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Cherenkov radiation is one of the central effects in relativistic electrodynamics, which lends its name to a
vast class of optical phenomena in which a moving source emits off-axis radiation, giving rise to a signature
Cherenkov emission cone. When a radiation source is confined to a finite path, however, translational symmetry
of its motion is removed, giving rise to edge effects that modify the canonical picture of conical emission. Here,
we focus on one class of such edge effects as the key to understanding the properties of secondary radiation
by laser-induced filaments. Charge-current transients near the edges of laser filaments are shown to couple
Cherenkov emission to bremsstrahlung and transition radiation, giving rise to filament-length-sensitive features
in the radiation field structure. We present a unified description of this class of radiation phenomena with a
continuous analytical crossover from the subluminal to the superluminal setting of radiating currents and with
the low-frequency cutoff in the radiation spectrum defined by the filament length.

DOI: 10.1103/PhysRevA.104.043509

I. INTRODUCTION

Laser-induced filamentation (LF) is one of the most re-
markable effects in ultrafast optics [1,2] that reveals unique
scenarios of nonlinear space-time wave dynamics [3–5], pro-
vides a source of bright multiband supercontinua [6–9], and
enables a high-throughput compression of high-peak-power
laser pulses to few-cycle field wave forms [10,11]. Lying at
the interface between nonlinear optical science and ultrafast
laser-plasma (LP) physics, research into laser filamentation
reveals new aspects of laser–plasma interactions [12–16]
and offers means to probe and eventually resolve laser-
plasma nonlinearities related to bound-state electrons, ultra-
fast laser-induced ionization, and laser-plasma charge-carrier
dynamics.

Ultrafast nonlinearities of ponderomotively and ionization-
driven plasma currents have been shown to be central for
understanding low-frequency, THz-to-microwave radiation by
laser filaments [12,17]—an effect that brings the promise of
bright THz-to-microwave sources for a vast range of appli-
cations [18], including medical imaging, safety screening,
remote sensing communication technologies, material char-
acterization, high-speed solid-state optoelectronics [19–21],
laser-plasma particle acceleration [22], optical spintronics
[23], and laser valleytronics [24,25]. Comprehensive models
of laser-driven plasma currents have proven their high ex-
planatory power [1,2,12–17], providing useful insights into
many of the key properties of THz generation in LF or LP
experiments. As a powerful insight, ponderomotively driven
longitudinal plasma currents have been shown [12,13,17] to
provide a source of bright transition–Cherenkov-type emis-
sion of THz radiation by laser filaments, offering an elegant
explanation for many of the properties of THz radiation ob-
served in LF experiments.

The question as to whether the same physical mechanisms
can give rise to radiation at even lower, microwave frequen-
cies, as detected in recent LP and LF studies [26–31], is
far from trivial. Indeed, the spectrum of the low-frequency
LP or LF output in some of the recent studies extends well
beyond the plasma frequency cutoff, bringing up questions
regarding the overall setting whereby superluminal [12] or
subluminal [17,32] plasma currents can emit radiation at
wavelengths much longer than the transverse size of the LP
source.

Here, we seek to address these questions by examining
representative generic models of electric-current wave forms
in LFs and LPs, providing sources of low-frequency, THz-to-
microwave secondary radiation. An analysis presented below
in this paper shows that the edge effects inherent in the
LF setting tend to couple Cherenkov radiation emitted by
such currents to bremsstrahlung and transition radiation, often
making these three types of radiation physically indistin-
guishable. Resorting to an evanescent-field extension of the
Cherenkov effect to subluminal electric currents, we provide
a unified description of low-frequency radiation by sub- and
superluminal plasma currents with a continuous analytical
crossover from the superluminal to the subluminal picture of
bremsstrahlung-transition-Cherenkov radiation. In this laser-
plasma interaction scenario, long-wavelength radiation builds
up outside the laser plasma, unfolding at spatial scales much
larger than the transverse size of the LP source. Central to this
physical setting is an interference of electromagnetic traveling
waves emitted by impulsively driven transient currents near
the LP or LF edges, which combine into a far-field radiation
pattern whose low-frequency cutoff is defined by the LP or
LF length and whose spectral and spatial properties are in
agreement with experimental studies.
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II. CHERENKOV RADIATION:
FRANK-TAMM TREATMENT

We start with a generic model of an electric current j in-
duced by an electric charge e moving along an infinite straight
line with a constant speed v:

j = evδ(r − vt ), (1)

where r is the radius vector and t is time.
With the z axis chosen along v, the Cartesian components

of j are

jx = jy = 0, jz = evδ(z − vt ). (2)

We search for the radiation field of such a current by
following the Frank-Tamm treatment [33,34] in solving the
set of equations for the Fourier transforms of the fields and
potentials:

∇2Aω + k2
0n2Aω = −4π

c
jω, (3)

∇2φω + k2
0φω = −4π

n2
ρω, (4)

Hω = ∇ × Aω, (5)

Eω = −∇φω − iω

c
Aω, (6)

Here, Eω and Hω are the Fourier transforms of the electric
and magnetic fields, φω and Aω are the Fourier transforms
of the scalar and vector potentials, ρω and jω are the Fourier
transforms of the charge density and the electric current, k0 =
ω/c, c is the speed of light in vacuum, and n = n(ω) is the
refractive index.

The Fourier transform of the current jz as defined by
Eq. (2) is

jz(ω) = e/(2π )exp(−iωz/v)δ(x)δ(y), (7)

or, in cylindrical coordinates ρ, φ, z,

jz(ω) = e/(2π2ρ )exp(−iωz/v)δ(ρ). (8)

We search for the solutions as suggested by the cylindrical
symmetry and the z-dependent phase of the current (8):

Aρ = Aφ = 0, (9)

Az(ω) = e/(2c)a(ρ, ω)exp(−iωz/v). (10)

Plugging Eqs. (9) and (10) into Eq. (3) yields [33,34]

∂2a

∂ρ2
+ 1

ρ

∂a

∂ρ
+ s2a = − 4

πρ
δ(ρ) (11)

with

s2 = ω2

v2
(β2n2 − 1)

and β = v/c.

The general solution for u(ρ, ω) that satisfies Eq. (11)
everywhere except for the pole at ρ = 0 is [35]

a(ρ, ω) = c1H (1)
0 (sρ) + c2H (2)

0 (sρ )

= c1H (1)
0 (iσρ) + c2H (2)

0 (iσρ), (12)

where H (1)
0 (ξ ) and H (2)

0 (ξ ) are the Hankel functions of the first
and second kind, c1 and c2 are constants, and σ 2 = –s2.

For low v, such that βn < 1 and s2 < 0, σ is real, allowing
the solution for a to be written as

a = iH (1)
0 (iσρ). (13)

In the limit of σρ � 1, the radiation field decays exponen-
tially with ρ,

a ≈
(

2

πcρ

)1/2

exp (−σρ ). (14)

In this regime, the fields induced by the current (2) are
purely evanescent, giving rise to no radiation in the far field.

For high v, on the other hand, such that βn > 1 and s is
real, Eq. (12) yields an outgoing cylindrical wave with

a = −iH (2)
0 (sρ) for ω > 0 (15)

and

a = iH (1)
0 (sρ ) for ω < 0. (16)

In the limit of sρ � 1, the only nonzero component of the
vector potential is

Az(ω) ≈ −ie

c(2πsρ)1/2 exp
(
−iω

z

v
− isρ + i

π

4

)
. (17)

Introducing the Cherenkov angle, cosθ0 = 1/(βn), it is
convenient to rewrite Eq. (17), correcting a series of typos
existing in the literature, as

Az(ω) ≈ −ie

c(2πsρ)1/2 exp
[
−i

ω

c
n(z cos θ0 + ρ sin θ0) + i

π

4

]
.

(18)

Equation (18) defines radiation field whose wave front
propagates at an angle ϑ0 relative to the z axis [Fig. 1(a)], thus
reproducing the celebrated result for the Cherenkov emission
cone [33–37].

The nonvanishing components of the radiation field as de-
fined by Eqs. (3)–(6) are

Eρ = − e

2βc

∫ ∞

−∞

1

n2

∂a(ρ, ω)

∂ρ
exp

[
iω

(
t − z

v

)]
dω, (19)

Ez = ie

2c2

∫ ∞

−∞

(
1

β2n2
− 1

)
a(ρ, ω)ω exp

[
iω

(
t − z

v

)]
dω,

(20)

Hφ = − e

2c

∫ ∞

−∞

∂a(ρ, ω)

∂ρ
exp

[
iω

(
t − z

v

)]
dω. (21)
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FIG. 1. (a) Cherenkov radiation of a relativistic charge moving with a speed v in a medium with a refractive index n as a result of
interference of spherical waves (pink circles) emitted at each point along the path of the particle. (b) Purcell’s solution [52] for the field
of a charge that instantaneously starts moving at z = 0. The radiation field with the only electric-field component Eθ is shown against the
electrostatic field induced by the charge. A segment of a circle centered at z = 0 with a radius of ct/n is shown with the dotted line.

III. CHERENKOV RADIATION IN RELATIVISTIC
PHYSICS AND NONLINEAR OPTICS

In its original, relativistic-physics version [34–36],
Cherenkov radiation refers to a radiation of a relativistic
charge [Figs. 1(a) and 2(a)] that moves in a medium with

FIG. 2. (a) An electric charge moving with a speed v along a
laser filament of length L. Also shown are the radiation patterns of
bremsstrahlung emitted by this charge as it instantaneously starts
moving at z = –L/2 (blue line), an electric dipole d = eLez (pink
line), and the entire finite-length filament (black line), with ez being
the unit vector along the z axis and R0 being the distance between
the filament and a far-field observation point. (b) Bremsstrahlung-
transition Cherenkov radiation by a laser filament. An ultrashort
laser pulse (green line) induces an ultrafast ionization of an initially
neutral gas (pink shading), giving rise to a steep ionization front (the
boundary between the pink shading and the unshaded area), which
propagates through the gas in the wake of the laser driver. Shown
with a blue line is the radiation pattern of secondary radiation emitted
by a laser filament extending from z = –L/2 to z = L/2.

a speed, vc, higher than the phase velocity of radiation it
emits, vc > u = c/n(ω). Originally meant to refer to radiation
by relativistic charged particles, in the laser era, the term
“Cherenkov radiation” has absorbed a much broader sense,
lending its name to a vast class of radiation phenomena in
which a source of radiation, moving with a speed above
c/n, emits an off-axis radiation, giving rise to a signature
Cherenkov emission cone.

Nonlinear optics is particularly rich with radiation phe-
nomena in which a source—a driver pulse or laser-induced
nonlinear polarization—rides through a medium faster than
c/n(ωs ), but allows phase matching with an off-axially ra-
diated optical field at frequency ωs. Examples include, but
are in no way limited to, the Cherenkov harmonic genera-
tion in waveguides and photonic crystals [38–42], Cherenkov
emission of THz radiation in electro-optical materials [43,44],
Cherenkov radiation by optical solitons [45–48], and, more
recently, Cherenkov radiation of THz field wave forms by
laser filaments [12,17,32].

Specifically, in a laser filament, an ultrashort laser driver
[green line in Fig. 2(b)] induces an ultrafast ionization of an
initially neutral gas [pink shading in Fig. 2(b)], giving rise
to a steep ionization front [the boundary between the pink
shading and the unshaded area in Fig. 2(b)], which propagates
through the gas in the wake of the laser driver. Transient
plasma currents induced via such laser-driven ultrafast ioniza-
tion provide a source of low-frequency secondary radiation,
giving rise to THz and sub-THz radiation [12,17,32]. The
electrons that constitute such currents move at speeds well
below the speed of light. The laser-induced ionization front
that drives these currents, however, propagates through the
gas along with the laser pulse [Fig. 2(b)]. The speed of this
ionization front can be close to or even higher than the phase
velocity of THz/microwave radiation, giving rise to THz or
microwave radiation patterns in the form of a celebrated
Cherenkov emission cone [Fig. 2(b)], offering a consistent
explanation to the conical emission of THz radiation ob-
served in many experiments on laser-induced filamentation
[13,28,29,31,32].

IV. RADIATION BY A FINITE
FILAMENT OF CURRENT

With this picture of secondary radiation by plasma currents
in mind, we consider an electric current j induced by an
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electric charge q moving with a constant speed v along a
straight line of finite length L [Fig. 2(a)]. With the z axis
chosen along v, as before, the Cartesian components of j are

jx = jy = 0, jz = evδ(x)δ(y)δ(z − vt ) (22)

for −L/2 � z � L/2 and jz = 0 otherwise.
The Fourier transform of jz as defined by Eq. (22) is

jz(ω) = [e/(2π )]δ(x)δ(y)exp(−iωz/v), (23)

for –L/2 � z � L/2 and jz(ω) = 0 otherwise.
The solution for the vector potential can then be written as

Aω(ρ, z) = e

2πc

∫ L/2

−L/2

1

R
exp

[
−i

ω

v
(ζ + βnR)

]
dζ , (24)

where R2 = ρ2 + (z−ζ )2.
In the far field, R � L, R = R0 − ζ cos θ , where R2

0 =
ρ2 + z2 and cosϑ = z/R0 [Fig. 2(a)], Eq. (24) yields

Aω = e

2πcR0
exp

(
− iωn

c
R0

) ∫ L/2

−L/2

× exp
[
− iω

v
(1 − βn cos θ )ξ

]
dξ = eβaωQ(ω, θ, L),

(25)

aω = 1

πR0ω
exp

(
− iωn

c
R0

)
, (26)

Q(ω, θ, L) = sin
[

ωL
2v

(1 − βn cos θ )
]

1 − βn cos θ
. (27)

This solution for Aω, as well as the pertinent solutions
for the E and H fields, can be recovered [49] by integrating
Eqs. (18)–(21) in z with the angular spectrum of the radiating
current, j(ω, k) as dictated by Eq. (22) instead of j(ω, k) =
evδ(k–kc), with kc = k0ncosθ0 = ω/v, as would be the case
for an infinite-length radiating current as described by Eqs. (1)
and (2).

When applying Eqs. (22)–(27) to the analysis of secondary
radiation by laser filaments, the picture that we have in mind
is that of an ultrashort laser driver with a central frequency
ω0 [green line in Fig. 2(b)], inducing an ultrafast ionization of
an initially neutral gas or a solid [pink shading in Fig. 2(b)],
giving rise to a steep ionization front [the boundary between
the pink shading and the unshaded area in Fig. 2(b)], which
propagates through the gas in the wake of the laser driver.
Transient plasma currents induced via such laser-driven ultra-
fast ionization provide a source of low-frequency secondary
radiation [12,17], leading to THz and sub-THz generation
[Figs. 2(a) and 2(b)]. Although the laser pulse leaves plasmas
in its wake along its trajectory, the plasma cutoff at ω = ωp,
ωp, being the plasma frequency, is not a concern, because
the driver pulse propagates in an initially neutral medium,
with the ionization front riding on its back, while secondary
radiation that this ionization front emits propagates outside
the laser-induced plasma that the driver pulse leaves behind
[Figs. 2(a) and 2(b)]. Because the speed of the radiation source
in such a setting, v = c/ng(ω0), is determined by the group
index of a spatially uniform neutral medium at frequency ω0,
while the phase velocity of the radiated wave, u = c/n(ω),
is controlled by the refractive index of a spatially uniform

neutral medium at frequency ω, both v and u can be treated
as spatially uniform, z-independent parameters.

As perhaps the most striking result, radiation emitted by
the current (22) is no longer a prerogative of superluminal,
v > c/n charges, but can also be emitted by subluminal cur-
rents, i.e., currents with v < c/n. Mathematically, radiation by
such subluminal currents becomes possible due to the loss of
the translational symmetry of the radiating source [cf. Eqs. (2)
and (22)] and can be viewed as an evanescent-wave extension
of Eqs. (18) of the Frank-Tamm theory, with the transverse
field profile as described by Eqs. (13) and (14). With such
an extension, the crossover from the superluminal to the sub-
luminal regime of charge-current radiation is continuous and
analytical. As an interesting insight, solutions for the radiation
emitted by a subluminal finite-L current (22) can be recovered
from the Frank-Tamm solutions (18)–(21) by extending the
definition of sinϑ0 to βn < 1 via sinϑ0 = i[1/(βn)2–1]1/2

[49].
To gain insight into these results, we recast integration in

Eq. (25) to represent Aω as a sum

Aω = �(β, θ, z = L/2) − �(β, θ, z = −L/2), (28)

�(β, θ, z) = −iaω exp [iϕ(z)]b(β, θ ), (29)

b(β, θ ) = eβ

1 − βn cos θ
, (30)

ϕ(z) = ωz

v
(1 − βn cos θ ). (31)

The spectral intensity of this radiation field is

S(ω, θ, L) ∝ e2β2

4π2cR2
0

[Q(ω, θ, L)]2sin2θ, (32)

leading to

S(ω, θ, L) ∝ 1

4π2cR2
0

[b(β, θ )]2sin2
[
ϕ
(L

2

)]
sin2θ, (33)

or

S(ω, θ, L) ∝ 1

R2
0

JB(θ )sin2
[
ϕ
(L

2

)]
, (34)

where

JB(θ ) = e2β2

4π2c

sin2θ

(1 − βn cos θ )2 (35)

is readily recognizable as the spectral intensity
of bremsstrahlung per unit solid angle [37,50].
For n � 1 and γ = 1/(1–β2)1/2 � 1, JB(ϑ ) �
[(eβ )2/(4π2c)]γ 2ϑ2/(1 + γ 2ϑ2)2 reaches its maximum
at ϑ � 1/γ , leading to a radiation pattern as sketched by the
blue line in Fig. 2(a).
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V. CHERENKOV EMISSION CONE
AND PHASE MATCHING

Setting β = 1 and n = 1, reduces Eqs. (28)–(35) to

S(ω, θ, L) ∝ sin2θ

(1 − cos θ )2 sin2
[ωL

2c
(1 − cos θ )

]
. (36)

Equation (36) thus not only assumes that the radiation
source moves at the speed of light in vacuum, v = c, but also
entirely neglects, via n(ω) = 1, the refraction of the medium
(the difference of the phase velocity of electromagnetic radi-
ation in a medium from c) and its dispersion (the frequency
dependence of the refractive index). However unphysical they
might seem, these simplifications prove adequate to certain
regimes of THz generation by laser filaments. In laser fil-
amentation, an ultrashort laser pulse propagating through a
transparent medium induces an ultrafast ionization of this
medium, giving rise to a steep front of photoionization, which
rides on the back of the pulse, providing a source of THz radi-
ation [Fig. 2(b)]. Because the photoionization front is coupled
to a laser pulse, its speed v is close to the group velocity of the
laser pulse, whose leading edge sees a neutral medium before
ionization. In the case of laser filamentation in a gas medium,
v is very close to c. The phase velocity of Cherenkov radiation
in this setting is u = c/n(ω). Within a limited bandwidth,
refraction of the medium and its dispersion can be neglected,
in a rough approximation, n(ω) ≈ 1 and u ≈ c, leading to
Eq. (36). This approximation has proven useful, providing
an adequate fit for the angular profiles of THz radiation in
laser-filamentation experiments [13,31,32,51].

Within a broader bandwidth, however, a consistent, causal
treatment of secondary radiation by laser filaments needs
to adequately account for the subluminality of the radiation
source, v < c, as well as the refraction of the medium and
its dispersion, leading to u = u(ω) = c/n(ω) and bringing
causality into a picture. Equations (28)–(35) provide an ad-
equate framework for such a treatment. The denominator
1–βn(ω)cosθ in Eqs. (30) and (35) then dictates the enhance-
ment of radiation emission at θB � arccos{1/[βn(ω)]} = θ0,
i.e., at the Cherenkov angle θ0, giving rise to a meaning-
ful correlation between the emission angle and the radiation
frequency ω within the Cherenkov-cone radiation pattern, in
agreement with recent laser-plasma THz and microwave gen-
eration experiments [29–31]. Moreover, the condition of such
an enhancement,

1 − βn(ω)cosϑ = 0, (37)

recovers the universal Cherenkov phase-matching condition.
Examples of such phase matching are found not only in
Cherenkov radiation of THz field wave forms by laser
filaments [12,17,32], but also in harmonic generation in
waveguides and photonic crystals [38–42] and Cherenkov
radiation by optical solitons [45–48]. Common to all these
physically different phenomena is a signature conical ra-
diation pattern of the nonlinear output–optical harmonics,
soliton radiation, or THz emission. Notably, with regard
to nonlinear-optical methods of THz generation, a refer-
ence to a Cherenkov emission cone dates all the way back
to the pre-laser-filamentation era of pioneering research on
THz generation in electro-optical materials [43,44]. Equations

(28)–(35) reveal the connection between the conical radia-
tion pattern of a nonlinear signal and Cherenkov-type phase
matching between the radiation field and the source of radia-
tion. Articulating this connection is Eq. (37). When rewritten
as vcosϑ = c/n(ω), this equation highlights that the radiation
emission angle θ emerges as a result of constructive inter-
ference, i.e., a phase matching, between radiation wavelets
emitted by the radiation source at each point of its trajectory.

VI. TRANSITION RADIATION SIGNATURES:
ARGUMENTS FROM GINZBURG-FRANK TREATMENT

To gain deeper insight into the results of the previous
sections, we examine a charge e that stays at rest at z = 0
for t < 0, but instantaneously starts to move in the positive
direction along the z axis with a constant speed v at t = 0.
The radiation field induced by such a charge at point r,

Eθ = sin θ

r
b(β, θ )δ

(
r − c

n
t
)
, (38)

is oriented along the tangential to a sphere centered at z = 0
with a radius of ct/n [52,53]. In Fig. 1(b), this field is shown
against the electrostatic field induced by the charge, illus-
trating Purcell’s solution [52] for the field of a charge that
instantaneously starts moving at z = 0.

Consider now a charge e that moves along the z axis with
a constant speed v for t < 0, but instantaneously stops as it
reaches z = 0 at t = 0. The field emitted by such a charge
is equal in magnitude, but opposite in sign to the field Eϑ as
defined by Eq. (38).

It is instructive to examine Eq. (38) from a perspective of
transition radiation—electromagnetic radiation emitted by a
charged particle that traverses a boundary between two media,
media A and B, with different dielectric properties [37]. As
shown by Ginzburg and Frank [54,55], transition radiation
can be understood as a sum EA + Eb of radiation, EA, emitted
by a charge that uniformly moves in medium A, but instanta-
neously stops at the boundary between A and B and radiation,
EB, emitted by a charge that instantaneously starts moving at
the boundary between A and B and continues to move uni-
formly into medium B. The fields EA and Eb cancel out only
when A and B are identical in their dielectric properties. Since
the structure of both radiation fields, EA and Eb, is given by
Eq. (38), we recognize Eϑ defined by Eq. (38) as a signature
of transition radiation.

Transition radiation aspects of the field Eϑ as defined by
Eq. (38) are, of course, inseparable from the signatures of
bremsstrahlung, as the radiation of this field is due to charge
acceleration, which in the considered setting happens to be
infinite. Strong coupling between transition and radiation is
revealed already by the original Ginzburg-Frank treatment of
transition radiation, which operates with charges that instan-
taneously stop or start their motion [54,55]. The pertinence of
transition radiation to radiation emitted by laser filaments has
been earlier brought up by D’Amico et al. [32], who pointed
out the significance of the finiteness of the filament length for
the net radiation output and its properties.

Frequency ω enters into Eq. (38) only via the dispersion
of n(ω) and ng(ω). This is a consequence of an assumption of
an infinite acceleration experienced by a charge that starts to
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FIG. 3. Spatiotemporal field structure of radiation emitted by a
laser filament of length L. Shown by pink and blue semicircles are the
traveling waves of bremsstrahlung-transition radiation emitted by an
electric charge as it instantaneously starts moving at z = –L/2 (W1,
pink) and instantaneously stops at z = L/2 (W2, blue). Also shown is
the field Eθ = Eθ eθ expanded as a sum Eθ = Ez + Eρ .

move, acquiring a constant speed v at t = 0. Any bandwidth
limitation, e.g., due to a finite time interval within which the
charge is allowed to start its motion or a cutoff frequency
beyond which the gap between the dielectric functions of A
and B closes, will add a frequency dependence to Eq. (38).
To demonstrate this argument, we expand the Dirac delta
function in Eq. (38) as

δ
(

r − c

n
t
)
= 1

c
δ
(

t − nr

c

)
= 1

2πc

∫ ∞

−∞
exp

[
iω

(
t − nr

c

)]
dω.

(39)

If the bandwidth is limited with a cutoff at ωc, the
δ(r–ct/n) in Eq. (38) is replaced by a frequency-dependent
multiplier:

1

2πc

∫ ωc

−ωc

exp

[
iω

(
t − nr

c

)]
dω = 1

πc

sin
[
ωc

(
t − nr

c

)]
t − nr

c

.

(40)

When combined with Eqs. (38) and (39), Eq. (40) high-
lights that, even though Eq. (38) includes the radiation
frequency ω only via the dispersion of the refractive index,
n = n(ω), ω eventually finds a way to make it into Eq. (36)
via bandwidth limitations inevitable in realistic laser-plasma
settings.

VII. BREMSSTRAHLUNG-TRANSITION
CHERENKOV RADIATION

The field defined by Eqs. (28)–(31) can now be understood
as a superposition of two transition radiation fields emitted
by a charge that instantaneously starts moving at z = –L/2
and continues to move with a constant speed v along the z
axis until it instantaneously stops at z = L/2 [Fig. 2(a)]. As
the charge starts moving at z = −L/2, it emits a transition
radiation wave as described by the first term in Eq. (28),
W1 = �(z = –L/2), as shown in pink in Fig. 3. When the
charge stops at z = L/2, it emits another, second wave of
transition radiation, W2, shown in blue in Fig. 3. Because

the acceleration of the charge is now opposite in sign to the
acceleration of a charge that starts its motion at z = –L/2,
the polarity of W2 is opposite to the polarity of W1 (Fig. 3).
This sign reversal is correctly reflected by the minus sign in
front of the second term in Eq. (28), W2 = –�(z = –L/2).
Since the time it takes for the charge to travel the distance
L is L/v, the waves W1 and W2 reach a detector oriented
at an angle θ relative to the z axis with a time delay �t =
L/v–(n/c)Lcosϑ = (L/v)(1–βncosϑ ) (Fig. 3), giving rise to
a phase shift ϕ = ω�t = (ωL/v)(1–βncosϑ ) of the W2 wave
relative to W1. It is precisely this phase shift that the exp(iϕ)
factor in Eq. (29) accounts for.

Remarkably, the radiation field Eϑ , as defined by Eq. (38),
bears the same polarization signatures as the Cherenkov
radiation field in Eqs. (19)–(21) [Figs. 1(b) and 3]. Indeed, in
spherical coordinates, the electric field radiated by a charge
that instantaneously starts its motion or is instantaneously
brought to a halt is completely described by a single po-
larization component Eϑ . In cylindrical coordinates ρ, φ, z
used in the Frank-Tamm treatment, this electric-field compo-
nent is described in terms of two polarization components,
Eρ and Ez, defined by Eqs. (19) and (20), respectively, with
Eϑ = Eϑeϑ = Ez + Eρ = Ezez + Eρeρ, eϑ , ez, and eρ being
the pertinent unit vectors.

As an important insight, Eqs. (33) and (34) offer two al-
ternative, equally instructive pictures of secondary radiation
by charge currents [Fig. 2(a)]. Indeed, the [b(β, ϑ )sinϑ/R0]2

angular profile in Eq. (33) is readily recognized as a signature
of transition radiation [Eq. (36)], relating radiation by the
electric current (22) to transition radiation by a charge that
instantaneously starts moving near one of the ends of a fila-
ment and is instantaneously brought to a halt near the opposite
filament end. The bremsstrahlung signature JB(ϑ ) in Eq. (34),
on the other hand, reveals the bremsstrahlung connection
of charge-current radiation as described by Eqs. (28)–(35).
Making these two pictures equivalent is the laser-filament
plasma-current radiation setting [Fig. 2(a)], in which transi-
tion radiation by a charge that instantaneously starts moving
or instantaneously stops near one of the filament ends can
be viewed as bremsstrahlung of a charge that picks up an
abrupt, infinite acceleration that is parallel or antiparallel to
its velocity [Fig. 2(a)].

VIII. INSIGHTS FROM DIPOLE RADIATION

As a trivial limit, with the filament length set equal to zero,
L = 0, Eqs. (25)–(31) yield Aω = 0. Equation (28), however,
offers an interesting perspective on this result, showing that
the net radiation output vanishes for L = 0 as a result of W1 +
W2 = 0 cancellation, which, in its turn, can be viewed as a
cancellation of transition radiation wave W1 (shown pink in
Fig. 3) emitted by a charge that undergoes an instantaneous
acceleration from v = 0 to v �= 0 at some point z = z0 along
the filament by the opposite-polarity transition radiation wave
W2 (shown blue in Fig. 3), emitted by a charge that moves with
a speed v, but is brought to a halt at the same point z = z0.

Less straightforward is the limit of small, but nonzero L,
such that ωL 	 v, or, equivalently, L 	 βλ/(2π ), λ is the
radiation wavelength. In this regime, Q(ω, ϑ, L) becomes θ

independent, Q(ω, ϑ, L) ≈ ωL/(2v). The angular distribution
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of radiation power density is then given by

S(ω, θ, L) ∝ e2ω2L2

4π2c3R2
0

sin2θ. (41)

The spectral intensity of radiation as described by Eq. (41)
is seen to be independent of v/c, recovering a signature,
(k0d )2sin2ϑ p-wave radiation pattern [pink line in Fig. 2(a)],
typical of radiation by an electric dipole with a dipole mo-
ment d = eLez, where ez is the unit vector along the z axis
[Fig. 2(a)]. The buildup of radiation from longer-L filaments
can now be viewed as an interference of radiation fields emit-
ted by elementary electric dipoles arranged along the filament
[Fig. 2(a)] with the spectral intensity of radiation by each
such dipole as described by Eq. (41). Indeed, Eq. (3) with the
source term jω as defined by Eq. (23) is equivalent to

∇2Aω + k2
0n2Aω = −4π iω

c
Pω, (42)

with a fictitious polarization

Pω = − ie

2πω

v
v

exp
(

i
ω

v
z
)
δ(x)δ(y). (43)

The solution to Eq. (42) with the source term in the form
of Eq. (43) recovers Eq. (25). Each Fourier component of
radiation emitted by the current (22) can thus be found as
the field emitted by a linear array of electric-dipole harmonic
oscillators arranged along the line of the current [Fig. 2(a)].
Since radiation emitted by each dipole is independent of v/c,
the total radiation field emitted by a finite-L filament is nonva-
nishing regardless of whether the charges forming the current
are superluminal, v > c/n, or subluminal, v < c/n. Moreover,
the crossover from v > c/n to v < c/n in Eqs. (24)–(35) is
continuous for any finite L.

The Cherenkov effect with its signature sharp emission
cone [Fig. 1(a)] is recovered via limL→∞[Q(ω, θ, L)] =
πδ(1–βncosϑ ) in Eq. (27), leading to Aω ∝ δ(1–βncosϑ ).
The radiation output in this regime vanishes unless v > c/n
and cosϑ = cosϑ0 = 1/(βn), accurately reproducing all the
properties of Cherenkov radiation by superluminal, v > c/n
charges. As the edges of the filament with their transi-
tion or bremsstrahlung radiation are now at an infinite L,
the Cherenkov radiation effect remains the only source of
radiation.

While a superluminal, v > c/n charge (1) moving along
an infinite trajectory [Eq. (2)] can radiate only at a
well-defined angle cosϑ0 = 1/(βn) [see Eqs. (12)–(18)], a
charge on a finite-length trajectory radiates within a range
of angles [Fig. 2(a)], giving rise to a radiation pattern
[the black line in Fig. 2(a)] whose angular width �ϑ

can be found from ωL[1–βncos(ϑ0 + �ϑ )] = 2vπ , leading
to nL[cosϑ0–cos(ϑ0 + �ϑ )] = λ. For long filaments with
L/λ � 1, this equation yields �ϑ ≈ λ/(nLsinϑ0). As the
speed v becomes less than c/n, the main maximum of
Q(ω, ϑ, L), Q(ω, ϑ, L) = (π/β )(L/λ) with cosϑ = cosϑ0 =
1/(βn), is no longer achieved for real θ , yet the radiation
output, as can be seen from Eqs. (25)–(32), remains nonzero
as long as L is finite.

IX. EMISSION CONE, LOW-FREQUENCY
CUTOFF, AND PHASE-MATCHED

NONLINEAR POLARIZATION

The Cherenkov emission cone can thus be viewed as an
emergent property of radiation by an array of electric dipoles
d [Fig. 2(a)]. As the length of this array, L, increases from
L 	 βλ/(2π ) to L � βλ/(2π ), the far-field radiation pat-
tern is gradually transformed from a figure of eight angular
distributions, typical of radiation by a single dipole [pink
line in Fig. 2(a)], to a well-resolved δ(1−βncosθ ) Cherenkov
emission cone. Radiation in the forward direction, i.e., along
the z axis, is suppressed for any L by sin2ϑ in Eqs. (32)–(35)
[Fig. 2(a)]. In the limit of 2πL � βλ, the far-field radia-
tion pattern is independent of L. The properties of radiation
emitted by a laser filament in this regime are controlled by the
v/c ratio and the frequency dependence of the refractive index,
n = n(ω). For filaments of intermediate lengths, however, L
emerges as a key parameter that defines, via Eqs. (25)–(27),
the spatial scale within which the radiation fields emitted
by individual dipoles can add up coherently, thus setting a
significant wavelength scale for radiation emission by moving
charges, plasma currents, and laser filaments, with a long-
wavelength cutoff set, in accordance with Eq. (27), at around
λf � Ln|cosϑ0–cosϑ |. With βn � 1 and n � 1, λf becomes
λf � L|1–cosϑ |, recovering the λ/2-antenna result λf � 2L
for ϑ � π .

The emergence of the new frequency scale ωf = 2πc/λf ∼
c/L offers interesting insights into the results of laser-
filamentation experiments, which show that the broadband
supercontinua emitted by laser filaments often extend to
the sub-THz-to-microwave range, thus stretching well be-
yond the standard ωm ∼ 1/τ0 cutoff, as dictated by the pulse
width of the laser driver τ0. In a physical setting of the
bremsstrahlung-transition Cherenkov radiation as described
by Eqs. (23)–(33), these results are naturally explained in
terms of coherent combining of radiation waves emitted by
elementary dipoles along the filament length [Fig. 2(a)]. For
each radiation wavelength λ, these waves, as Eq. (27) shows,
can add up in phase only within the length L � λ/2, giv-
ing rise to the λf � 2L cutoff. The low-frequency radiation
output thus builds up as L2 for short filaments, with L 	
βλ/(2π ), but tends to saturate as L approaches βλ/(2π ).
This scaling of S(ω, θ , L) with L bears a close resemblance
with a textbook picture of phase-matching-sensitive wave
mixing described in terms of bound-state nonlinear polar-
ization [56]. Moreover, Eqs. (25)–(33) are consistent with
conical emission patterns of THz, sub-THz, and microwave
radiation observed in laser-filamentation experiments, where
the radiation output, detected within a limited bandwidth as
dictated by a finite passband of the detection system, is a
nonmonotonic function of the detection angle, changing with
the gas pressure, beam-focusing geometry, and other factors
influencing the filament length [27–31]. The physical model
of Eqs. (23)–(33) thus offers a unified framework within
which the nonlinear-optical response of moving charges and
plasma currents, such as those found in laser filaments, can
be treated on equal footing with phase-matching-sensitive
light-matter interactions induced via bound-state nonlinear
polarization.
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X. CONCLUSION

To summarize, we have shown that the edge effects, in-
herent in the LF setting, tend to couple Cherenkov radiation
emitted by charge currents to bremsstrahlung and transition
radiation, making these three types of radiation physically
indistinguishable. Resorting to an evanescent-field extension
of the Cherenkov effect to subluminal electric currents, we
have provided a unified description of low-frequency radiation
by sub- and superluminal plasma currents with a continuous
analytical crossover from the superluminal to the subluminal
picture of bremsstrahlung-transition Cherenkov radiation. In
this laser-plasma interaction scenario, long-wavelength radi-
ation builds up outside the laser plasma, unfolding at spatial
scales much larger than the transverse size of the LP source.
Central to this physical setting is an interference of elec-
tromagnetic traveling waves emitted by impulsively driven
transient currents near the LP or LF edges, which combine
into a far-field radiation pattern whose low-frequency cutoff

is defined by the LP or LF length and whose spectral and
spatial properties are in agreement with experimental studies.
In a more general context, the analysis presented in this study
suggests a unified framework within which the nonlinear-
optical response of moving charges and plasma currents, such
as those found in laser filaments, can be treated on equal foot-
ing with phase-matching-sensitive light-matter interactions
induced via bound-state nonlinear polarization.
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