balanced lattice Fermi gas, as functions of
the chemical potential bias δμ and the damping rate γ . (a) NMF the-
ory. (b) NNSR theory. The solid (dashed) line is the phase boundary
between the normal state and the NBCS (NFFLO) state with |QFF| =
0 (|QFF| > 0). We take t ′ = 0, n = n↑ + n↓ = 0.3, and U/(6t ) = 0.8.
(Note that 6t is the bandwidth in the main system, when t ′ = 0.) The
thermal equilibrium limit is at δμ = 0 and γ → +0.
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FIG. 7. Same plots as the upper panels in Fig. 6, in the case
when the optical lattice is absent. We set (pFas )−1 = −0.6, where
as is the s-wave scattering length. pF and εF as εF = p2

F/(2m) are,
respectively, the Fermi momentum and the Fermi energy of a free
Fermi gas with the particle number N = p3

F/(3π 2). In panel (b), T c
env

is seen to exhibit reentrant behavior, due to the complete destruction
of the NFFLO long-range order by anomalously enhanced NFFLO
pairing fluctuations [52,53].

We find from the comparison of Fig. 6(a1) with Fig. 6(b1)
that pairing fluctuations tend to decrease T c

env. However, apart
from this difference, these figures also indicate that, once the
NFFLO state is stabilized by the optical lattice, the NMF the-
ory (which completely ignores pairing fluctuations) already
captures the essential behavior of T c

env as a function of δμ and
γ , at least when the filling fraction equals n = n↑ + n↓ = 0.3.
Indeed, as an example, when we extract T c

env at γ /(6t ) =
0.005 from Figs. 6(a1) and 6(b1), the NNSR result is found
to be very similar to the NMF result, as shown in Fig. 8. Fur-
thermore, when Fig. 8 is replotted with respect to the scaled
variables T c

env/T c0
env and δμ/T c0

env (where T c0
env is the superfluid

phase-transition temperature at δμ = 0), the scaled NMF and
NFFLO results almost coincide with each other, as shown

FIG. 8. Calculated T c
env as a function of δμ. We set t ′ = 0, n =

n↑ + n↓ = 0.3, γ /(6t ) = 0.005, and U/(6t ) = 0.8. In each NMF
and NNSR result, the solid circle is the boundary between the NBCS
and NFFLO phase transitions. The inset shows the results when T c

env

and δμ are normalized by the superfluid phase transition temperature
T c0

env at δμ = 0.

FIG. 9. (a1) Calculated intensity −Re[�R(q = (qx, qy, 0), ν =
2μ)] of the real part of the retarded particle-particle scattering at the
solid square in (a2), in the absence of optical lattice. (a3) Positions of
two edges imprinted on the momentum distribution of Fermi atoms
by the two reservoirs, at |pα

F | = √
2mμα = √

2m[μ ± δμ]. |Q| in
(a1) is just related to the size difference between the two edge circles
shown in (a3). In calculating (a1)–(a3), we set (pFas )−1 = −0.6 and
γ /εF = 0.02. Panels (b1)–(b3) show the case in the presence of
the three-dimensional optical lattice: (b1) is the same plot as (a1)
at the solid square in (b2). Panel (b3) is the same plot as (a3),
determined from Eqs. (23) and (24). Q+

x in (b1) is related to the size
difference between the two Fermi surface edges shown in (b3). We
set U/(6t ) = 0.8, γ /(6t ) = 0.01, t ′ = 0, and n = 0.3 in (b1)–(b3).

in the inset in Fig. 8. That is, although pairing fluctuations
remarkably damage the mean-field NFFLO solution in the
absence of the optical lattice, their effects are not so crucial
in a lattice Fermi gas, at least when n = 0.3.

Figure 9(a1) shows the intensity −Re[�R(q, ν = 2μ)] of
the retarded particle-particle scattering matrix near the re-
gion where the reentrant phenomenon of the NBCS phase
transition occurs [solid square in Fig. 9(a2)], in the absence
of the optical lattice. Since this quantity physically describes
pairing fluctuations with the center-of-mass momentum q, the
fact of the large intensity around |q| = |Q| �= 0 means the
enhancement of NFFLO pairing fluctuations there. We also
point out that |Q| is directly related to the size difference
between two Fermi surface edges that are imprinted on the
momentum distribution of Fermi atoms by the two reservoirs
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[see Fig. 9(a3)]. This means that these edges really work
like two Fermi surfaces with different sizes, as in the spin-
imbalanced case.

Figure 9(b1) shows the results in the presence of the three-
dimensional cubic optical lattice, which is quite different from
Fig. 9(a1). [Figure 9(b1) is obtained at the solid square in
Fig. 9(b2)]. Since the spatial isotropy is broken by the optical
lattice, the ring structure seen in Fig. 9(a1) is not obtained,
but the −Re[�R(q, ν = 2μ)] exhibits four peaks, reflecting
the fourfold rotational symmetry of the cubic lattice. However,
for example, the peak at q = Q+

x in Fig. 9(b1) is still related
to the size difference between the two Fermi surface edges,
as shown in Fig. 9(b3). That is, these edges also work like

two Fermi surfaces, to enhance NFFLO pairing fluctuations
around q = Q+

x , as well as the other equivalent peaks in
Fig. 9(b1).

The above-mentioned difference seen in Figs. 9(a1) and
9(b1) makes a significant difference in the NNSR fluctuation
correction terms in Eqs. (35) and (B11): in the presence of
the optical lattice, noting that the particle-particle scatter-
ing matrix �̂(q, ν) in Eq. (25) is enhanced around (q, ν) =
(Qη

j , 2μ) near the NFFLO phase transition [where Qη=±
j=x,y,z

represent the four peak positions in Fig. 9(b1), as well as
the other two peak positions existing along the qz axis],
we approximate the self-energy in Eqs. (33) and (34) to,
near T c

env,

�̂NNSR,σ (k, ω) � −�2
pg

∑
η=±

∑
j=x,y,z

(
GA

NMF,−σ

(
Qη

j − k, 2μ − ω
)

GK
NMF,−σ

(
Qη

j − k, 2μ − ω
)

0 GR
NMF,−σ

(
Qη

j − k, 2μ − ω
)
)

= �2
pg

∑
η=±

∑
j=x,y,z

Ĝ∗
NMF,−σ

(
Qη

j − k, 2μ − ω
)
. (37)

Here, the so-called pseudogap parameter,

�2
pg = i

2

∑
q

∫ ∞

−∞

dν

2π
�K(q, ν), (38)

physically describes the strength of pairing fluctuations [18,93]. Evaluating the fluctuation correction nFL,σ involved in Eq. (35)
by using Eq. (37), one has

nFL,σ = i�2
pg

2

∑
η=±

∑
j=x,y,z

∑
k

∫ ∞

−∞

dω

2π

[
ĜNMF,σ (k, ω)Ĝ∗

NMF,−σ

(
Qη

j − k, 2μ − ω
)
ĜNMF,σ (k, ω)

]K
. (39)

To evaluate the pseudogap parameter �2
pg, we approximate �R(q, ν) to

�R(q, ν) �
∑
η=±

∑
j=x,y,z

−U

C
[
q − Qη

j

]2 − iλ[ν − 2μ]
, (40)

where we have assumed that T c
env satisfies Eq. (30) and

C = U

2
∇2

q�R(q, 2μ)
∣∣
q=Q±

j
, (41)

λ = πU

8Tenv
N (μ)sech2

(
δμ

2Tenv

)
, (42)

with N (μ) being the density of states in the main system at ω = μ. In obtaining Eq. (40), for simplicity, we have taken the limit
γ → +0 in �R(q, ν) in Eq. (26), giving

lim
γ→+0

�R(q, ν) =
∑

p

1 − f (ε̃p+q/2,↑ − μ − δμ) − f (ε̃p−q/2,↓ − μ + δμ)

ν+ − ε̃p+q/2,↑ − ε̃p−q/2,↓
, (43)

and have expanded it around (q, ν) = (Qη=±
j=x,y,z, 2μ). Using Eqs. (25) and (40), one reaches

�2
pg = i

2

∑
q

∫ ∞

−∞

dν

2π
|�R(q, ν)|2�K(q, ν)

�
∑
η=±

∑
j=x,y,z

iU 2�K
(
Qη

j , 2μ
)

2

∑
q

∫ ∞

−∞

dν

2π

1

C2
[
q − Qη

j

]4 + λ2[ν − 2μ]2

=
∑
η=±

∑
j=x,y,z

iU 2�K
(
Qη

j , 2μ
)

4λC

∑
q

1[
q − Qη

j

]2 . (44)
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FIG. 10. Calculated T c
env (upper panels) and |QFF| (lower panels)

in a driven-dissipative ultracold lattice Fermi gas, as functions of
the chemical potential bias δμ and the next nearest neighbor hop-
ping t ′. (a) NMF theory. (b) NNSR theory. The solid circle is the
boundary between the NBCS (solid line) and NFFLO (dashed line)
phase transitions, which is also referred to as the Lifshitz point in
the literature. In the NMF case, the temperature T LP

env at the Lifshitz
point is always located at T LP

env /T c0
env � 0.45, irrespective of the value

of t ′ (at least within the parameter region shown in this figure). In
contrast, T LP

env decreases with increasing t ′ in the NNSR case. We set
U/(6t ) = 0.8, γ /(6t ) = 0.015, and n = 0.3. T c

env is normalized by
the value at δμ = 0 (≡ T c0

env).

In deriving the second line, we have employed the same
approximation as that used in deriving Eq. (37). Replacing
q − Qη

j by q in Eq. (44), one finds that �2
pg converges in three

dimensions, irrespective of the value of Qη
j . This immediately

concludes the convergence of nFL,σ [which is proportional to
�2

pg; see Eq. (39)]. Thus the NNSR coupled equations (30)
and (35) can be satisfied simultaneously at the NFFLO phase
transition (where Qη

j �= 0). We briefly note that the six NFFLO

vectors Qη=±
j=x,y,z have the same magnitude, being equal to |QFF|

in Fig. 6(b2).
A quite different phenomenon occurs in the absence of the

optical lattice: in this spatially isotropic case, when the in-
tensity −Re[�R(q, ν = 2μ)] of the retarded particle-particle
scattering matrix exhibits a ring structure as seen in Fig. 9(a1),
the pseudogap parameter �2

pg can be approximated to

�2
pg � iU 2�K(Q, 2μ)

4λC

∫ qc

0

q2dq

2π2

1

[|q| − |Q|]2
, (45)

where qc is a cutoff momentum. (For the derivation, see
Appendix C.) Comparing Eq. (45) with Eq. (44), the fac-
tor 1/[q − Qη

j ]
2

in the lattice case is now replaced by

1/[|q| − |Q|]2
, reflecting the isotropic edge positions shown in

Fig. 9(a3). Then, the q integration in the pseudogap parameter
�pg in Eq. (45) always diverges as far as Q �= 0, even in three

FIG. 11. Positions of Fermi surface edges (“FSL” and “FSR”)
produced by the two reservoirs for various values of the next-nearest-
neighbor hopping t ′. We take U = 0, n = 0.3, δμ/(6t ) = 0.1, γ →
+0, and kz = 0.

dimensions. This means the divergence of the correction term
NFL,σ in the NNSR number equation (B11). Because of this
singularity, the NNSR coupled equations (B3) and (B11) are
never satisfied simultaneously, which prohibits the NFFLO
phase transition.

We note that the essence of the stabilization mechanism
of the NFFLO state is, strictly speaking, not the detailed
lattice potential itself, but the resulting anisotropy of the Fermi
surface edges shown in Fig. 9(b3). Indeed, as seen in the
left panels in Fig. 10, when one deforms the shape of these
edges to be more spherical by increasing the value of the
next-nearest-neighbor hopping t ′ (see Fig. 11), the NFFLO
region obtained in the NNSR theory shrinks. In particular,
the temperature at the boundary between the NBCS and NF-
FLO phase transition (solid circle in Fig. 10) decreases with
increasing t ′. (We note that the boundary is referred to as
the Lifshitz point in the literature [30,51].) Since the NMF
result is not sensitive to t ′ (see the right panels in Fig. 10),
the suppression of the NFFLO region seen in Fig. 10(a1) is
found to be due to stronger NFFLO pairing fluctuations by
more spherical Fermi surface edges.

At the end of this section, we briefly comment on the fill-
ing dependence of the superfluid phase-transition line: when
we decrease the filling fraction n, one can see the same
phenomenon as the case when increasing the next-nearest-
neighbor hopping t ′. Indeed, as shown in Fig. 12, the decrease
of n suppresses the NFFLO state. This is simply because the
decrease of the filling fraction n weakens the anisotropy of the
Fermi surface, which enhances NFFLO pairing fluctuations.
In this sense, the NFFLO state is more favored for higher
filling cases, where the Fermi surfaces are highly anisotropic.
However, better nesting of the Fermi surfaces would enhance
the charge-density-wave fluctuations near the half filling [92].
The competition with the charge-density-wave state may work
against the stabilization of the desired NFFLO state.
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FIG. 12. Calculated T c
env by the NNSR theory for various values

of the filling fraction n. We set U/(6t ) = 0.8, γ /(6t ) = 0.01, and
t ′ = 0. T c

env is normalized by the value at δμ = 0 (≡ T c0
env).

IV. EFFECTS OF SPIN IMBALANCE: RELATION TO
THERMAL EQUILIBRIUM FFLO STATE

We have shown in Sec. III and in our recent paper [62]
that the removal of the spatial isotropy of a Fermi gas by a
three-dimensional cubic optical lattice is a promising route
to stabilize both the thermal equilibrium and nonequilibrium
FFLO states against pairing fluctuations. In this section, we
examine how these FFLO states are related to each other,
by considering a spin-imbalanced driven-dissipative lattice
Fermi gas, where both the main system and reservoirs are
spin imbalanced. As shown in Fig. 8, once the NFFLO state
is stabilized by the optical lattice, the essential behavior of
the phase-transition temperature T c

env can be captured by the
simpler NMF theory at n = 0.3. Keeping this in mind, in this
section, we treat the spin-imbalanced system at this filling
fraction within the NMF scheme.

Figure 13(a) shows the phase diagram of a driven-
dissipative lattice Fermi gas in the nonequilibrium steady
state, with respect to the environmental temperature Tenv, the
chemical potential bias δμ, and the fictitious magnetic field
h to adjust the spin imbalance of the main system. In this
figure, the Tenv-δμ plane at h = 0 describes the spin-balanced
nonequilibrium steady state discussed in Sec. III, where the
two Fermi surface edges produced by the two reservoirs lead
to the NFFLO phase transition in the region of the large
chemical potential bias δμ. On the other hand, the Tenv-h
plane at δμ = 0 corresponds to the spin-imbalanced thermal
equilibrium state, where the Zeeman splitting of ↑-spin and
↓-spin Fermi surfaces brings about the ordinary FFLO phase
transition in the region of high magnetic field h [22–25].
Except for these limits, the system with δμ �= 0 and h �= 0 has
four Fermi surface like edges in the momentum distribution of
Fermi atoms, as illustrated in Fig. 1(c). To be more correct, for
example, the two edges at FSL and FSR in Fig. 11 (δμ �= 0 and
h = 0), respectively, split into FSL

↑ and FSL
↓, and FSR

↑ and FSR
↓ ,

as shown in Fig. 14(a1). In what follows, we simply call these
four edges Fermi surfaces, unless any confusion may occur.

We first focus on the phase diagram at Tenv = 0, which
is explicitly shown in Fig. 13(b). To see the role of the

FIG. 13. (a) Phase diagram of a driven-dissipative lattice Fermi
gas, with respect to the environmental temperature Tenv, chemical
potential bias δμ, and fictitious magnetic field h. The solid (dashed)
line denotes the NBCS (NFFLO) phase-transition temperature T c

env.
δμc(h) and hc(δμ) are, respectively, the critical chemical potential
bias and the critical magnetic field, above which the superfluid phase
vanishes. The system is in the thermal equilibrium state at δμ = 0,
where the thermal equilibrium BCS and FFLO states are realized,
depending on the magnitude of h. (b) The phase diagram at Tenv = 0.
We set n = 0.3, t ′ = 0, and γ → +0, and the NMF theory is used.

four Fermi surfaces FSL,R
σ=↑,↓, we plot in Fig. 14(b) the

inverse �R(q = (qx, 0, 0), ν = 2μ)−1 of the retarded particle-
particle scattering matrix at the phase boundaries (A1)–(A4)
in Fig. 13(b) [94]. While −Re[�R(q, ν = 2μ)−1] has a single
minimum in the spin-balanced case (h = 0), it has two dips
in the presence of spin imbalance (h �= 0), which physically
means the enhancement of pairing fluctuations around these
dip momenta. (The same enhancement can also be seen in the
−qx direction, as well as ±qy and ±qz directions because of
the fourfold rotational symmetry of the cubic lattice.)

We point out that these enhancements of pairing fluc-
tuations around the dip momenta are directly related to
the nesting property of the four Fermi surfaces FSα=L,R

σ=↑,↓ in
Fig. 14(a1). As an example, we show in Fig. 14(a2) the nesting
vector Q+

1,x between the Fermi surfaces FSL
↓ and FSR

↑ when
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FIG. 14. (a) (a1) Positions of four edges imprinted on the mo-
mentum distribution of Fermi atoms: FSL

↑ (solid line), FSR
↑ (dashed

line), FSL
↓ (dotted line), and FSR

↓ (dashed-dotted line), at the phase
boundary (A4) in Fig. 13(b). These lines are obtained from Eqs. (23)
and (24) at kz = 0. (a2) Nesting vector Q+

1,x between the Fermi
surfaces FSR

↑ and FSL
↓. (a3) Nesting vector Q+

2,x between the Fermi
surfaces FSR

↓ and FSL
↑. Because of the fourfold symmetry of the

background optical lattice, physically equivalent nesting vectors to
Q+

1,x and Q+
2,x also exist in the −x direction, as well as the ±y and

±z directions. (b) Inverse retarded particle-particle scattering matrix
−Re[�R(q = (qx, 0, 0), ν = 2μ)−1], as a function of qx . Each result
is at the phase boundary (A1)–(A4) in Fig. 13(b). When h �= 0,
−Re[�R(q, ν = 2μ)−1] has two minima at the nesting vectors. As
an example, we show the positions of |Q+

1,x| and |Q+
2,x| (> |Q+

1,x|)
in panel (b), where Q+

1,x and Q+
2,x are given in panels (a2) and (a3),

respectively.

h/(6t ) = 0.1. (If we translate FSR
↑ by the momentum Q+

1,x,
FSR

↑ overlaps with FSL
↓.) We see in Fig. 14(b) that the nesting

vector Q+
1,x between FSR

↑ and FSL
↓ just give the smaller dip

momentum of −Re[�R(q, ν = 2μ)−1]. That is, strong pair-
ing fluctuations around Q+

1,x are associated with FFLO-type
Cooper pairings between Fermi atoms near FSR

↑ and FSL
↓. In

the same manner, the larger dip momentum seen in Fig. 14(b)
also equals another nesting vector Q+

2,x between the FSR
↓ and

FSL
↑ shown in Fig. 14(a3). Thus strong pairing fluctuations

around Q+
2,x are found to be associated with Cooper pairings

between Fermi atoms near FSL
↑ and FSR

↓ . We briefly note that
the Fermi surfaces FSα

↑ and FSα
↓ coincide with each other in

the spin-balanced case. Pairing fluctuations around Q+
1,x and

Q+
2,x are then degenerate, so that −Re[�R(q, ν = 2μ)−1] has

a single minimum when h/(6t ) = 0, as shown in Fig. 14(b).
Noting that the T c

env equation (30) is equivalent to the
pole condition for �R(q, ν = 2μ) (KM theory), we find from
Fig. 14(b) that, when h/(6t ) < 0.053, NFFLO superfluid
phase transition is dominated by the Cooper-pair formation
between FSL

↑ and FSR
↓ in Fig. 14(a). When h/(6t ) > 0.053, on

the other hand, the retarded particle-particle scattering matrix
develops a pole at q = Q+

1,x, which means that FSR
↑ and FSL

↓
trigger the NFFLO superfluid instability, instead of FSL

↑ and
FSR

↓ .
This switching of the Fermi surfaces that dominantly con-

tribute to the NFFLO superfluid instability [which occurs at
h/(6t ) = 0.053] is the key to understanding the nonmono-
tonic behavior of the critical chemical potential bias δμc(h)
(above which the NFFLO state no longer exists) as a function
of magnetic field h [see the phase boundary in Fig. 13(b)]:
when h/(6t ) < 0.053, the “Fermi momenta” kL

F↑ and kR
F↓ of

the Fermi surfaces FSL
↑ and FSR

↓ , which dominantly contribute
to the NFFLO Cooper-pair formation, are determined by, re-
spectively,

ε̃kL
F↑,↑ = μ + h + δμ ≡ μ + δμeff , (46)

ε̃kR
F↓,↓ = μ − h − δμ ≡ μ − δμeff . (47)

Here, ε̃k,σ is given in Eq. (20). Because the mismatch of the
two Fermi surfaces is tuned by adjusting δμeff = δμ + h, and
the system near h = 0 is expected to experience the NFFLO
instability when δμeff ∼ δμc(h = 0), one finds that δμc(h)
decreases with increasing h, which explains the behavior of
δμc(h) seen in the low magnetic-field regime in Fig. 13(b).

On the other hand, when h/(6t ) > 0.053, the Fermi mo-
menta kL

F↓ and kR
F↑ of the Fermi surfaces FSL

↓ and FSR
↑ , that

dominantly contribute to the NFFLO phase transition, are
determined by, respectively,

ε̃kL
F↓,↓ = μ − h + δμ ≡ μ + δμeff , (48)

ε̃kR
F↑,↑ = μ + h − δμ ≡ μ − δμeff . (49)

In contrast to the low-field case [t/(6t ) < 0.053], δμeff =
δμ − h determines the mismatch of the Fermi surfaces. Thus,
simply assuming that the NFFLO instability occurs when
δμeff ∼ δμc(0), one finds that δμc(h) increases with increas-
ing h in this high magnetic-field regime, which is consistent
with the behavior of δμc(h > 0.053) seen in Fig. 13(b).

We briefly note that the nonmonotonic behavior of the
critical magnetic field hc(δμ) seen in Fig. 13(b) can also be
explained in the same manner: as one increases δμ from zero,
the Fermi surfaces FSL

↑ and FSR
↓ first dominantly contribute

to the NFFLO superfluid phase transition [although we do
not explicitly show the result corresponding to Fig. 14(b)
here], giving the decrease of hc(δμ) with increasing δμ, as in
the case of δμc(h ∼ 0). However, once the dominant Fermi
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FIG. 15. (a) Calculated T c
env when h/(6t ) = 0.175, as a function

of the chemical potential bias δμ. (b) Fermi surfaces FSα=L,R
σ=↑,↓ (kz =

0) at (b1)–(b4) in panel (a). In panel (b1), because δμ = 0, the two
Fermi surfaces FS↑ = FSL,R

↑ and FS↓ = FSL,R
↓ only exist.

surfaces switch to FSL
↓ and FSR

↑ , hc(δμ) increases with in-
creasing δμ.

We next discuss the δμ and h dependence of the phase-
transition temperature T c

env in Fig. 13(a). When the system is
out of equilibrium by introducing the chemical potential bias
(δμ > 0), the resulting two-edge structure of the momentum
distribution of Fermi atoms works like the thermal broaden-
ing of Fermi surfaces, which suppresses the phase-transition
temperature. Because of this, we see in Fig. 13(a) that T c

env
initially decreases with increasing the chemical potential bias
δμ.

However, in the high magnetic-field regime [h/(6t ) �
0.15], T c

env exhibits nonmonotonic δμ dependence, as explic-
itly shown in Fig. 15(a). We also see from Fig. 15(a) that,
although the FFLO state appears in the thermal equilibrium
state (δμ = 0), the NBCS state with zero center-of-mass mo-
mentum of Cooper pairs appears, when 0.08 � δμ/(6t ) �
0.15. To understand the reason for these, we point out that,
at (b3) in Fig. 15(a), among the four Fermi surfaces, FSR

↑ and
FSL

↓ are almost degenerate, as shown in Fig. 15(b3). Because
of this, Cooper pairs are dominantly formed between these
two (nearly) degenerate Fermi surfaces, leading to the NBCS
superfluid phase transition around (b3) in Fig. 15(a).

FIG. 16. (a) Calculated T c
env as a function of δμ in the high

magnetic-field regime [h/(6t ) = 0.25], where the superfluid phase
no longer exists in the thermal equilibrium state (δμ = 0). (b) Fermi
surfaces FSα=L,R

σ=↑,↓ (kz = 0) at (b1) and (b2) in panel (a).

When one further increases δμ from (b3), the degeneracy
of the two Fermi surfaces is lifted and FSL

↓ becomes larger
than FSR

↑ , as shown in Fig. 15(b4). This situation is very simi-
lar to the thermal-equilibrium case under an external magnetic
field (where the ↑-spin Fermi surface becomes larger than
the ↓-spin Fermi surface). Indeed, Fig. 15(a) shows that the
superfluid phase transition changes from NBCS to NFFLO at
δμ/(6t ) � 0.15, as in the thermal equilibrium case where the
FFLO state appears under a high magnetic field.

When one decreases δμ from (b3), the degeneracy of the
two Fermi surfaces is again lifted, but now FSL

↓ becomes
smaller than FSR

↑ , as shown in Fig. 15(b2). Apart from this
difference, the situation is again similar to the thermal equi-
librium case under an external magnetic field. Thus, as one
decreases δμ from (b3), the NBCS phase transition changes
to the NFFLO phase transition at δμ/(6t ) � 0.08, as seen in
Fig. 15(a). We briefly note that, when the δμ vanishes, the
Fermi surfaces FSL

σ and FSR
σ are degenerate to each other, so

that the Zeeman-split two Fermi surfaces shown in Fig. 15(b1)
are restored.

We emphasize that Cooper pairings between FSR
↑ and FSL

↓
enable a superfluid state even in a high magnetic field where
the FFLO state cannot be realized in the thermal equilibrium
state. To explicitly demonstrate this, we show in Fig. 16(a)
the calculated T c

env, when h/(6t ) = 0.25 [> hc(δμ = 0)]. Un-
der this high magnetic field, the thermal equilibrium state
(δμ = 0) is in the normal phase down to Tenv = 0, because
the misalignment between the Zeeman splitting between the
↑-spin and ↓-spin Fermi surfaces is too large to form Cooper
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pairs there. However, as δμ increases and the main system is
driven out of equilibrium, among the four Fermi surfaces, FSL

↓
and FSR

↑ become close to each other [see Fig. 16(b1)], which
enables the NFFLO phase transition, as shown in Fig. 16(a).
As δμ increases, these two Fermi surfaces become almost
degenerate, so that the NFFLO phase transition changes to
the NBCS one. This degeneracy is again lifted with further
increasing δμ, and FSL

↓ eventually becomes larger than FSR
↑

[see Fig. 16(b2)]. Then, the system again experiences the
NFFLO phase transition, as shown in Fig. 16(a).

V. SUMMARY

To summarize, we have studied nonequilibrium superfluid
phase transitions in a driven-dissipative lattice Fermi gas cou-
pled with two reservoirs. To include nonequilibrium pairing
fluctuations, we extended the thermal-equilibrium strong-
coupling theory developed by Nozières and Schmitt-Rink to
the nonequilibrium steady state, by employing the Keldysh
Green’s-function technique. Using this, we showed that a two-
edge structure of the Fermi momentum distribution, which
is produced by the chemical potential difference between the
two reservoirs, makes the system similar to conduction elec-
trons in metals under an external magnetic field. As a result,
the nonequilibrium Fulde-Ferrell-Larkin-Ovchinnikov (NF-
FLO) superfluid phase transition was found to occur without
spin imbalance. Since this unconventional Fermi superfluid is
known to be unstable against pairing fluctuations in a spatially
isotropic gas, we pointed out that the removal of the spatial
isotropy by the optical lattice is essentially important for the
stabilization of the NFFLO state. We also confirmed that,
once the NFFLO state is stabilized by the optical lattice, the
essential behavior of this superfluid phase transition can be
captured within the nonequilibrium mean-field BCS theory, at
least when the filling fraction equals n = 0.3.

We have also examined the case when the system is ac-
companied by spin imbalance. Within the framework of the
nonequilibrium mean-field theory at n = 0.3, we identified
the region where the NFFLO and the thermal equilibrium
FFLO states appear, in the phase diagram with respect to the
environmental temperature Tenv, the chemical bias δμ, and the
fictitious magnetic field h.

When δμ �= 0 and h �= 0, the two-edge structure imprinted
on the momentum distribution of Fermi atoms and the Zeeman
splitting of ↑-spin and ↓-spin Fermi surfaces coexist, so that
the system looks as if it has four different Fermi surfaces.
We clarified that the nonmonotonic behavior of the critical
chemical-potential bias δμc(h) as a function of h, as well as
the critical magnetic field hc(δμ) as a function of δμ, can

consistently be explained by using the existence of these four
split Fermi surfaces.

Regarding the experimental approach to such multiple
Fermi surface effects, a voltage-biased superconducting wire
and thin film under an external magnetic field would be
promising candidates. Indeed, Refs. [95–97] reported that
the momentum distribution of conduction electrons in such
systems is highly out of equilibrium and exhibits a two-step
structure. Thus, by applying an external magnetic field to such
systems, not only the nonequilibrium splitting, but also the
Zeeman splitting of Fermi surfaces would occur. Then, the
resulting four Fermi surfaces would lead to exotic supercon-
ducting phase transitions, as discussed in this paper. Indeed,
it has been proposed that a voltage-biased superconductor
may be used to recover the superconducting state in a high
magnetic field beyond the Chandrasekhar-Clogston limit [98],
just as in Fig. 16(a); however, the possibility of the NFFLO
phase transition is not discussed in Ref. [98].

In this paper, we have focused on the superfluid phase-
transition temperature T c

env. Extension of this work to the
superfluid phase below T c

env to clarify how the multiple Fermi
surfaces affect superfluid properties is an important future
challenge. In addition, the driven-dissipative ultracold Fermi
gas system is known to exhibit bistability, where two stable
states are obtained for the same environmental parameters
[62]. Thus it would also be a crucial future problem to identify
the region where this phenomenon occurs, in the phase dia-
gram of the driven-dissipative spin-imbalanced lattice Fermi
gas. Since the realization of unconventional Fermi superfluids
is one of the most exciting challenges in cold atom physics,
our results would be helpful for the study toward the real-
ization of the FFLO superfluid Fermi gas. In addition, the
combination of the Zeeman splitting and the nonequilibrium
splitting of Fermi surfaces discussed in this paper can be
considered, not only in ultracold Fermi gases, but also in other
systems, such as a voltage-biased metallic superconductor
under an external magnetic field. Thus our results would also
widely contribute to the further development of nonequilib-
rium condensed-matter physics.
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APPENDIX A: COMPUTATIONAL DETAILS OF FILLING FRACTION nσ IN EQ. (35)

In this paper, to numerically evaluate the NNSR filling fraction nσ in Eq. (35), we apply the Fourier transform technique
[99–101] to the k summations in Eqs. (26), (27), (33), and (34). Real-space expressions for the pair-correlation functions in
Eqs. (26) and (27), as well as the NNSR self-energies in Eqs. (33) and (34), are given by, respectively,

�R(r, ν) = [�A(r, ν)]∗ = i

2

∫ ∞

−∞

dω

2π

[
GR

NMF,↑(r, ω + ν)GK
NMF,↓(r,−ω) + GK

NMF,↑(r, ω + ν)GR
NMF,↓(r,−ω)

]
, (A1)
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�K(r, ν) = i

2

∫ ∞

−∞

dω

2π

[
GR

NMF,↑(r, ω + ν)GR
NMF,↓(r,−ω) + GA

NMF,↑(r, ω + ν)GA
NMF,↓(r,−ω)

+ GK
NMF,↑(r, ω + ν)GK

NMF,↓(r,−ω)
]
, (A2)

�R
NNSR,σ (r, ω) = [

�A
NNSR,σ (r, ω)

]∗ = − i

2

∫ ∞

−∞

dν

2π

[
�R(r, ν)GK

NMF,−σ (−r, ν − ω) + �K(r, ν)GA
NMF,−σ (−r, ν − ω)

]
, (A3)

�K
NNSR,σ (r, ω) = − i

2

∫ ∞

−∞

dν

2π

[
�A(r, ν)GR

NMF,−σ (−r, ν − ω) + �R(r, ν)GA
NMF,−σ (−r, ν − ω)

+ �K(q, ν)GK
NMF,−σ (−r, ν − ω)

]
. (A4)

Using these, one can avoid the heavy k summation. To take advantage of this benefit in real space, we employ the fast Fourier
transformation (FFT) method to execute the following Fourier transformation:

ĜNMF,σ (r, ω) =
∑

k

ĜNMF,σ (k, ω)eik·r. (A5)

The combination of the FFT method and the real-space expressions in Eqs. (A1)–(A4) significantly reduces the computational
cost compared to the direct evaluation of the k summations.

When the damping rate γ becomes small, the NMF Green’s function ĜNMF,σ (k, ω) in Eq. (19) has a very sharp peak in k
space. This requires a large number of meshes in momentum space, in order to keep the high accuracy of the FFT method. In
our computations, we thus have discretized the three-dimensional momentum region 0 � k j � π ( j = x, y, z) into 64 × 64 × 64
cells in Eq. (A5). To achieve sufficient accuracy with this number of meshes, γ needs to be chosen as γ /(6t ) � 0.005.

APPENDIX B: NMF AND NNSR THEORIES IN THE ABSENCE OF OPTICAL LATTICE

We summarize the NMF theory, as well as the NNSR theory, in the absence of an optical lattice. In this case, the main system
in Fig. 2(a) becomes a spatially isotropic gas with the ordinary kinetic energy of a free particle,

εfree
k = k2

2m
. (B1)

The momentum k is not restricted to the first Brillouin zone, which is in contrast to the lattice system. The s-wave interaction
term in Eq. (3) then involves the ultraviolet divergence, so that, as usual, we measure the interaction strength in terms of the
s-wave scattering length as, in order to remove this singularity from the theory [102]. The scattering length as is related to the
bare interaction −U as

4πas

m
= −U

1 − U
∑kc

k
1

2εfree
k

, (B2)

where kc is a momentum cutoff, which is eventually taken to be infinity.
A crucial difference from the lattice system is the vanishing Hartree term, because U → +0 in the limit pc → ∞ [21,103].

The T c
env equation (30) in the absence of the optical lattice is then reduced to

1 = Uγ
∑

k

∫ ∞

−∞

dω

2π

[
2ω + εfree

k+q/2 − εfree
−k+q/2 − 2h

][
tanh

(
ω−δμ

2T c
env

) + tanh
(

ω−δμ

2T c
env

)]
[(

ω + εfree
k+q/2 − μ↑

)2 + 4γ 2
][(

ω − εfree
k+q/2 + μ↓

)2 + 4γ 2
] . (B3)

In the same manner, the equation for the filling fraction in Eq. (21) is replaced by the number equation,

NNMF,σ =
∑

k

∫ ∞

−∞

dω

2π

4γ[
ω − εfree

k

]2 + 4γ 2
[ f (ω − μL,σ ) + f (ω − μR,σ )], (B4)

where NNMF,σ is the total number of Fermi atoms in the σ -spin component in the main system.
We next explain the NNSR theory. In the absence of the Hartree term, the Green’s function Ĝenv,σ in Eq. (18) equals ĜNMF,σ in

Eq. (19). In the absence of the optical lattice, thus the pair-correlation functions �R,A,K(q, ν), as well as the NNSR self-energies
�R,A,K

NNSR,σ (k, ν), can be constructed by using

Ĝenv,σ (p, ω) =
(

1
ω−εfree

p +2iγ
−4iγ [1− f (ω−μL,σ )− f (ω−μR,σ )]

[ω−εfree
p ]2+4γ 2

0 1
ω−εfree

p −2iγ

)
. (B5)
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The resulting expressions are

�R(q, ν) = [�A(q, ν)]∗ = i

2

∑
p

∫ ∞

−∞

dω

2π

[
GR

env,↑(p + q/2, ω + ν)GK
env,↓(−p + q/2,−ω)

+ GK
env,↑(p + q/2, ω + ν)GR

env,↓(−p + q/2,−ω)
]
, (B6)

�K(q, ν) = i

2

∑
p

∫ ∞

−∞

dω

2π

[
GR

env,↑(p + q/2, ω + ν)GR
env,↓(−p + q/2,−ω)

+ GA
env,↑(p + q/2, ω + ν)GA

env,↓(−p + q/2,−ω) + GK
env,↑(p + q/2, ω + ν)GK

env,↓(−p + q/2,−ω)
]
, (B7)

�R
NNSR,σ (k, ω) = [

�A
NNSR,σ (k, ω)

]∗ = − i

2

∑
q

∫ ∞

−∞

dν

2π

[
�R(q, ν)GK

env,−σ (q − k, ν − ω) + �K(q, ν)GA
env,−σ (q − k, ν − ω)

]
,

(B8)

�K
NNSR,σ (k, ω) = − i

2

∑
q

∫ ∞

−∞

dν

2π

[
�A(q, ν)GR

env,−σ (q − k, ν − ω) + �R(q, ν)GA
env,−σ (q − k, ν − ω)

+ �K(q, ν)GK
env,−σ (q − k, ν − ω)

]
. (B9)

Here, the particle-particle scattering matrix �̂(q, ν) is given in Eq. (25). The NNSR Green’s function ĜNNSR,σ in the absence of
the optical lattice is then given by

ĜNNSR,σ (k, ω) = Ĝenv,σ (k, ω) + Ĝenv,σ (k, ω)�̂NNSR,σ (k, ω)Ĝenv,σ (k, ω). (B10)

Using the Keldysh component of the NNSR Green’s function ĜNNSR,σ , we find that the total number Nσ of Fermi atoms with σ

spin in the main system can be written as

Nσ = i

2

∑
k

∫ ∞

−∞

dω

2π
GK

NNSR,σ (k, ω) − 1

2
= NNMF,σ + i

2

∑
k

∫ ∞

−∞

dω

2π
[Ĝenv,σ (k, ω)�̂NNSR,σ (k, ω)Ĝenv,σ (k, ω)]K

≡ NNMF,σ + NFL,σ , (B11)

where NNMF,σ is given in Eq. (B4). As in the lattice system, we solve the NNSR number equation (B11), together with the T c
env

equation (B3), to self-consistently determine T c
env and μ↑, as well as μ↓.

APPENDIX C: DESTRUCTION OF NFFLO LONG-RANGE ORDER IN THE ABSENCE OF OPTICAL LATTICE

In this Appendix, we show that, when the optical lattice is absent, any NFFLO solution with QFF �= 0 cannot simultaneously
satisfy the T c

env equation (B3) and the NNSR number equation (B11), because the fluctuation correction term NFL,σ involved in
the number equation always diverges when the T c

env equation is satisfied.
When the T c

env equation (B3) is satisfied at a parameter set (Tenv, μ, q) = (T Q
env, μQ, Q), the particle-particle scattering matrix

�̂(Q, ν = 2μQ) also diverges at T Q
env. Thus the self-energies in Eqs. (B8) and (B9) at T Q

env may be approximated to

�̂NNSR,σ (k, ω) � −�2
pg

(
GA

env,−σ (Q − k, 2μ − ω) GK
env,−σ (Q − k, 2μ − ω)

0 GR
env,−σ (Q − k, 2μ − ω)

)

= �2
pgĜ∗

env,−σ (Q − k, 2μ − ω). (C1)

Here, the pseudogap parameter �2
pg is given in Eq. (38). Substituting Eq. (C1) into the number equation (B11), one obtains

NFL,σ � i�2
pg

2

∑
p

∫ ∞

−∞

dω

2π
[Ĝenv,σ (p, ω)Ĝ∗

env,−σ (Q − p, 2μ − ω)Ĝenv,σ (p, ω)]K. (C2)

The absence of the cubic optical lattice recovers the spatial isotropy of the main system, so that the retarded particle-particle
scattering matrix �R(q, ν) behaves as, around (q, ν) = (Q, 2μ) [45],

�R(q, ν) � −U

C[|q| − |Q|]2 − iλ[ν − 2μ]
. (C3)

Here,

C = U

2

∂2�R(q, 2μQ)

∂|q|2
∣∣∣∣
q=Q

(C4)
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and λ is given in Eq. (42). In obtaining Eq. (C3), we have taken the limit γ → +0, for simplicity. Using Eqs. (25) and (C3), one
can evaluate the pseudogap parameter �2

pg in Eq. (38) as

�2
pg = i

2

∑
q

∫ ∞

−∞

dν

2π
|�R(q, ν)|2�K(q, ν) � iU 2�K(Q, 2μ)

2

∑
q

∫ ∞

−∞

dν

2π

1

C2[|q| − |Q|]4 + λ2[ν − 2μ]2

= iU 2�K(Q, 2μ)

4λC

∫ qc

0

q2dq

2π2

1

[|q| − |Q|]2
, (C5)

where qc is a momentum cutoff. Since the momentum integration in Eq. (C5) always diverges unless Q = 0, the gap parameter
�2

pg, as well as the fluctuation correction NFL,σ involved in the NNSR number equation (B11) (which is proportional to �2
pg),

diverge at T Q
env. Thus the T c

env equation (B3) and the number equation (B11) are incompatible as far as QFF �= 0.
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