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Quantum optical coherence: From linear to nonlinear interferometers
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Interferometers provide a highly sensitive means to investigate and exploit the coherence properties of light
in metrology applications. However, interferometers come in various forms and exploit different properties of
the optical states within. In this paper, we introduce a classification scheme that characterizes any interferometer
based on the number of involved nonlinear elements by studying their influence on single-photon and photon-pair
states. Several examples of specific interferometers from these more general classes are discussed, and the
theory describing the expected first-order and second-order coherence measurements for single-photon and
single-photon-pair input states is summarized and compared. These theoretical predictions are then tested in
an innovative experimental setup that is easily able to switch between implementing an interferometer consisting
of only one or two nonlinear elements. The resulting singles and coincidence rates are measured in both
configurations and the results are seen to fit well with the presented theory. The measured results of coherence are
tied back to the presented classification scheme, revealing that our experimental design can be useful in gaining
insight into the properties of the various interferometeric setups containing different degrees of nonlinearity.
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I. INTRODUCTION

Although the nature of photons has been investigated for
many decades, new insights into their fundamental properties,
such as coherence and wave-particle duality, continue to be
developed [1–6]. Many of these findings, in both the classi-
cal and quantum regime, have been obtained via the use of
optical interferometers, which provide an ideal platform for
the investigation of the coherence properties of light [7–12].
To probe the coherence properties of photons, both single-
photon [13,14] and two-photon interference [15–17] have
been explored in common interferometer setups, such as the
Mach-Zehnder interferometer (MZI) and Hong-Ou-Mandel
(HOM) interferometer configurations. However, investiga-
tions into nonlinear interferometers, a subset of which are
commonly labeled as SU(1,1) interferometers [18,19], have
shown that these systems can also be used to characterize
coherence properties of the quantum light involved and may
even offer practical quantum advantages [20–22]. Recent ex-
periments employing this class of interferometers have shown
compelling results for both fundamental and applied physics,
such as the recent demonstrations of wide-field interferometry
and biphoton shaping [23–27].

Owing to these recent results, a more complete under-
standing of the role of first-order classical and higher-order
quantum coherence in these systems is needed. In this paper,
we explore the coherence properties of various interferometric
schemes through click measurements of the output fields.

*khluo@mail.uni-paderborn.de

Interferometer configurations spanning from linear to non-
linear are considered and the measured data closely follows
theoretical predictions. To obtain the pure investigation of
coherence in different interferometers, here we only con-
sider vacuum-seeded nonlinear processes, since the coherence
property dramatically changes with the seeded input field.

The paper is structured as follows: A consistent framework
for comparing the various interferometeric schemes is first
introduced in Sec. II. Two instructive examples in linear in-
terferometery are then reviewed in Sec. II A, before the theory
describing the expected fringing patterns for both the singles
and coincidence clicks of the output beams for both seminon-
linear (Sec. II B) and nonlinear interferometers (Sec. II C) is
established. Extending upon previous theory, a model for the
nonlinear interferometer including the effects arising due to
broadband radiation is developed and discussed in Sec. II C.
Section II D then provides a summary and comparison of
the various interferometer geometries. Next, in Sec. III, we
present results from an experimental setup designed in such
a way that minor modifications to the setup allows for inves-
tigation of both seminonlinear and nonlinear interferometer
configurations. Finally, in Sec. IV, the experimental results
are discussed and compared with theoretical predictions.

II. INTERFEROMETERS

Any quantum optics experiment can be subdivided into
three stages: a generation stage, a manipulation stage, and a
detection stage. Naturally, this subdivision can also be applied
to all interferometric systems. This concept is illustrated in
Fig. 1. Within the interferometer itself, one can also identify
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FIG. 1. General scheme of an optical interferometric setup, showing that the setup can be decomposed into its constituent parts. The
decomposition into generation, manipulation, and detection stages for many systems is somewhat arbitrary and is explored in this paper.

three distinct elements: the preparer, the sample, and the ana-
lyzer. Typically, the sample can be considered as a differential
phase or a temporal delay added to one of the beam paths
between preparer and analyzer.

In this paper, we consider the case of a two-mode inter-
ferometer and define the input as the two modes entering the
preparer. The two modes exiting the analyzer are detected to
make a measurement. Furthermore, we exclusively consider
the case in which the two modes interact in the preparer and
analyzer elements. Within this framework, an interferome-
ter can then be classified into further classes by noting the
characteristics of the preparer and the analyzer; depending on
the physics involved in the mixing of the two input modes,
each element can be defined as either a linear or a nonlinear
interaction.

An example of a linear element is constituted by beam
splitters (BSs) while examples of nonlinear elements are
three- and four-wave mixers. An interferometer that consists
of only linear mixing elements, we denote as a linear in-
terferometer, and one that consists of only nonlinear mixing
elements is henceforth referred to as a nonlinear interfer-
ometer. A system then consisting of one nonlinear stage
and one linear stage is referred to as a seminonlinear inter-
ferometer, presenting an intermediate, hybrid interferometer
configuration.

The subdivision into the three stages—generation,
manipulation, and detection—in an interferometric setup
is, in some ways, arbitrary. For example, it is not uncommon
to consider the preparer as part of the state preparation and
the analyzer as part of the detection scheme [10,28–31]. For
reasons that are later elucidated and that arise more critically
in the case of nonlinear elements within the interferometer,
arguably the most natural ways to define the various elements
are as follows: the generation stage encompasses the elements
after which we can say with certainty that our photons have
been produced, while the detection stage is considered as any
components situated behind the analyzer, such as detectors.
Any components not involved in the photon generation and
the detection then comprise the manipulation stage.

The behavior of these interferometeric systems is further
dependent on the chosen input state and detection stage.
For the input state, one can consider, for example, coherent
states, single-photon states, and even vacuum. For the de-
tection stage, one can consider intensity monitoring and
homodyne setups [32,33], single-photon detection schemes,

such as temporal bucket detection, which is defined as
averaging of the photon flux over the measurement time
[14,34] and photon-number-resolved detection [35], and also
more exotic schemes, such as coincidence [7,36] and parity
measurements [37].

An exhaustive review of all possible input states and de-
tection stages is not feasible. Instead, we carefully choose a
number of instructive cases and use these to demonstrate a
number of key features for the three interferometer classes,
i.e., linear, seminonlinear, nonlinear interferometer. In all
cases, lossless interferometers are considered and both single-
output bucket detection and coincidence detection schemes
are analyzed to probe both classical and quantum coherence
properties of these systems. The considered input states are
either single photons, allowing for entanglement between
multiple photons, or vacuum. A summary of our selected
interferometeric systems with corresponding input states,
detection schemes, and predicted measurement results are
shown in Fig. 2.

A. Linear interferometer

We begin the discussion of the coherence properties of
the chosen interferometers by reviewing linear interferometers
with one- and two-photon input states, i.e., cases (a) and (b) in
Fig 2. More specifically, we consider a typical MZI compris-
ing two BSs acting as both preparer and analyzer, as depicted
in Figs. 2(a) and 2(b). Note that this setup describes a transfor-
mation that lies within the SU(2) group and is therefore often
called an SU(2) interferometer. As emphasized before, the
subdivision into state generation, manipulation, and detection
is in many ways arbitrary [10]. For example, one can consider
that the inputs are transformed at the preparer into a new
state that forms the arms of the interferometer. By interfering
these two modes on the analyzer and detecting the intensity
of the outputs, one then performs a standard first-order cross-
correlation measurement between these two modes.

1. Linear interferometer with a single photon as input

We first consider the case of the linear interferometer
seeded by a single photon in input mode a, |1a, 0b〉. In this
case, the generation of the photon occurs before entering the
interferometer and as such the interferometer fulfills the role
of manipulation of the input state. The photon is character-
ized by a well-defined spectral amplitude A(ω) and can be
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FIG. 2. Schematic of various interferometeric systems. (a) Single-photon input state in a linear interferometer. (b) Single-photon pair input
state in a linear interferometer, which may exhibit entanglement. (c) Vacuum-seeded seminonlinear interferometer, producing identical signal
and idler photons from a parametric downconversion (PDC) process. (d) Vacuum-seeded nonlinear interferometer with PDC stages as the
nonlinear elements. For each interferometer configuration, both mean photon number from each output, na and nb, and coincidence probability,
Pab, are illustrated to the right of the setup. The inserts show details of the fringing pattern around the region of maximum interference. The
dashed box indicates what is considered as the generation stage in each optical interferometer.

written as

|1a, 0b〉 =
∫

dωA(ω)â†(ω)|vac〉, (1)

where the normalization condition for A reads∫
dω|A(ω)|2 = 1.
When an adjustable delay �t is inserted into one arm of the

interferometer, the mean photon number na,b from each output
a, b, of the linear interferometer can be described via

〈na,b〉LI(�t ) =
∫ ∞

−∞
dω|A(ω)|2|1 ± exp [i(ω�t )]|2, (2)

where the index LI is used to label results from this linear
interferometer. With the help of the Wiener-Khinchin theorem
[38,39], the normalized expected mean photon number in each
arm from Eq. (2) can be rewritten as

〈na,b〉LI(�t ) = 1
2 ∓ 1

2 |g(1)(�t )| cos (ω0�t ), (3)

where ω0 is the central frequency of the injected photon
and g(1) is the degree of first-order temporal coherence of
the input light, defined as g(1)(�t ) = G(1)(�t )/G(1)(0). Here,
G(1)(�t ) is the inverse Fourier transform of the input intensity
spectrum, i.e., G(1)(�t ) = FT −1[|A(ω)|2]. The mean photon
number from one output of this interferometer can be used
to determine the first-order degree of coherence g(1)(�t ) of
the input photon. The interference pattern is characterized
by a fringing of period 2π/ω0, and its envelope is given by
|g(1)(�t )|.

Having access to both output modes of the interferometer,
it is possible to also measure the coincidences between them.

However, for the considered case of a perfect single photon,
no coincidences can be measured, i.e.,

〈Pab〉LI(�t ) = 0, (4)

as illustrated in the rightmost plot of Fig. 2(a).
For the nontrivial case, let us consider here the case of a

single photon with Fourier-transform-limited amplitude pro-
file, specifically, the Gaussian profile

A(ω) = 1
4
√

2πσ 2
exp

[
− (ω − ω0)2

4σ 2

]
, (5)

where 2σ is the 1/e2 spectral width. This is linked to the full
width half maximum (FWHM) of the input photon’s temporal
duration �τ by σ = √

2 ln(2)(�τ )−1. Such a photon is char-
acterized by a g(1)(�t ) that is given by

g(1)(�t ) = exp

[
− ln(2)

�t2

�τ 2

]
, (6)

which has a FWHM of 2�τ . Note that the maximum visibil-
ity occurs at zero time delay, i.e., �t = 0, corresponding to
equal path lengths for the two arms within the interferometer.
Furthermore, there is a π -phase shift between the interference
fringes in the two singles measurements. This behavior is a
consequence of the fact that summing the two outputs for any
delay necessarily gives a total mean photon number of one,
i.e., 〈na + nb〉 = 1.
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2. Linear interferometer with single-photon pair input

Now, we consider the scenario of a photon pair, |1a, 1b〉,
acting as the input state, as pictured in Fig. 2(b). As in
the previous case, photon generation occurs before state
manipulation through the interferometer, and we allow for
the possibility of spectral entanglement between these two
photons. This input state can be described in terms of the joint
spectral amplitude (JSA) J (ωa, ωb), i.e.,

|1a, 1b〉 =
∫∫

dωadωbJ (ωa, ωb)â†(ωa)b̂†(ωb)|vac〉. (7)

The mean number photon for both outputs are

〈na〉QI(�t ) = 〈nb〉QI(�t ) = 1, (8)

where the label QI indicates the linear interferometer with the
single-photon pair input quantum state. Equation (8) shows
that measuring the singles cannot provide any information
about the two-photon state at the input of the interferom-
eter. This is further illustrated in the two leftmost graphs
in Fig. 2(b).

In contrast, the coincidence pattern between the output
modes is influenced by the JSA of the two-photon state, and
thus partial information about the input state can be retrieved
from the correlation measurement. The general expression for
the coincidence probability, as a function of the time delay
inside the interferometer, is quite complex and its envelope
crucially depends on the shape of the JSA. One can show that,
in the case of identical input photons centered at ω0, the fring-
ing seen in the coincidences is given by cos(2ω0�t ), which
may lead to a quantum advantage in metrology applications,
i.e., which may allow for determination of an unknown phase
beyond what is classically achievable [11,40]. It can be also
shown that it is possible to retrieve some information about
the input two-photon states, such as their joint coherence time
�τjoint, from the properties of the observed fringing in the
coincidences [40,41].

For the special case of indistinguishable photons, where
the two photons have identical marginals, a path-entangled
NOON state, (|2, 0〉 + |0, 2〉)/

√
2, is generated inside the in-

terferometer. This state has been explored in detail in the
context of quantum interferometry and metrology [42,43]. In
this case, the interference pattern is given by Ref. [40],

〈Pab〉QI(�t ) = 1

2
+1

2
exp

[
− �t2

�τ 2
joint

]
cos (2ω0�t ), (9)

where ω0 is the central frequency of the two photons and
�τjoint is the width along the +45◦ bisector of the joint tem-
poral intensity of the two-photon state, defined in Ref. [40].
The derivation and analysis of Eq. (9) is beyond the scope
of this paper; further details can be found in Ref. [40]. This
interference pattern is illustrated in the rightmost plot of
Fig. 2. Here, the mean number photon at both interferometer
outputs is exactly the mean number of single-photon pairs at
the input for all delays, i.e., 〈na〉 = 〈nb〉 = 1. Note that the
point of maximum visibility occurs when the two arms of the
interferometer are equal, as is the case for the single-photon
input. The fact that double fringing is only observed in the
coincidences, despite being constant in the singles, indicates

the presence of higher-order, likewise quantum, coherence in
the system.

B. Seminonlinear interferometer

Next, we consider the seminonlinear interferometer, where
either the preparer or the analyzer stages are nonlinear mixing
elements, constituting the first nontrivial deviation from a
purely linear configuration studied previously.

Here, we specifically investigate the properties of one par-
ticular interferometer, in which the preparer is a nonlinear
three-wave mixing stage, and the analyzer is a linear BS. In
contrast to the previous two cases, photon generation in this
interferometer can only be said to have occurred after the
preparer. For simplicity, we assume that only a single-photon
pair is generated by the nonlinear parametric down-conversion
(PDC) process. Under these conditions, the resulting two-
photon interference is the well-known HOM inteference effect
[15–17,44]. This seminonlinear interferometer setup is illus-
trated in Fig. 2(c).

To provide a theoretical description of the process, we
assume that the signal and idler photons are generated via a
type-II, frequency-degenerate PDC process with continuous-
wave (cw) pumping. The polarization of one field is rotated
within the interferometer such that both photons interfere at
the BS, the analyzer. Note that it is necessary to employ
here a type-II process to ensure the separation of the output
radiation in two different modes, while it is important to
have frequency-degenerate signal and idler photons to ensure
interference.

With these considerations, the mean number photon at the
output of the interferometer can be shown to obey

〈na〉HOM(�t ) = 〈nb〉HOM(�t ) = 1. (10)

Similar to the linear interferometer with two single photons, as
previously discussed in Sec. IIA2, information about the gen-
erated photon structure and the interferometer delay cannot be
gained via measurements of the mean number photon.

Nevertheless, some information about the photon structure
can be revealed by second-order measurements. For simplic-
ity, let us consider a Gaussian approximation for the PDC
process, including the potential presence of spectral filters (see
Appendix A3). The JSA of the biphoton state is then given by

φ(�) = 1
4
√

2πσ 2
exp

[
− �2

4σ 2

]
exp [−i�τ0�], (11)

where � = ωs − ωs0 = ωi0 − ωi is the detuning of each
photon from their central frequency, σ = √

2 ln(2)(�τ )−1 is
again related to the bandwidth of either photons, and �τ0 is
the temporal walk-off acquired by the two photons when gen-
erated inside the nonlinear stage. In this case, the coincidences
between the two outputs of such an interferometer are given
as [40,45]

〈Pab〉HOM(�t )

= 1

2
− 1

2

∫ ∞

−∞
d�|φ(�)|2 exp [i2�(�t − �τ0)]

= 1

2
− 1

2
exp

[
− ln(2)

(�t − �τ0)2

(�τ/2)2

]
. (12)
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It shows that the width of the HOM dip is proportional to
the photon’s temporal bandwidth �τ . The position of the
minimum in this dip is related to the temporal walk-off �τ0 of
the generated biphoton state, the sign of which is determined
by which photon is delayed.

This seminonlinear interferometer shows a number of in-
teresting features. As was the case for the linear interferometer
with single-photon pair input, one observes that the mean
photon numbers are constant. The mean number photon is
independent of the delay, and the mean number is given by
the average nonlinear photon-pair generation rate, i.e., 〈na〉 =
〈nb〉 = 1. Similarly, the coincidence probability does vary as
the arm delay in the interferometer is varied, but the resulting
profile, the well-studied HOM dip, is very different. The min-
imum of the HOM dip is found at �t = −�τ0, corresponding
to the situation where the generated photons arrive at the
analyzer BS simultaneously. It has been shown in a previous
work [45] that both the width of the HOM dip and visibil-
ity are related to the exchange symmetry of the generated
photons.

Another kind of seminonlinear interferometer consists of
a BS and PDC element as the preparer and analyzer, respec-
tively. In such a scenario, and depending on the input state, the
analyzer can be seeded with path-entangled light, resulting in
yet another interesting form of coherence that is, however, not
discussed in the context of this paper.

C. Nonlinear interferometer

Finally, one can use nonlinear active processes as both the
preparer and the analyzer, as shown in Fig. 2(d), resulting in
what constitutes a nonlinear interferometer. In this paper, we
consider the case of an interferometer composed of two iden-
tical, second-order nonlinear three-wave mixing processes.
Such a system can be described by a set of Bogoliubov
transformations, belonging to the SU(1,1) group [18]. For
this reason, this subset of nonlinear interferometers are often
referred to as SU(1,1) interferometers. These interferometers
have been the focus of much investigation as it has been shown
that they are able to provide quantum advantage for a number
of applications, such as metrology [20–22].

To simplify the discussion of such second-order non-
linear interferometers, we consider the special case where
the pump has a sufficiently low power and is a cw field
such that, at most, only one photon pair is generated in the
interferometer. The first fringing properties of cw-pumped
second-order nonlinear interferometers have been explored
in Ref. [36]. However, this work did not fully consider the
influence of the envelope of the spectrum of the gener-
ated light on the interference. Here, we expand on previous
theory [46] by explicitly including the effect of the spec-
tral properties of the generated photon pairs in a way that
allows comparison between the considered interferometric
setups.

The two-photon state at the output of the interferometer can
be written as the superposition of generating a photon pair in
either one of the two identical nonlinear media, i.e.,

|	〉 ≈
∫∫

dωsdωiJN (ωs, ωi )â
†(ωs)b̂†(ωi )|vac〉, (13)

with

JN(ωs,ωi )

= J (ωs,ωi )[1 + exp(i[�k(ωs, ωi )L]

+ i[
 + �(ωs, ωi )])]. (14)

Here, J (ωs, ωi ) is the JSA of the photon pair that is generated
in either of the two nonlinear processes, �k is the phase
mismatch of the nonlinear PDC process, L is the length of
the nonlinear waveguide that implements the PDC, 
 is the
relative phase between the two nonlinear stages, and � is
the phase shift accumulated by the photon pair between the
two stages. Considering, for simplicity, a time delay �ts in
the signal arm, this phase shift can be written as � = �tsωs.
Please notice that, despite appearing very similar, Eq. (7) de-
scribes the two-photon input state of the interferometer, while
Eq. (13) describes the output of the nonlinear interferometer
under the low-efficiency approximation. When the system is
pumped with cw light at ωp0, the JSA JN (ωs, ωi ) coincides
with the phase-matching spectrum of the process, which is
given by

φN(ωs,ωp0 − ωs)

= φ(ωs,ωp0 − ωs)[1 + exp(i[�k(ωs, ωp0 − ωs)L]

+ i[�tsωs + 
])]. (15)

From Eq. (13), the singles and the coincidence probability
can be calculated as

〈na〉NI(�t ) = 〈nb〉NI(�t ) = 〈Pab〉NI(�t )

=
∫ ∞

−∞
dω|φN (ω)|2

= 1

2
+ 1

2
|h(1,1)(�t )| cos (ωs0�t + 
), (16)

resulting in Fig. 2(d). Here, ωs0 is the central frequency of
the signal photon. The interference pattern in Eq. (16) has an
envelope |h(1,1)(�t )|, which is proportional to the twin beam
correlation function G(1,1)(�t ), and the period of fringing is
decided by the wavelength of the photon that experiences the
time delay.

Once again, we approximate the PDC process using the
Gaussian profile to simplify the treatment. Under this as-
sumption, the envelope of the nonlinear interference pattern is
given by

h(1,1)(�t ) = exp

[
− ln(2)

(�t − 2�τ0)2

�τ 2

]
. (17)

This equation reveals that the width of the interference en-
velope of both the singles and the coincidences is given by
2�τ . Moreover, it shows that the position of maximum visi-
bility occurs at a delay of 2�τ0. Note that the delay of 2�τ0

is equivalent to the walk-off exhibited by signal and idler
photons generated in a sample of twice the length 2L.

One can observe that the same interference pattern char-
acterizes both the singles and the coincidence probability,
in stark contrast to all previously explored systems. This is
due to the fact that the singles in both arms oscillate in
phase, according to the equations that govern the evolution
of the state in such an interferometer. In particular, for a
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FIG. 3. Experimental setup (a) and corresponding conceptual overview of seminonlinear (b) and folded, nonlinear interferometer (c) based
around a single nonlinear waveguide. Full details of the setup are provided in the text. The delay stage used in both experimental geometries
is identical. (b) Illustration of a seminonlinear interferometer. When the reflected pump beam in the backward direction is blocked, i.e., only
the forward pump is present, the QWP is turned to 45◦ and the HWP is turned to 22.5◦, we have the HOM interference occurring at PBS2.
(c) Schematic diagram of folded nonlinear interferometer. When the QWP is set at 0◦, we directly and individually count the number of signal
and idler photons because of the polarization-dependent splitting.

lossless nonlinear interferometer, one finds that 〈na〉 = 〈nb〉 =
〈Pab〉. Therefore, the (first-order) measurement of the singles
provides the same information that the (second-order) coinci-
dence measurements would provide, as previously highlighted
in Ref. [19].

D. Comparison among various interferometers

A comparison of the interference patterns presented by
the interferometers in Fig. 2 reveals a key concept within these
interferometers that follow our classification in terms of the
degree of nonlinearity. In particular, the observed interference
patterns are related to the impossibility of retrieving informa-
tion about the evolution of the state within the interferometer.
In the presented linear and seminonlinear setups, this is due to
erasure of the which-way information of the different paths
taken by the state leading to the detectors [6]. In contrast,
in the nonlinear interferometer, the coherent generation of
a single pair of photons from the interferometer precludes
knowledge of which-stage information; i.e., one cannot say
at which stage, preparer, or analyzer the photon pair has
been generated. This reveals that optimal interference between
the two stages will only occur when the state generated in the
preparer is indistinguishable in all degrees of freedom to the
state generated in the analyzer. It is for this reason that it is
necessary to consider the entire nonlinear interferometer as
the region of state generation in this scenario.

An additional, detailed overview over the aforemen-
tioned interferometers with their input states is presented in
Appendix A1.

III. EXPERIMENTAL REALIZATION

To experimentally investigate the theoretical work thus
far presented, a setup that can readily switch between semi-
nonlinear and nonlinear interferometer configurations was
constructed. The concept is that of a folded geometry design

with a waveguide PDC source is utilized as the nonlin-
ear medium, as depicted in Fig. 3. A single pass through
this device produces signal and idler photons which can
then be interfered on a BS to realize the seminonlinear
interferomter configuration, as illustrated in Fig. 3(b). The
nonlinear interferometer is then implemented by retroreflect-
ing the generated signal and idler photons back through the
waveguide after some free-space propagation. Traversing the
same waveguide twice ensures that the phase-matching pro-
files of the preparer and analyzer stages are indeed identical.

The detailed experimental setup is depicted in Fig. 3(a).
A 19-mm-long titanium indiffused lithium niobate waveguide
serves as the nonlinear medium, with a periodic poling period
of 9.3 μm chosen for type-II PDC at around 160 ◦C, with
a stability of approximately ±5 mK. Both end-facets of the
waveguide, as well as all coupling lenses, have antireflection
coatings for the telecom wavelength range. The waveguide
is pumped by a cw external cavity diode laser, working at a
wavelength of 777 nm and being separated into a forward and
reverse propagating pump field through the use of a BS. In
this scheme, the forward propagating pump then drives the
preparer and the reverse propagating pump field drives the
analyzer.

After each stage (preparer, analyzer), the signal and idler
modes are separated from the pump laser by a dichroic mirror
(DM1, DM2) and a coated silicon filter is then used to sup-
press the remaining pump (PF1, PF2).

The two orthogonally polarized forward-propagating
signal and idler modes are separated by the polarizing beam
splitters (PBSs). This separation allows for the insertion of a
variable time delay between these modes via adjustment of the
position of a movable mirror (MM), mounted on a computer-
controlled translation stage. Two quarter-wave plates (QWPs)
positioned between two high reflectivity mirrors (M3 and
MM) and PBS1 are used to either direct the photons directly
toward PBS2 (QWPs set to 45◦), where they interfere with
the aid of the half-wave plate (HWP set to 22.5◦) to realize a
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FIG. 4. Measured singles (black and red for photons a and b, respectively) and coincidence (blue) count rates for seminonlinear (a) and
nonlinear (b), (c) interferometer configurations as a function of the varied position of the movable mirror (MM) from Fig. 3. Tick labels on
top are the corresponding time delays. The reduction in count rates in (a) and (b) at larger translation stage positions are caused by a slight
misalignment of the stage. Graph (c) shows a magnified view of the interference fringes at the time delay corresponding to maximum visibility
(−4.50 ps). Connecting solid lines are provided as a guide for the eye.

seminonlinear interferometer or the photons are directed back
through the waveguide (QWPs set to 0◦) to realize a nonlinear
interferometer. Note that in the case of the seminonlinear
interferometer, the reverse-propagating pump is blocked.

The fields at the two output ports of PBS2 are coupled
to single-mode fibers. To suppress background photons, each
fiber is connected to a ∼1.0 nm wide bandpass fiber filter
(FF1 and FF2). The bandwidth of this filter is chosen to be
slightly narrower than the expected bandwidth (∼1.3 nm) of
the photons generated in a single pass of the sample. Finally,
the photons are detected using superconducting nanowire de-
tectors (SNSPDs) with a detection efficiency of around 90%
and a time-to-digital converter. The details of the loss char-
acterization and time referencing of the setup are given in
Appendix A2.

IV. EXPERIMENTAL RESULTS

The experimental setup is first configured to implement
the seminonlinear interferometer, as described in the pre-
vious section. The delay, i.e., position of MM, is chosen
such that the faster, vertically polarized idler photon experi-
ences a shorter beam path than the other slower, horizontally
polarized signal photon. With the help of HWP, two photons
with orthogonal polarizations then arrive at PBS2 at the same
time. At a pump power of ∼1 mW, a HOM dip with a visibility
of (99.3 ± 0.3)% is measured for a stage position around
10.03 mm, corresponding to �τ0 = −2.25 ps in the time
domain. This delay matches the expected temporal walk-off
between the two photons when taking into account dispersion
properties of our 19 mm long lithium niobate waveguide, as
expected from Eq. (12). Note that the width of the seminon-
linear HOM dip is determined by the spectral width of the
detected photons, which, in the presented experimental setup,
is affected by the chosen filters. The effect of these filters is
explained in detail in Appendices A3 and A4.

Next, the setup is then reconfigured as a nonlinear intefer-
ometer by simply setting the QWPs to 0◦ and pumping the
waveguide in both the forward and reverse directions. The
ratio of the pump powers driving the preparer and analyzer

are chosen such that they maximize the visibility of the coin-
cidence counts [23].

The measured singles and coincidence count rates are
shown in Fig. 4(b) as the position of the MM is scanned
over several millimeters with a resolution of ∼100 nm. It
is immediately apparent that the envelope of the observed
interference traces for all three measurements is practically
identical. The shape of these envelopes is affected by the
spectral filtering, which is explained in detail in Appendix A4.
Moreover, by zooming into the region of highest visibility,
one can see that all three traces exhibit identical frequencies
and phases, Fig. 4(c). However, one should also note that the
maximum visibility of the two singles count rates (∼50%)
and the coincidence count rates (∼100%) vary significantly.
This difference is mainly caused by imperfect coupling into
waveguide and fibers as well as other losses in the setup.

The delay required to reach the point of optimal visibility
reveals further information about the presented system. As
expected, the optimal visibility for the singles and coincidence
count rates is found around a mirror position of 10.40 mm,
corresponding to a time delay of 2�τ0 = −4.50 ps; see
Eq. (17). This delay corresponds to twice the temporal walk-
off (�τ0) that one would expect between signal and idler
photons when generating these photons in a single pass of
the waveguide. This configuration corresponds to the situa-
tion where a photon pair generated in the preparer has the
same delay between signal and idler photons as a photon
pair generated in the analyzer upon detection. This ensures
indistinguishability between generation in the first and second
stages, a necessary condition to achieve perfect interference
in the nonlinear interferometer [36].

Finally, Fig. 5 provides a comparison between the theory in
Eq. (17) with the measured coincidence envelopes, shown in
Fig. 4, for both the seminonlinear and nonlinear experimental
configurations. One can see that the theory precisely describes
the measured behavior, highlighting both the stability of the
experimental setup and the validity of the presented theory.
The effect of the frequency filtering on the output spectrum
has to be taken into account and is presented in detail in
Appendix A4.
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FIG. 5. Comparison of theory and measured results from the
reconfigurable experimental setup for a 19-mm-long sample with
1-nm-broad spectral filters. The experiment is first configured for
seminonlinear HOM-type interference (cyan), before being recon-
figured to realize a nonlinear interferometer (orange). Solid lines
correspond to the measured experimental results while dashed lines
correspond to the theoretical envelopes given by Eqs. (12) and (16).

V. CONCLUSIONS

In summary, we introduced a meaningful classification
system for interferometers according to their degree of non-
linearity and we carried out a comparative study of the impact
of the degree of nonlinearity on coherence properties of
quantum light. The degree of nonlinearity is particularly
important when attempting to identify the generation, manip-
ulation, and detection stages of any interferometeric setup. It
was shown, for example, that one should consider the nonlin-
ear interferometer as a single, albeit complicated, generation
stage, as explored previously [18]. Such insight reveals that
one would expect the singles and coincidence count rates to
be identical, as was indeed measured, because of the pair-
wise generation that characterizes PDC systems. Furthermore,
when optimizing the visibility in the nonlinear interferometer,
one needs to consider that the interferometer delay should
be set to maximize interference between the possibility of
generating photons in either the preparer or the analyzer. This
means that the nonlinear interference perfectly happens when
the temporal walk-off between two possible photons from the
first preparer stage is elaborately compensated in the middle
of the second analyzer stage.

A number of instructive examples were chosen to highlight
some of the coherence properties of interferometers within
different classes. The corresponding theory for each case was
presented and the expected singles and coincidence number
were described. Previous theory was expanded upon to accu-
rately describe the results of experimental measurements for
the case of the nonlinear interferometer.

To experimentally investigate the theoretical predictions,
an innovative experimental design was developed. Through
simple rotation of a pair of wave plates, it is possible to con-
figure the device as either a seminonlinear interferometer or a
nonlinear one. The folded geometry ensures that the preparer

and the analyzer stages are as identical as possible. Further-
more, this experimental setup exploits a nonlinear waveguide
as the core component, thereby increasing the strength of the
nonlinear interaction and opening up the possibility for more
complicated future devices in integrated architectures [47].

The measurements taken on this setup were observed to
very closely follow the expected theoretical behavior. This
was seen in both the shape (envelope) and position (per-
fect constrictive and destructive interference) of the measured
interference patterns in both seminonlinear and nonlinear
configurations. These results highlighted the suitability of
the presented experimental setup for jointly investigating
and comparing different types of interferometers. The pre-
sented discussion and classification system shows the value
in considering the similarities and dissimilarities of dif-
ferent interferometeric setups. This presents a step toward
exploiting advanced nonlinear interferometry for applications,
such as quantum imaging [9], sensing [48], and quantum
metrology [6,49].
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APPENDIX

1. Comparison among various interferometers

Table I is provided as a summary of the findings presented
throughout the paper, including the information that is more
conceptually given in Fig. 2. The figure provides the prop-
erties of the singles and coincidences measurements of all
interferometer configurations presented in the paper.

2. Experimental characterization of setup

Before going into the detailed properties of two interfer-
ometers, the loss performance of the whole setup and the
behavior of photon-pair generation via a single PDC process
are characterized. First, we consider that there is only a back-
ward pump launched from the rear side of the waveguide.
According to the single count rates and coincidence count
rate, the Klyshko efficiencies of both arms are about 21% and
26%, respectively. While the forward pump is injected from
the front side of waveguide, both generated signal and idler
photons are reflected and again pass through the waveguide
from the rear. Because of increased coupling losses due to
traveling through the same waveguide twice, the Klyshko ef-
ficiencies of both arms then drop to 6% and 7%, respectively.
Therefore, the internal losses between two PDC processes,
which means the out-coupling loss from the waveguide and
in-coupling loss into the waveguide, are around 29% and 27%,
which includes waveguide coupling, fiber coupling, and all
other optical components in the setup.
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TABLE I. Overview of interference properties of various interferometers with given input states. All results assume that the interferometers
are lossless, the spectra are well approximated by a Gaussian, and PDC processes are pumped by a cw laser.

Linear Seminonlinear Nonlinear
Interferometers (BS and BS) (PDC and BS) (PDC and PDC)

Inputs |1a, 0b〉 |1a, 1b〉 |0a, 0b〉 |0a, 0b〉
plus cw pump plus cw pump

Singles Envelope |g(1)(�t )| n/a n/a |h(1,1)(�t )|
FWHM 2�τ n/a n/a 2�τ

Offset �t = 0 n/a n/a �t = ±2�τ

Fringes ∓ cos(ω0�t ) n/a n/a cos(ωs0�t + 
�)

Coincidence Envelope n/a Joint shape HOM dip |h(1,1)(�t )|
FWHM n/a �τjoint �τ 2�τ

Offset n/a �t = 0 �t = ±�τ �t = ±2�τ

Fringes n/a cos(2ω0�t ) n/a cos(ωs0�t + 
�)
Conservation photon-number conservation photon-pair conservation

na + nb = ninput na = nb = npp

A benefit of the folded geometry is that the absolute zero-
point of the time delay �t = 0 can be determined. In this way,
the position of the interference fringes can be unambiguously
determined without a priori assumptions, such as the disper-
sion of the nonlinear material. This calibration is achieved
in two separate steps. First, the apparatus is configured as a
seminonlinear interferometer. The crystal is pumped in the
forward direction only (the reverse direction pump is blocked)
and the two QWPs are set to 45◦, thereby avoiding traversing
the nonlinear material a second time. Interference between
signal and idler then occurs at PBS2. The resulting HOM
dip position then corresponds to half of the crystal dispersion,
i.e., �τ0/2. The second step consists of setting the QWPs to
0◦, thereby directing the beams back through the nonlinear
material a second time, noting again that the reverse direction
pump is blocked. The position of the HOM dip now measured
corresponds to the usual factor of �τ0/2 plus the dispersion
added by traversing the entire sample in the reverse direction;
i.e., the final position will be �τ0/2 + �τ0. From these two
positions, the zero time delay position �t = 0 can be deduced.

3. Modeling of parametric downconversion in integrated
nonlinear waveguides

A PDC process in a periodically poled nonlinear
waveguide is a widespread efficient method to generate a
stream of photon pairs. In such a waveguide PDC process,
by exploiting strong χ (2) nonlinearity and long interaction
length L, a single pump photon is split into two photons of
lower energy, named signal and idler, according to energy and
momentum conservation.

A simplified treatment of the PDC process considers the
ideal case case of lossless propagation inside the nonlinear
crystal and ignores higher-order photon-number contribution;
i.e., it considers a low gain regime. Under these assumptions,
the state of the photon pairs generated via PDC in a periodi-
cally poled waveguide with length L and poling period � can
be described as

|	〉PDC ∝
∫

dωsdωi fL(ωs,ωi )â
†
s (ωs)â†

i (ωi )|vac〉, (A1)

where â†
s,i(ωs,i ) describes the photon creation operator at fre-

quency ωs,i and fL(ωs,ωi ) = α(ωs, ωi )φL(ωs,ωi ) is the JSA
of the nonlinear waveguide. The JSA is determined by the
pump α(ωs, ωi ) and the phase matching φL(ωs,ωi ). The
phase-matching spectrum is determined by the momentum
conservation among three fields in the waveguide and can be
expressed as

φL(ωs,ωi ) = sinc
[
�β(ωs,ωi )

L

2

]
exp

[
i�β(ωs,ωi )

L

2

]
,

(A2)

where �β(ωs,ωi ) = �k(ωs,ωi ) − 2π
�

. Here, �k(ωs, ωi ) =
kp(ωs + ωi ) − ks(ωs) − ki(ωi ) is the wave-vector mismatch of
the process, and kp,s,i are the wave vectors of the three fields
inside the waveguide.

For the special case of a PDC that is pumped by a cw pump,
one has that ωp = ωs + ωi holds true. Thus, it is possible to
simplify the PDC state as

|	〉PDC ∝
∫

d�φ(�)â†
s (�)â†

i (−�)|vac〉, (A3)

where the detuning � is defined as � = ωs − ωs0. In this case,
one can usually consider the first-order Taylor expansion of
�k(ω) at the central wavelength ωs0, and thus Eq. (A2) can
be simplified as

φL(�) = sinc[�τ0�] exp [i�τ0�], (A4)

where �τ0 is the average temporal delay between by the two
signal and idler photons when they exit from the nonlinear
medium. This is given by

�τ0 = L

2

[
∂ki

∂ω

∣∣∣∣
ω=ωp−ωs0

− ∂ks

∂ω

∣∣∣∣
ω=ωs0

]

= L

2

[
1

vgi
− 1

vgs

]
, (A5)

where vgs/i are the group velocities of signal and idler
photons.
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To simplify the calculations, it is useful to approximate
Eq. (A4) with the Gaussian function

φL(�) = exp
[−γ�τ 2

0 �2 − i�τ0�
]
, (A6)

where γ = 0.193 is a coefficient used to match the ampli-
tude bandwidths between the Gaussian approximation and the
correct sinc spectrum. For the sample discussed in the main
text, the expected �τ0 is ≈2.2 ps, given a sample length of
L ≈ 19 mm and the dispersion properties of lithium niobate
at the wavelengths of interest.

4. Spectral filter

The fiber filters used in front of the detectors have been
approximated by Gaussian functions, having a spectral ampli-
tude of

fg(�) = exp

[
−2 ln(2)

�2

��2

]
, (A7)

where �� is the intensity FWHM of the filter, corresponding
to 1 nm for the filters employed. Therefore, the effective
JSA of the photon pair that is generated in the waveguide is

given by

φL(�) = fg(�)φL(�)

= exp

[
− �2

4σ 2
− i�τ0�

]
, (A8)

with
1

σ 2
= 4γ�τ 2

0 + 8 ln(2)

��2
. (A9)

Considering a sample length of 19 mm and filters with an
intensity FWHM of 1 nm, κ is equal to ∼1.8 ps. From the
effective JSA in Eq. (A8), one can derive the envelope of the
seminonlinear and nonlinear interference as

HOM(�t ) = exp

[
− (�t − �τ0)2

2κ2

]
, (A10)

h(1,1)(�t ) = exp

[
− (�t − 2�τ0)2

8κ2

]
. (A11)

Therefore, the expected FWHM for the seminonlinear and
nonlinear interference pattern are, respectively, 4.3 ps and
8.6 ps and match quite remarkably the measured values.
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and M. Żukowski, Multiphoton entanglement and interferome-
try, Rev. Mod. Phys. 84, 777 (2012).

[3] R. S. Aspden, M. J. Padgett, and G. C. Spalding, Video record-
ing true single-photon double-slit interference, Am. J. Phys. 84,
671 (2016).

[4] D. P. Jackson, N. Ferris, R. Strauss, H. Li, and B. J. Pearson,
Subtleties with Young’s double-slit experiment: Investigation
of spatial coherence and fringe visibility, Am. J. Phys. 86, 683
(2018).

[5] J. Pursehouse, A. J. Murray, J. Wätzel, and J. Berakdar, Dy-
namic Double-Slit Experiment in a Single Atom, Phys. Rev.
Lett. 122, 053204 (2019).

[6] A. Hochrainer, M. Lahiri, M. Erhard, M. Krenn, and A.
Zeilinger, Quantum indistinguishability by path identity: The
awakening of a sleeping beauty, arXiv:2101.02431.

[7] R. H. Brown and R. Q. Twiss, A test of a new type of stellar
interferometer on Sirius, Nature (London) 178, 1046 (1956).

[8] J. Aasi, J. Abadie, B. Abbott, R. Abbott, T. Abbott, M.
Abernathy, C. Adams, T. Adams, P. Addesso, R. Adhikari
et al., Enhanced sensitivity of the LIGO gravitational wave
detector by using squeezed states of light, Nat. Photonics 7, 613
(2013).

[9] G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R.
Lapkiewicz, and A. Zeilinger, Quantum imaging with unde-
tected photons, Nature (London) 512, 409 (2014).

[10] C. Sparaciari, S. Olivares, and M. G. A. Paris, Gaussian-state
interferometry with passive and active elements, Phys. Rev. A
93, 023810 (2016).

[11] S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K.
Shalm, V. B. Verma, S. W. Nam, and G. J. Pryde, Unconditional

violation of the shot-noise limit in photonic quantum metrology,
Nat. Photonics 11, 700 (2017).

[12] S.-H. Tan and P. P. Rohde, The resurgence of the linear optics
quantum interferometer–recent advances & applications, Rev.
Phys. 4, 100030 (2019).

[13] P. Grangier, G. Roger, and A. Aspect, Experimental evidence
for a photon anticorrelation effect on a beam splitter: A new
light on single-photon interferences, Europhys. Lett. 1, 173
(1986).

[14] C. Braig, P. Zarda, C. Kurtsiefer, and H. Weinfurter, Experi-
mental demonstration of complementarity with single photons,
Appl. Phys. B 76, 113 (2003).

[15] C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of Subpi-
cosecond Time Intervals between Two Photons by Interference,
Phys. Rev. Lett. 59, 2044 (1987).

[16] Y. H. Shih and C. O. Alley, New type of Einstein-Podolsky-
Rosen-Bohm Experiment using Pairs of Light Quanta Produced
by Optical Parametric Down Conversion, Phys. Rev. Lett. 61,
2921 (1988).

[17] J. G. Rarity and P. R. Tapster, Two-color photons and non-
locality in fourth-order interference, Phys. Rev. A 41, 5139
(1990).

[18] B. Yurke, S. L. McCall, and J. R. Klauder, SU(2) and SU(1,1)
interferometers, Phys. Rev. A 33, 4033 (1986).

[19] X. Y. Zou, L. J. Wang, and L. Mandel, Induced Coherence and
Indistinguishability in Optical Interference, Phys. Rev. Lett. 67,
318 (1991).

[20] M. V. Chekhova and Z. Y. Ou, Nonlinear interferometers in
quantum optics, Adv. Opt. Photon. 8, 104 (2016).

[21] C. M. Caves, Reframing SU(1,1) interferometry, Adv. Quantum
Technol. 3, 1900138 (2020).

[22] Z. Y. Ou and X. Li, Quantum SU(1,1) interferometers:
Basic principles and applications, APL Photonics 5, 080902
(2020).

043707-10

https://doi.org/10.1119/1.16104
https://doi.org/10.1103/RevModPhys.84.777
https://doi.org/10.1119/1.4955173
https://doi.org/10.1119/1.5047438
https://doi.org/10.1103/PhysRevLett.122.053204
http://arxiv.org/abs/arXiv:2101.02431
https://doi.org/10.1038/1781046a0
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1038/nature13586
https://doi.org/10.1103/PhysRevA.93.023810
https://doi.org/10.1038/s41566-017-0011-5
https://doi.org/10.1016/j.revip.2019.100030
https://doi.org/10.1209/0295-5075/1/4/004
https://doi.org/10.1007/s00340-003-1106-x
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevLett.61.2921
https://doi.org/10.1103/PhysRevA.41.5139
https://doi.org/10.1103/PhysRevA.33.4033
https://doi.org/10.1103/PhysRevLett.67.318
https://doi.org/10.1364/AOP.8.000104
https://doi.org/10.1002/qute.201900138
https://doi.org/10.1063/5.0004873


QUANTUM OPTICAL COHERENCE: FROM LINEAR TO … PHYSICAL REVIEW A 104, 043707 (2021)

[23] T. Ono, G. F. Sinclair, D. Bonneau, M. G. Thompson, J. C.
Matthews, and J. G. Rarity, Observation of nonlinear interfer-
ence on a silicon photonic chip, Opt. Lett. 44, 1277 (2019).

[24] G. Frascella, E. E. Mikhailov, N. Takanashi, R. V. Zakharov,
O. V. Tikhonova, and M. V. Chekhova, Wide-field su(1,1) inter-
ferometer, Optica 6, 1233 (2019).

[25] A. Riazi, C. Chen, E. Y. Zhu, A. V. Gladyshev, P. G.
Kazansky, J. Sipe, and L. Qian, Biphoton shaping with cascaded
entangled-photon sources, npj Quantum Inf. 5, 77 (2019).

[26] A. V. Paterova and L. A. Krivitsky, Nonlinear interference in
crystal superlattices, Light Sci. Appl. 9, 82 (2020).

[27] A. Vanselow, P. Kaufmann, I. Zorin, B. Heise, H. M.
Chrzanowski, and S. Ramelow, Frequency-domain optical co-
herence tomography with undetected mid-infrared photons,
Optica 7, 1729 (2020).

[28] L. J. Wang, X. Y. Zou, and L. Mandel, Induced coherence
without induced emission, Phys. Rev. A 44, 4614 (1991).

[29] X. Y. Zou, T. P. Grayson, and L. Mandel, Observation of Quan-
tum Interference Effects in the Frequency Domain, Phys. Rev.
Lett. 69, 3041 (1992).

[30] T. P. Grayson, X. Y. Zou, D. Branning, J. R. Torgerson, and L.
Mandel, Interference and indistinguishability governed by time
delays in a low-q cavity, Phys. Rev. A 48, 4793 (1993).

[31] X. Y. Zou, T. Grayson, G. A. Barbosa, and L. Mandel, Con-
trol of visibility in the interference of signal photons by
delays imposed on the idler photons, Phys. Rev. A 47, 2293
(1993).

[32] H. M. Wiseman and G. J. Milburn, Quantum Theory of Optical
Feedback via Homodyne Detection, Phys. Rev. Lett. 70, 548
(1993).

[33] M. Ibnoussina, A. Coillet, J.-B. Dory, J.-B. Jager, P. Colman,
P. Noé, and B. Cluzel, Heterodyne interferometry applied to the
characterization of nonlinear integrated waveguides, Opt. Lett.
45, 5053 (2020).

[34] V. Devrelis, M. O’Connor, and J. Munch, Coherence length of
single laser pulses as measured by CCD interferometry, Appl.
Opt. 34, 5386 (1995).

[35] D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, I. A.
Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and
J. D. Franson, Photon-number-resolving detection using time-
multiplexing, J. Mod. Opt. 51, 1499 (2004).

[36] T. J. Herzog, J. G. Rarity, H. Weinfurter, and A. Zeilinger,
Frustrated Two-Photon Creation via Interference, Phys. Rev.
Lett. 72, 629 (1994).

[37] J.-D. Zhang, Z.-J. Zhang, L.-Z. Cen, J.-Y. Hu, and Y. Zhao,
Nonlinear phase estimation: Parity measurement approaches
the quantum Cramér-Rao bound for coherent states, Phys. Rev.
A 99, 022106 (2019).

[38] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics
II: Nonequilibrium Statistical Mechanics (Springer Science &
Business Media, Heidelberg, 2012), Vol. 31.

[39] N. Leibovich and E. Barkai, Aging Wiener-Khinchin Theorem,
Phys. Rev. Lett. 115, 080602 (2015).

[40] R. A. Campos, B. E. A. Saleh, and M. C. Teich, Fourth-order
interference of joint single-photon wave packets in lossless
optical systems, Phys. Rev. A 42, 4127 (1990).

[41] N. S. Bisht and R. Shimizu, Spectral properties of broadband
biphotons generated from PPMgSLT under a type-II phase-
matching condition, JOSA B 32, 550 (2015).

[42] M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, Super-
resolving phase measurements with a multiphoton entangled
state, Nature (London) 429, 161 (2004).

[43] I. Afek, O. Ambar, and Y. Silberberg, High-noon states by
mixing quantum and classical light, Science 328, 879 (2010).

[44] S. Scheel, K. Nemoto, W. J. Munro, and P. L. Knight,
Measurement-induced nonlinearity in linear optics, Phys. Rev.
A 68, 032310 (2003).

[45] W. P. Grice and I. A. Walmsley, Spectral information and dis-
tinguishability in type-II down-conversion with a broadband
pump, Phys. Rev. A 56, 1627 (1997).

[46] A. Ferreri, M. Santandrea, M. Stefszky, K. H. Luo, H.
Herrmann, C. Silberhorn, and P. R. Sharapova, Spectrally
multimode integrated SU(1,1) interferometer, Quantum 5, 461
(2021).

[47] K.-H. Luo, S. Brauner, C. Eigner, P. R. Sharapova, R. Ricken,
T. Meier, H. Herrmann, and C. Silberhorn, Nonlinear integrated
quantum electro-optic circuits, Sci. Adv. 5, eaat1451 (2019).

[48] D. S. Simon, G. Jaeger, and A. V. Sergienko, Quantum Metrol-
ogy, Imaging, and Communication (Springer, New York, 2017).

[49] L. Pezze, A. Smerzi, M. K. Oberthaler, R. Schmied, and
P. Treutlein, Quantum metrology with nonclassical states of
atomic ensembles, Rev. Mod. Phys. 90, 035005 (2018).

043707-11

https://doi.org/10.1364/OL.44.001277
https://doi.org/10.1364/OPTICA.6.001233
https://doi.org/10.1038/s41534-019-0188-1
https://doi.org/10.1038/s41377-020-0320-1
https://doi.org/10.1364/OPTICA.400128
https://doi.org/10.1103/PhysRevA.44.4614
https://doi.org/10.1103/PhysRevLett.69.3041
https://doi.org/10.1103/PhysRevA.48.4793
https://doi.org/10.1103/PhysRevA.47.2293
https://doi.org/10.1103/PhysRevLett.70.548
https://doi.org/10.1364/OL.399512
https://doi.org/10.1364/AO.34.005386
https://doi.org/10.1080/09500340408235288
https://doi.org/10.1103/PhysRevLett.72.629
https://doi.org/10.1103/PhysRevA.99.022106
https://doi.org/10.1103/PhysRevLett.115.080602
https://doi.org/10.1103/PhysRevA.42.4127
https://doi.org/10.1364/JOSAB.32.000550
https://doi.org/10.1038/nature02493
https://doi.org/10.1126/science.1188172
https://doi.org/10.1103/PhysRevA.68.032310
https://doi.org/10.1103/PhysRevA.56.1627
https://doi.org/10.22331/q-2021-05-27-461
https://doi.org/10.1126/sciadv.aat1451
https://doi.org/10.1103/RevModPhys.90.035005

