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Measurement-induced nuclear spin polarization
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We propose a nuclear-spin-polarization protocol in a general evolution-and-measurement framework. The
protocol works in a spin-star configuration, where the central spin is coupled to the surrounding bath (nuclear)
spins by flip-flop interaction of equal strength and is subject to a sequence of projective measurements on its
ground state. Then a nondeterministic nuclear spin polarization could be implemented by entropy reduction
through measurement. The optimized measurement-interval τopt is analytically obtained in the near-resonant
condition, which is relevant to the nuclear spins’ polarization degree of the last-round measurement, the number
of nuclear spins, and the coupling strength between the central spin and nuclear spins. Hundreds and even
thousands of randomly aligned nuclear spins at the thermal state could be almost fully polarized with an
optimized sequence of less than 20 unequal-time-spacing measurements. In comparison to the conventional
approaches, our protocol is not sensitive to the magnetic-field intensity, and it is robust against the extra
counterrotating interaction in the near-resonant situation.
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I. INTRODUCTION

In scalable solid-state devices for quantum information
processing, dynamic nuclear polarization (DNP) is of prac-
tical importance for spin-based quantum technology and of
fundamental interest to state initialization of nuclear spins
[1–3]. For various applications, such as nuclear magnetic res-
onance, magnetic resonance imaging [4–6], discrete-variable
quantum computation [7–9], and quantum register [10], it is
desirable to drive the nuclear spins from an initially thermal
state to a fully polarized state.

Various routes toward DNP on transferring polarization
from an electron spin to nuclear spins have been actively
pursued for a long time. A common theme in all protocols
[11–13] that are effective for low electron-spin concentration
is the use of a long microwave pulse to match the Larmor
frequency of the nuclear spins to the electronic Rabi rota-
tion in the reference frame of the microwave drive, which
is well known as a Hartmann-Hahn resonance [14]. Under
the resonant condition between electron spin and nuclear
spin, the hyperfine interaction could play a significant role in
polarization transfer. Employing laboratory-frame or rotating-
frame level anticrossings between electron and nuclear spins,
there are at least three complimentary mechanisms by which
high polarization can be induced in the 13C nuclear spins
in nitrogen-vacancy (NV) center systems: (1) precise control
over the external magnetic field in a narrow range [15–20],
(2) magnetic field sweeps [21], and (3) microwave sweeps
[22–25]. In quantum dots (QDs), DNP has been performed in
single-dot [26], double-dot [27–30], and self-assembled-dot
[31] systems. The large nuclear-spin ensemble (∼106 spins)
could be polarized to an ≈50% degree under conditions of
cryogenic temperature (T ≈ 100 mK) and ultrastrong mag-
netic field (B ≈ 2.9 T) in a double-quantum-dot system [30].
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By tunneling the interdot coupling, a nearly 90% polarization
has been predicted in theory [28].

Under a finite-temperature environment, the external mag-
netic field breaks the polarization symmetry of nuclear spins
in the spatial direction and then transforms the task of DNP
to a complete purification of the spins. Inspired by the idea of
state purification through repeated projective measurements
[32], we consider here DNP in a framework of free evolution
and measurement. In particular, when the ground state of the
central spin (electron spin) is closely associated with that of
the target spins (nuclear spins), a projective measurement on
the ground state of the central spin could force the nuclear
spins into their ground state. The strategy is nondetermin-
istic with a finite success probability and has been applied
to ground-state cooling in various scenarios [33–36]. For a
two-spin system under the resonant condition, the protocol
can be straightforwardly understood by the effective dynamics
of the target spin. Suppose that the central spin d is prepared
in its ground state and the target spin s is in an arbitrary state
described by a Bloch vector (rx, ry, rz ). The probability of
the target spin occupying the ground state is pg = (1 + rz )/2.
The interaction Hamiltonian reads H = g(σ+

s σ−
d + σ−

s σ+
d ),

where g is the coupling strength. After a joint evolution with
a proper time τ and measuring the ground state of the central
spin, one can find that pg → p′

g = (1 + rz )/2P > pg, where
P = [1 + rz + (1 − rz ) cos2(gτ )]/2 < 1 is the renormaliza-
tion constant. By repeating the evolution-and-measurement
process with cos2(gτ ) < 1, the population of the target state
over the ground state is gradually enhanced. Then after a cer-
tain number of rounds, the target spin will approach (0, 0, 1);
that is, it is fully polarized or close to it.

In this work, we illustrate how this protocol works with a
spin-star model by carrying out projective measurements on
the central (electron) spin. In an ideal situation, the central
spin is coupled to the surrounding bath spins with a homoge-
neous Heisenberg XY interaction. The central spin and bath
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FIG. 1. Diagram of the spin-star model for our polarization-
by-measurement protocol. The central (electron) spin (blue sphere)
is homogeneously coupled to the surrounding bath (nuclear) spins
(black spheres). The interactions among bath spins are omitted. Ini-
tially, the central spin is at the ground state, and the bath spins are
at the thermal-equilibrium state. After repeated measurements acting
on the central spin, the bath spins could approach a fully polarized
state.

spins are assumed to be at the ground state |g〉 and the thermal
state, respectively. For a number of bath spins, DNP can be
realized through less than a dozen rounds of unequal-time-
spacing measurements with optimized measurement intervals.
Our protocol is not under the constraint of either a magnetic
field in a desired narrow range for NV-center systems or a very
strong magnetic field for QD systems.

The rest of this work is structured as follows. In Sec. II,
we introduce the spin-star model for polarizing a spin bath by
repeated measurements. The protocol is generally described
by the polarization coefficients, i.e., the occupation reduction
factors for the nuclear spins in excited states. In Sec. III,
we derive an analytical expression for iteratively optimizing
the measurement interval in the near-resonant condition and
constructing an unequal-time-spacing strategy. In Sec. IV, our
protocols under both equal-time-spacing and unequal-time-
spacing strategies are performed for various sizes of spin
bath. Then the optimized unequal-time-spacing strategy is
applied to feasible systems, including NV centers and QDs. In
Secs. V A and V B, we discuss the success probability under
both strategies and the effects from counterrotating interaction
and longitudinal interaction on DNP, respectively. We summa-
rize the whole work in Sec. VI.

II. MODEL AND HAMILTONIAN

Our polarization protocol is based on the spin-star model
shown in Fig. 1, which consists of a central spin 1/2 coupled
to M surrounding bath spins 1/2 via a Heisenberg XY inter-
action of equal strength [37–41]. The spins in the bath are
identical to and indistinguishable from the central spin. The
spin-star configuration is thus a rotationally invariant system
which is the direct result of the isotropy of the environment.
The full Hamiltonian reads (h̄ ≡ 1)

H = ω0

2
σ z

d + ω1

2

M∑
j=1

σ z
j + g

M∑
j=1

(
σ x

d σ x
j + σ

y
d σ

y
j

)
, (1)

where ω0 and ω1 are the frequencies of the central and bath
spins, respectively, σ x,y,z are Pauli operators, and g is the ho-
mogeneous coupling strength between them. In the mean-field

approach or the “box model” for electron-nuclei interaction
[42], g is usually introduced as an average over the hyper-
fine constants between the central spin and individual nuclear
spin. The energy spacing for the electron spin is much larger
than the nuclear spins as well as the coupling strength by
several orders. It is thus a reasonable idealization for de-
scribing solid-state systems [43]. In the rotating frame with
respect to H ′

0 = ω1/2(σ z
d + ∑M

j=1 σ z
j ), the Hamiltonian can be

written as

H ′ = eiH ′
0t He−iH ′

0t − H ′
0

= �

2
σ z

d + 2g
M∑

j=1

(σ+
d σ−

j + σ−
d σ+

j ), (2)

where � = ω0 − ω1 is the detuning between the central spin
and bath spins and σ+ = |e〉〈g| and σ− = |g〉〈e| are the
transition operators. Using the collective angular momentum
operators J± ≡ ∑M

j=1 σ±
j [44,45], we have

H ′ = �

2
σ z

d + 2g(J+σ−
d + J−σ+

d ). (3)

To obtain a compact analytical expression that can be used
to predict the efficiency of our polarization protocol, we here
take a further approximation to ignore the degeneracy of bath
spins with the same excitation number by virtue of their iden-
tity. It is equivalent to consider only the subspace spanned by
the states with maximum total angular momentum J = M/2,
similar to the Dicke model [38,46]. Then the eigenstates of
the spin bath can be denoted by the eigenbasis {|m〉} of
Jz ≡ ∑M

j=1 σ z
j /2, where m runs from 0 to M, indicating the

excited number of bath spins [47]. |m = 0〉 implies that M
bath spins are all in the ground state, and |m = M〉 implies
that they are all in the excited state. Both of them are fully
polarized, but their symmetry is broken by a finite mag-
netic field. The collective angular momentum operators [45]
satisfy

Jz|m〉 =
(

m − M

2

)
|m〉,

J+|m〉 =
√

(M − m)(m + 1)|m + 1〉,
J−|m〉 =

√
(M − m + 1)m|m − 1〉. (4)

The central spin and the bath spins are supposed to be
initially separable and respectively in the ground state and
the thermal state with a finite temperature T , i.e., ρ(0) =
|g〉〈g| ⊗ ρs(0). Using Eq. (4), the initial state of the bath spins
can be written as

ρs(0) =
M∑

m=0

pm|m〉〈m|, pm = 1

Z
e−βω1(m−M/2), (5)

where Z ≡ Tr[exp(−βω1Jz )] is the partition function and β =
1/(kBT ) is the inverse temperature of the spin bath, with kB

being the Boltzmann constant.
In the framework of free evolution and measurement, our

DNP protocol is performed through rounds of joint free evo-
lution U (τ ) = exp(−iH ′τ ) under the interaction Hamiltonian
in Eq. (3) with a time spacing τ and instantaneous projective
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measurement M ≡ |g〉〈g| acting on the ground state of the
central spin. Note |g〉|m = 0〉 is the global ground state for
the Hamiltonian in either Eq. (2), which covers the whole
space with varying total angular momentum J , or Eq. (3),
which involves only the subspace with J = M/2. All the
excited states are distributed in the subspaces ordered by
nonzero excitation numbers. The repeated projections over |g〉
of the central spin therefore dramatically change the popu-
lations of the bath spins by discarding their distributions in
the manifolds except |0〉⊗M or |m = 0〉, i.e., individual spins
in Eq. (2) or the larger spin in Eq. (3). If the outcome of
the measurement is that the central spin is not in |g〉, then
the system sample is abandoned, and the protocol restarts
from the beginning. This strategy is equivalent to reducing
the entropy of the whole system conditionally by quantum
measurement.

Under the equal-time-spacing strategy with N rounds of
evolution and measurement, the bath state turns out to be

ρs(Nτ ) = V (τ )Nρs(0)V †(τ )N

P(N )
, (6)

where V (τ ) = 〈g|U (τ )|g〉 constitutes a nonunitary
time-evolution operator for the bath spins and P(N ) =
Tr[V (τ )Nρs(0)V †(τ )N ] is the success probability of finding
the central spin in its ground state |g〉 at time t = Nτ . In terms
of the eigenbasis {|m〉}, we have

V (τ ) =
M∑

m=0

αm(τ )|m〉〈m|, (7)

where αm(τ ) is the polarization coefficient describing the
population-reduction ratio on the state |m〉,

αm(τ ) = cos (	mτ ) + i
� sin (	mτ )

2	m
,

	m ≡
√

�2/4 + 4g2m(M − m + 1). (8)

Using Eqs. (5), (6), and (7), we have

ρs(Nτ ) =
∑M

m=0 |αm(τ )|2N pm|m〉〈m|
P(N )

,

P(N ) =
M∑

m=0

|αm(τ )|2N pm. (9)

Our polarization-by-measurement protocol is self-content
because |αm(τ )|2 � 1, where the equivalence is achieved
when m = 0 or 	mτ = kπ . The populations over the other
states are gradually reduced by pm → |αm(τ )|2N pm. The re-
duction rate is clearly determined by τ due to Eq. (8).
Although the probability of the bath spins in the fully polar-
ized state |m = 0〉 could be significantly increased by repeated
measurements, the polarization coefficients shown in Fig. 2
indicate that under the strategy of equal-time-spacing mea-
surements, there will always be several excited states that are
protected. A thermal state with a finite temperature will thus
be reduced to a classical mixture of a fully polarized state
|m = 0〉 and those states satisfying 	mτ = kπ . Note |0〉⊗M

or |m = 0〉 is both a fully polarized state and a ground state of
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FIG. 2. Polarization coefficient |αm(τ )|2N as a function of the
eigenbasis index (the magnetic quantum number) m for Jz by a
single measurement (black solid line) and 10 equal-time-spacing
measurements (blue dot-dashed line) on the ground state of the
central spin coupled to M = 700 bath spins. The detuning between
the central spin and bath spins is �/ω0 = 0.1, the coupling strength
is g/ω0 = 0.1, and the measurement interval is ω0τ = 0.03.

the spin bath. Our protocol always holds even when consid-
ering all the other subspaces of the excited states as long as
p0 
= 0, |αm=0(τ )|2 = 1, and |αm 
=0(τ )|2 < 1, which must be
true for an initial thermal state. In the example provided in the
Appendix, one can see that we require more measurements
to attain the same degree of polarization if we work in the
whole space. We are then motivated to find an optimized mea-
surement interval τopt and employ an unequal-time-spacing
strategy to improve the performance of our polarization pro-
tocol.

III. OPTIMIZED MEASUREMENT INTERVAL
AND UNEQUAL-TIME-SPACING STRATEGY

To see more clearly the effect of the measurement interval
τ on DNP, we first define a polarization degree of bath spins
as

P (t ) =
∣∣∣∣Tr[Jzρs(t )]

M/2

∣∣∣∣ =
∑M

m=0 pm(t )(M/2 − m)

M/2
, (10)

where pm(t ) is the current population over |m〉. P (t ) ranges
from 0 (the most mixed state) to 1 (the fully polarized state)
and is consistent with the previous definition [48,49], i.e., P =
(M↑ − M↓)/M, where M↑ (M↓) is the number of nuclear spins
in the up (down) states. Using Eq. (9), we have

P (N ) ≡ P (t = Nτ ) =
∑M

m=0(M/2 − m)|αm|2N pm

M/2
∑M

m=0 |αm|2N pm

. (11)

A quantitative observation about the effect of the mea-
surement interval on P is presented in Fig. 3 for N = 1 and
M = 700. The polarization degree is not a monotonic function
of τ . It increases rapidly with increasing τ to the maximum
value until an optimized measurement interval τopt and then
decreases abruptly to a lower value than that determined
by the initial temperature. Afterwards, it fluctuates with a
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FIG. 3. Polarization degree of M = 700 bath spins after one
measurement as a function of the measurement interval τ . The black
solid curve is numerically obtained using Eq. (11). The vertical
red dashed line is the analytical result τopt in Eq. (14). Inset: Rel-
ative error of the optimized analytical interval τopt compared with
the numerical result τ̃opt as a function of the bath-spin number M.
�/ω0 = 0.1, g/ω0 = 0.1, T = 0.5 K, and ω0 = 100 MHz.

decreasing magnitude and asymptotically approaches the
initial polarization. Thus, an inappropriate choice of the mea-
surement interval τ yields either inefficient polarization or
even depolarization. To locate the optimized τ for the high-
est P (1) in proximity to the dramatic-change point along
the curve, it is instructive to find a local minimum of the
denominator in Eq. (11) with N = 1, which is a summation
over |αm|2 with the weight pm. The occupation probability pm

given by Eq. (5) declines monotonically with increasing m,
and around m = 0 and τ = 0, the polarization coefficient can
be approximated by

|αm(τ )|2 = 1 − 	′2
mτ 2 +

(
	′2

m + �2

4

)
	′2

m

τ 4

3
+ O(τ 6),

(12)

with 	′
m ≡ 2g

√
m(M − m + 1) = √

	2
m − �2/4. Thus, the

polarization degree is rewritten as

P (1) =
∑M

m=0(M/2 − m)xm|αm|2
M/2

∑M
m=0 xm|αm|2

≈
∑M

m=0(M/2 − m)xm|αm|2
M/2

∑M
m=0 xm(1 − 	′2

mτ 2)

≈
∑M

m=0(M/2 − m)xm|αm|2/(M/2)∑∞
m=0 xm(1 − 	′2

mτ 2)

=
∑M

m=0(M/2 − m)xm|αm|2/(M/2)∑∞
m=0 xm + 4g2τ 2

∑∞
m=0[m2 − (M + 1)m]xm

,

(13)

with x ≡ exp(−βω1). An approximate “singularity” for
Eq. (13) emerges as

τopt =
√ ∑∞

m=0 xm

4g2
∑∞

m=0[(M + 1)mxm − m2xm]

=
√

1

4g2[(M + 1)x/(1 − x) − (1 + x)x/(1 − x)2]

= 1

gM
√

2(1 − Pth )Pth
, (14)

where we have used the geometric series

∞∑
m=0

m2xm = (1 + x)x

(1 − x)3
,

∞∑
m=0

mxm = x

(1 − x)2
, (15)

and Pth is the initial polarization degree,

Pth =
∑M

m=0(M/2 − m)pm

M/2
∑M

m=0 pm

≈
∑∞

m=0(M/2 − m)xm

M/2
∑∞

m=0 xm

= 1 − 2x

M(1 − x)
. (16)

Note that the upper bound M for certain summations in
Eqs. (13), (14), and (16) has been approximated by infinity to
attain a compact analytical expression such that the singularity
from a vanishing denominator in P (1) does not really exist
and τopt is then an estimation used to locate a maximum
P (1). The second-order perturbative optimized measurement
interval τopt is irrelevant to the detuning � between the central
spin and the bath spins due to Eq. (12), so that Eq. (14) applies
to both resonant and near-resonant situations. τopt is marked
by the vertical red dashed line in Fig. 3, which matches per-
fectly the point for catching a peak value for P . The inset
in Fig. 3 describes the relative error between analytical and
numerical results for the optimized interval, |τopt − τ̃opt|/τ̃opt,
as a function of the bath-spin number M. The error magni-
tude decreases roughly with increasing M. When M � 580,
it becomes less than 10%. When M = 700, it is about 3.7%,
consistent with the result in the main plot in Fig. 3.

Both population distributions pm over the eigenstates {|m〉}
and the polarization degree P of the spin bath would be
modified after the first round of evolution and measurement
with an interval τopt determined by Pth in Eq. (16). The opti-
mized measurement-interval expression in Eq. (14) for τopt is
then no longer appropriate. An unequal-time-spacing strategy
therefore emerges from iteratively updating Pth with the po-
larization degree of the last round. Consequently, Eq. (14) can
be reinterpreted as

τopt (t ) = 1

gM
√

2[1 − P (t )]P (t )
, (17)

where P (t ) represents the current polarization degree of
bath spins. Given τopt (t ) of the last round, the density
matrix of the spin bath can be obtained using Eq. (9),
and subsequently, the current polarization degree is cal-
culated using Eq. (10) without a realistic measurement.
Rather than a constant τopt, Eq. (17) gives rise to a time-
dependent sequence: {τopt (t1), τopt (t2), . . . , τopt (tN )}, with
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ti>1 = ∑ j=i−1
j=1 τopt (t j ) and τopt (t1) = τopt. For Eq. (17), when

P (t ) approaches unit during the DNP process, τopt (t ) becomes
even larger, meaning that a further polarization becomes more
difficult.

Under the unequal-time-spacing protocol, the state of the
spin bath in Eq. (9) is transformed to

ρs

[
N∑

i=1

τopt (ti )

]
=

∑M
m=0

∏N
i=1 |αm[τopt (ti )]|2 pm|m〉〈m|

P(N )

(18)

after N measurements, and the success probability becomes

P(N ) =
M∑

m=0

N∏
i=1

|αm[τopt (ti)]|2 pm. (19)

Now one can find that the time variable for the polariza-
tion coefficient αm becomes time dependent and then all
the excited states are no longer protected when N > 1. The
unequal-time-spacing protocol is thus more efficient than its
equal-time-spacing counterpart in polarization.

IV. POLARIZATION PERFORMANCE

A. Polarization performance under the near-resonant condition

In this section, we demonstrate the polarization perfor-
mance of the bath spins in the NV-center system [50] with the
equal-time-spacing and unequal-time-spacing polarization-
by-measurement strategies under the near-resonant condition.
Accordingly, the optimized measurement interval τopt is then
given by Eq. (14) or (17). In numerical evaluations, the
eigenfrequency of the central (electron) spin is chosen to be
ω0 = 120 MHz. The detuning between the central spin and
bath spins and their coupling strength are fixed to �/ω0 = 0.1
and g/ω0 = 0.03, respectively. And the spin bath is initialized
with a temperature T = 0.5 K.

Figure 4 demonstrates the performance of the equal-time-
spacing strategy for a spin bath with varying size. According
to Eqs. (14) and (16), a larger size of spin bath yields a smaller
τopt and a higher initial polarization degree Pth. In particu-
lar, for M = 600, Pth = 0.223; for M = 700, Pth = 0.257;
for M = 800, Pth = 0.290; and for M = 900, Pth = 0.322.
In the first few dozens of rounds of measurements, the po-
larization rate of a larger size of spin bath is higher than
that of a smaller size. And the former becomes lower than
the latter as more measurements are carried out. At around
N = 75, the four curves cross each other. With even more
measurements, a smaller M yields a slightly bigger asymptotic
value of P (N ). When N = 200, the inset of Fig. 4 shows
that for M = 600, P = 0.989; for M = 700, P = 0.980; for
M = 800, P = 0.972; and for M = 900, P = 0.967. On the
whole, the polarization degrees P (N ) can be enhanced from
their initial values to nearly unit by a sufficiently large number
of rounds of evolution and measurement. The decreasing po-
larization rates under the equal-time-spacing strategy indicate
explicitly that the optimized measurement interval determined
by the initial thermal-state polarization degree Pth becomes
even more inefficient for the subsequent rounds of measure-
ment, as can be predicted by Eq. (14).
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190 200

0.95

1

FIG. 4. Polarization degree of nuclear spins P (N ) as a function
of the measurement number N under the equal-time-spacing strategy
with varying size of the nuclear spin bath. The blue solid line, the
green dot-dashed line, the orange dashed line, and the brown dotted
line represent M = 600, 700, 800, and 900, respectively. The other
parameters are set as �/ω0 = 0.1, g/ω0 = 0.03, and T = 0.5 K.

The equal-time-spacing strategy is optimized in only the
first round of the sequence. To enhance the polarization per-
formance by accurately locating every peak value of the
polarization degree under one measurement, one has to iterate
the optimized measurement interval according to Eq. (17).
In Fig. 5, we present the dynamics of the polarization de-
gree for M = 700 nuclear spins under the equal-time-spacing
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0.4
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0.8

1
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0
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4
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FIG. 5. Polarization degree of M = 700 nuclear spins as a func-
tion of measurement number N for various polarization strategies.
The blue solid line represents the equal-time-spacing strategy. The
green dashed line with squares, the orange dashed line with inverted
triangles, the brown dashed line with triangles, and the red dashed
line with circles represent the strategies in which the measurement
interval is updated every L = 10, 5, 2, 1 rounds of evolution and
measurement, respectively. Inset: The von Neumann entropy S of
the spin bath as a function of measurement number N . The other
parameters are the same as in Fig. 4.
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TABLE I. Experimental parameters, including bath size,
magnetic-field strength, central-spin frequency, detuning, and cou-
pling strength between the central spin and bath spins, for various
NV-center systems [50] and QD systems [51,52]. For the latter, the
gyromagnetic ratio of the electron spin is three orders of magnitude
greater than that of the surrounding nuclear spins. Generally, it gives
rise to a far-off-resonant condition.

M (×102) B (G) ω0 (MHz) �/ω0 g/ω0

NV(1) 5 1000 120 0.1 0.03
NV(2) 5 900 400 0.95 0.03

M (×103) B (G) ω0 (GHz) �/ω0 g/ω0

QD(1) 2 379 5 0.999 0.016
QD(2) 2 758 10 0.999 0.008

strategy and four unequal-time-spacing strategies with vari-
ous iterative rates L. For example, L = 5 means that τopt (t )
is updated every five rounds of evolution and measurement.
Accordingly, the equal-time-spacing strategy means L → ∞.
For L = 1, we have τopt (ti ) < τopt (ti+1) in the realistic sense
of the unequal-time-spacing strategy. It is observed that more
updating of the optimized measurement interval gives rise
to better polarization performance. In particular, one has to
run the strategy with L = 5 for N = 15 rounds or run that
with L = 1 for only N = 8 rounds to achieve P > 0.99. In
comparison to the strategy of equal time spacing in Fig. 4, the
number of measurements is reduced by one order under that
of unequal time spacing, indicating a dramatic advantage in
experimental overhead.

The effect of polarization from measurements can be un-
derstood by the dynamics of the von Neumann entropy of the
bath spins. It is evaluated by

S[ρs(t )] = −
M∑

m=0

pm(t ) ln pm(t ), (20)

where the spin-bath density matrix ρs is given by Eq. (9)
and by Eq. (18) under the equal-time-spacing and unequal-
time-spacing strategies, respectively. We provide their results
in the inset of Fig. 5. Clearly, the enhancement of the po-
larization degree is accompanied by the reduction of the
spin-bath entropy. Also S can be used to demonstrate the
power of the unequal-time-spacing strategy. In particular, for
the equal-time-spacing strategy, when N = 9, S = 3.39, and
when N = 20, S = 2.58. In sharp contrast, for L = 1, when
N = 9, S = 0.05, and when N = 20, S ≈ 10−5.

B. Polarization performance under
the far-off-resonant condition

In this section, the application of the unequal-time-spacing
strategy is extended to the far-off-resonant condition. Accord-
ing to Eq. (12), the analytical expression for either τopt in
Eq. (14) or τopt (t ) in Eq. (17) becomes invalid in the presence
of a significant �/ω0. In this case, especially for a typical QD
system (see Table I), τopt (t ) can be obtained with a numerical
simulation.

In Fig. 6, we present the performance of the unequal-
time-spacing strategy for the four cases listed in Table I.
For the NV-center systems, we consider both a near-resonant
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FIG. 6. Polarization degree of bath spins as a function of mea-
surement number N for NV center systems (blue dashed line with
circles and green dashed line with squares) and QD systems (orange
dashed line with triangles and brown dashed line with inverted trian-
gles). T = 0.5 K, and the other parameters are given by Table I.

case (see the blue dashed line with circles for NV(1)) and a
far-off-resonant case (see the green dashed line with squares
for NV(2)). The initial thermal-state polarization degree for
NV(1) is significantly larger than that for NV(2). So the off-
resonant case requires more measurements to achieve the
same polarization degree as the resonant case. In particular,
P (8) = 0.997 for NV(1), and P (8) = 0.968 for NV(2). While
both of them saturate to nearly unit when N = 12. With more
nuclear spins in the bath and the three-order distance in the
magnitude of the gyromagnetic ratios for the central and bath
spins, the polarization degrees in the QD systems (see the
orange dashed line with triangles and the brown dashed line
with inverted triangles in Fig. 6) are remarkably lower than
those in NV-center systems in the first several rounds. But
when N � 10, they can be enhanced to more than 0.91. In
particular, P (10) = 0.970 for QD(1), and P (10) = 0.914 for
QD(2). Moreover, they can be almost completely polarized by
N = 15 measurements.

In the NV-center systems, a nearly complete polarization
of nuclear spins was realized by constructing a near-resonant
condition around level anticrossing in the ground state
[16,50], which demands precise control over the external mag-
netic field (B ∼ 0.1 T). In the QD systems [30], a nearly 50%
degree of polarization for nuclear spins could be achieved
under a cryogenic temperature (T ∼ 100 mK) and a strong
external magnetic field (B ∼ 2.9 T). In comparison to the con-
ventional methods, our unequal-time-spacing strategy could
achieve complete polarization of nuclear spins with fewer
than a dozen rounds of evolution and measurement, in the
absence of a precisely controlled external magnetic field or
strict ambient conditions, for both NV-center and QD systems.

V. DISCUSSION

A. Success probability

The experimental cost for our measurement-induced nu-
clear spin polarization is described by the success probability
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FIG. 7. (a) and (c) Success probability as a function of the bath
size M for N = 20 and N = 50 rounds of measurements, respec-
tively. (b) and (d) Polarization degrees corresponding to (a) and (c),
respectively. The red triangles and blue circles represent, respec-
tively, the equal-time-spacing and unequal-time-spacing strategies.
The other parameters are the same as in Fig. 4.

in Eq. (9) or Eq. (19) since any protocol based on mea-
surement is nondeterministic. In Fig. 7, we plot the success
probabilities and the corresponding polarization degrees for
various sizes of bath spins M under both equal-time-spacing
and unequal-time-spacing strategies.

We can see that for a lower number of measurements,
N = 20 [Fig. 7(a)], the success probability of the equal-time-
spacing strategy is slightly larger than that of the unequal
strategy; however, for a larger number, N = 50 [Fig. 7(c)],
it is almost invariant for both strategies. Thus, the success
probability is insensitive to the optimized measurement in-
terval given by Eqs. (14) and (17). It decreases with M
and approaches an asymptotical value of about 1% when
M > 160. In addition, the polarization degree under the
unequal-time-spacing strategy is always close to unit, show-
ing advantages over the equal-time-spacing strategy when
M > 60 and M > 100, as demonstrated in Figs. 7(b) and
7(d), respectively. For the equal-time-spacing strategy, a lower
number of measurements, N = 20, is not enough to polarize
a sufficiently large number of nuclear spins. When M = 200,
the success probability P(N = 20) ≈ 1.1% with the polariza-
tion degree P (N = 20) = 0.67, and P(N = 50) ≈ 0.7% with
P (N = 50) = 0.93.

B. Nonideal interactions between the central
spin and nuclear spins

The preceding polarization-by-measurement protocols in
our spin-star model are based on the Heisenberg XY in-
teraction, through which they can faithfully exchange the
polarized states of the central spin and nuclear spins. In
this section, we discuss the effects of two extra interactions,
which might present in practical situations, on the polarization
performance. The results are obtained under the unequal-time-
spacing strategy with the iteratively optimized measurement
intervals in Eq. (17).
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FIG. 8. Polarization degree of M = 500 bath spins as a function
of the measurement number N in the presence of various interactions
and detunings �/ω0 between the central spin and bath spins. For XY
interaction, the blue dashed line with circles and the green dashed
line with inverted triangles represent the near-resonant (�/ω0 =
0.1) and far-off-resonant cases (�/ω0 = 0.95), respectively. For XX
interaction, the orange dashed line with squares and the brown
dashed line with triangles represent the near-resonant (�/ω0 = 0.1)
and far-off-resonant cases (�/ω0 = 0.95), respectively. For XY Z
interaction, the red dashed line with pluses and the cyan dashed
line with crosses represent the near-resonant (�/ω0 = 0.1) and far-
off-resonant cases (�/ω0 = 0.95), respectively. g/ω0 = 0.03, T =
0.5 K, and ω0 = 120 MHz.

First, we consider the Heisenberg XX interaction between
the central spin and bath spins, which is equivalent to in-
cluding the high-frequency-modulated counterrotating terms
in the flip-flop interaction in the interaction picture. Then
using the collective angular momentum operators, the full
Hamiltonian in the Schrödinger picture can be written as

H = H0 + HI ,

H0 = ω0

2
σ z

d + ω1Jz,

HI = 2g(σ+
d J− + σ−

d J+) + 2g(σ+
d J+ + σ−

d J−). (21)

The last counterrotating terms in HI are conventionally ne-
glected when g � ω0, ω1, |�|.

Second, we can consider the Heisenberg XY Z interaction;
that is, there is a longitudinal interaction in addition to the
transverse interaction between the central spin and the bath
spins. In the rotating frame with respect to H ′

0 = ω1/2(σ z
d +

Jz ), the full Hamiltonian can be written as

H ′ = �

2
σ z

d + 2g(J+σ−
d + J−σ+

d ) + gJzσ
z
d , (22)

where the longitudinal interaction strength is set to be the
same as the transverse one for simplicity.

In Fig. 8, we demonstrate the polarization performance
for various types of interactions and detunings �/ω0 within
N = 20 rounds of measurements. With a fixed number of
bath spins, a smaller detuning gives rise to a larger thermal-
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state polarization Pth and also better polarization performance
for any interaction between the central spin and bath spins.
The presence of either counterrotating interaction or longi-
tudinal interaction always suppresses the polarization effect
by our measurement protocol, which becomes dramatically
severe in the far-off-resonant situation. In particular, in the
near-resonant case �/ω0 = 0.1, it is found that P (8) = 0.99
for XY interaction, P (20) = 0.96 for XX interaction, and
P (20) = 0.68 for XY Z interaction. In sharp contrast, when
�/ω0 = 0.95, P (10) = 0.99 for XY interaction, P (20) =
0.27 for XX interaction, and P (20) = 0.23 for XY Z interac-
tion. However, in a weak-coupling regime g/ω0 = 0.03, the
presence of the counterrotating interaction cannot be ignored,
especially under a far-off-resonant condition. When N � 13,
the polarization degree of the bath spins under XY Z interac-
tion is higher than that under XX interaction. Roughly, the
suppression effect from the longitudinal interaction is more
severe than that from the counterrotating interaction.

VI. CONCLUSION

In summary, we proposed a measurement-based dynamical
nuclear-spin polarization protocol in a spin-star model, where
the central spin is coupled to the surrounding bath spins with
the Heisenberg XY interaction. The mean-field approach and
the permutational invariance of the bath spins allow us to use
collective angular momentum operators to model the behavior
of our model, similar to the semianalytical simulation over the
spin-spin-environment configuration. The central spin and the
bath spins were prepared in the ground state and the thermal
equilibrium state, respectively. A nearly 100% polarization of
the bath spins was realized by repeated instantaneous pro-
jective measurements performed on the ground state of the
central spin. The key idea is that the ground states of the
central spin and bath spins are closely connected under the
interaction Hamiltonian. The polarization performance can be
dramatically increased by iteratively optimizing the measure-
ment interval τopt, which is determined by the polarization
degree at the end of the last round of evolution and mea-
surement, the size of the spin bath, and the coupling strength
between the central spin and bath spins. As the cost of our
nondeterministic protocol, the success probability is found to
be insensitive to the measurement interval.

Our protocol applies to both near-resonant and far-off-
resonant conditions between central spin and bath spins.
With an ideal unequal-time-spacing strategy, the nuclear spins
could be completely polarized in fewer than 20 measure-
ments for both NV-center and QD systems. They are scalable
solid-state systems and good candidates for various quantum
technology applications.

Our polarization-by-measurement protocol can be con-
sidered an extension of measurement-based cooling that
originates from cooling mechanical oscillators in optome-
chanics, in which repeated measurements on the ground state
of the ancillary system generate fast cooling with a finite
success probability. Our method is different from the quan-
tum Zeno effect, for which it was predicted and verified that
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FIG. 9. Polarization degree of bath spins P (N ) as a function of
the number of measurements N for the unequal-time-spacing strat-
egy. The blue solid line and the red dashed line represent the results
for treating the bath spins as individual spins and a collective large
spin, respectively. The other parameters are the same as in Fig. 4.

frequent and controlled measurements into a fixed state or
subspace can inhibit a quantum system from leaving that state
or subspace. Rather than taking the measurement interval to
zero in the limit for the quantum Zeno effect, we find that
the probability in which a scalable and randomly aligned spin
system stays at the polarized state or subspace can be stably
accumulated through measurements with optimized intervals.
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APPENDIX: COMPARING LARGE SPIN
AND INDIVIDUAL SPINS

To justify the applicability of our polarization-by-
measurement protocol in the subspace with J = M/2, here
we present numerically the polarization performances for a
model with M = 8 bath spins. As shown in Fig. 9, they are
exactly calculated in the whole Hilbert space and the J = M/2
subspace. It is shown that the bath spins can still be fully
polarized while being treated as individual spins. This requires
more rounds of measurements in comparison to those needed
when treating the bath spins as a collective large spin. In
particular, the latter treatment requires N < 10, and the former
requires about N ≈ 50 to achieve P ≈ 0.99. The weight of
the coarse-grained subspaces increases surely with the size of
bath spins, which costs more resources. Yet it is not crucial to
the proof of principle for our polarization protocol.
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