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Nonequilibrium strong-coupling theory for a driven-dissipative ultracold Fermi gas in the
BCS-BEC crossover region
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We theoretically investigate strong-coupling properties of an ultracold Fermi gas in the BCS-BEC crossover
regime in the nonequilibrium steady state, being coupled with two fermion baths. By developing a nonequilib-
rium strong-coupling theory based on the combined T -matrix approximation with the Keldysh Green’s function
technique, we show that the chemical potential bias applied by the two baths gives rise to the anomalous
enhancement of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing fluctuations (although the system has no
spin imbalance), resulting in the re-entrant behavior of the nonequilibrium superfluid phase transition in the
Bardeen-Cooper-Schrieffer unitary regime. These pairing fluctuations are also found to anomalously enhance
the pseudogap phenomenon. Since various nonequilibrium phenomena have recently been measured in ultracold
Fermi gases, our nonequilibrium strong-coupling theory would be useful to catch up with this experimental
development in this research field.
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I. INTRODUCTION

Since the realization of the superfluid phase transition in
40K [1] and 6Li [2–4] Fermi gases, cold Fermi gas physics has
dramatically progressed [5–7]. An advantage of this system is
the high tunability of various physical parameters. In partic-
ular, a tunable pairing interaction associated with a Feshbach
resonance [8] has enabled us to systematically study Fermi su-
perfluids from the weak-coupling Bardeen-Cooper-Schrieffer
(BCS) regime to the strong-coupling Bose-Einstein conden-
sation (BEC) limit [9–14]. The intermediate coupling regime,
which is referred to as the BCS-BEC crossover region in the
literature, has particularly attracted much attention [5–7,15],
because strong pairing fluctuations dominate over system
properties there.

So far, ultracold Fermi gases have mainly been stud-
ied in the thermal equilibrium case, because the usual ex-
perimental situation of a trapped Fermi gas is considered
to be well isolated from the environment and also be in
the (quasi)equilibrium state. However, a strong interest in
nonequilibrium properties of this strongly interacting quan-
tum many-body system has recently emerged, fueled by the
experimental realization of tunable dissipation [16–20].

The study of quantum many-body correlation effects in
the presence of dissipation is currently a rapidly evolving
field [21–24], both experimentally and theoretically [25] in
various platforms, such as superconducting circuits [21], ex-
citon polaritons [22,23], strongly correlated photons [26], and
trapped ions [27]. To highlight, a Mott insulator of photons
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in a superconducting circuit [28] was recently realized by a
careful dissipation engineering, and an exotic quantum state
of matter [29] and anomalous critical phenomena [30–33]
are predicted to arise from the interplay between the many-
body correlation effects and dissipations. Regarding the high
tunability of the pairing interaction and dissipation strength,
a cold atomic Fermi gas seems to be a promising playground
to largely broaden the understandings of such nonequilibrium
many-body effects in a systematic way.

Motivated by the above-mentioned possibilities, in this
paper, we theoretically investigate a strongly interacting
ultracold Fermi gas in a driven-dissipative steady state,
by extending a strong-coupling T -matrix approximation
(TMA) [13,34], developed in the thermal equilibrium Fermi
gas, to the nonequilibrium case by utilizing the Keldysh
Green’s function technique [35–37]. Among various driven-
dissipative nonequilibrium situations, in this paper, we pick
up an open Fermi gas which is coupled with two fermion
baths [pumping bath (L) and decay bath (R) in Fig. 1]. Such
a situation has recently been realized in a coupled optical
lattice with a thermal atomic reservoir in a magneto-optical
trap [16]. A similar situation may also be expected by ex-
tending the recent transport experiment on a 6Li Fermi gas
in a two-terminal configuration [38–41]. Thus, by combining
these experimental techniques [16,38–41] with a Feshbach-
induced tunable pairing interaction, the realization of BCS-
BEC crossover out of equilibrium is promising.

Our principal results are captured in Fig. 2, which shows
the steady-state phase diagram of a nonequilibrium two-
component Fermi gas with pumping and decay in the BCS
and unitary regime. In these regimes, we find that the
chemical potential bias δμ applied by the two baths gives
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FIG. 1. Model nonequilibrium driven-dissipative Fermi gas with
a tunable s-wave pairing interaction −U (<0) associated with a Fes-
hbach resonance. The nonequilibrium (main) system is coupled with
(1) a pumping bath (L) with the chemical potential μL = μ + δμ and
a coupling strength �L (which supplies Fermi atoms to the system),
as well as (2) a decay bath (R) with μR = μ − δμ and �R (which
absorbs Fermi atoms from the system). The baths are assumed to be
free Fermi gases in the thermal equilibrium state at the temperature
Tenv.

rise to an anomalous enhancement of Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) pairing fluctuations, although the sys-
tem has no spin imbalance. These anomalous FFLO-type
fluctuations turn out to cause re-entrant behavior of the
nonequilibrium superfluid phase transition. We also find
that these fluctuations anomalously enhance the pseudogap
phenomenon (PGFFLO region in Fig. 2). The FFLO-type
fluctuations and related phenomena disappear in the BEC
regime.

We briefly note that the nonequilibrium Fermi systems with
a strong attractive interaction have also been discussed in
other fields, such as an exciton gas [42] (bound electron-hole
pairs), exciton-polariton condensate [22,43] (superpositions
of excitons and microcavity photons), as well as neutron star
cooling [44]. In particular, the extension of the mean-field the-
ory to the driven-dissipative nonequilibrium case has already
been done in the context of exciton and exciton-polariton
physics [45–48]. In this sense, this work is an extension of
these previous work to include pairing fluctuations beyond the
mean-field level.

This paper is organized as follows. In Sec. II, we explain
how to extend TMA in the thermal equilibrium state to the
case of nonequilibrium steady state, by using the Keldysh
Green’s function technique. We show our results in Sec. III.
Here, we examine the superfluid phase transition temperature,
as well as single-particle excitations, in the nonequilibrium
BCS-BEC crossover region. Throughout this paper, we set
h̄ = kB = 1, and the system volume V is taken to be unity,
for simplicity.

II. FORMULATION

In this section, we explain our theoretical framework. In
Sec. II A, we present a model open Fermi gas which is coupled
with a pumping and decay baths. As a useful tool to deal
with both nonequilibrium and strong-coupling effects, we
introduce the Keldysh Green’s function theory in Sec. II B.

FIG. 2. Phase diagram of a nonequilibrium two-component
Fermi gas with pumping and decay in terms of the temperature of
the environments Tenv and the chemical potential bias δμ applied
by the two baths. (See Fig. 1). (a) BCS regime (pFas )−1 = −0.6.
(b) Unitary limit (pFas )−1 = 0. T c

env (solid line) is the superfluid
phase transition temperature, and T ∗

env (dashed line) is the pseudogap
temperature, where the pseudogap appears in the densiy of state.
(Note that the pseudogap is a crossover phenomenon, without being
accompanied by any phase transition.) The regions labeled by “SF,”
“N,” “PGBCS,” and “PGFFLO” correspond to the superfluid state,
normal state, pseudogap regime where BCS-type (zero center-of-
mass momentum) pairing fluctuations are dominant [5,13,34], and
pseudogap regime where FFLO-type (finite center-of-mass momen-
tum) pairing fluctuations are dominant, respectively. For the concrete
criteria for determining these regimes, see Sec. III B.

Using this, we explain how to extend TMA to the nonequi-
librium steady state in Sec. II C. In Sec. II D, we derive the
equation for the superfluid phase transition temperature within
the framework of the nonequilibrium T -matrix approximation
(NETMA). We also confirm that NETMA is reduced to TMA
in the thermal equilibrium limit in Sec. II E.

A. Model nonequilibrium interacting Fermi gas

We consider a two-component Fermi gas, which is coupled
with a pumping bath and a decay bath, as illustrated in Fig. 1.
To model this system, we consider the Hamiltonian [47],

H = Hsys + Henv + Hmix. (1)
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Here,

Hsys =
∑
p,σ

εpa†
p,σ ap,σ

−U
∑
p,p′,q

a†
p+q/2,↑a†

−p+q/2,↓a−p′+q/2,↓ap′+q/2,↑ (2)

describes a (nonequilibrium) Fermi gas, which we call the
(main) system in this paper. ap,σ is an annihilation operator
of a Fermi atom with pseudospin σ = ↑,↓, describing two
atomic hyperfine states. εp = p2/(2m) is the kinetic energy,
where m is an atomic mass. −U (<0) is a pairing interaction,
which is assumed to be tunable by using a Feshbach reso-
nance [8]. As usual, we measure the interaction strength in
terms of the s-wave scattering length as, which is related to
the pairing interaction −U as [11]

4πas

m
= −U

1 − U
∑pc

p
1

2εp

, (3)

where pc is a momentum cutoff. The weak-coupling BCS
side and the strong-coupling BEC side are then character-
ized by (pFas)−1 <∼ 0 and (pFas)−1 � 0, respectively. Here
pF = (3π3N )1/3 is the Fermi momentum of an assumed two-
component free Fermi gas with N atoms in the thermal
equilibrium state. For later convenience, we also define the
corresponding Fermi energy εF = p2

F/(2m), as well as the
Fermi temperature TF = εF.

The left (α = L) and right (α = R) baths in Fig. 1 are
described by

Henv =
∑

α=L,R

∑
p,σ

ξα
p cα†

p,σ cα
p,σ , (4)

where cα
p,σ is an annihilation operator of a Fermi atom in the

α bath, with the kinetic energy ξα
p = εp − μα , measured from

the Fermi chemical potential μα . In this paper, we assume
that both the baths are huge and can be described by free
Fermi gases in the thermal equilibrium state at the common
(environment) temperature Tenv. Under these assumptions, the
momentum distribution in each bath obeys the ordinary Fermi
distribution function,

f
(
ξα

p

) = 1

eξα
p /Tenv + 1

. (5)

The main system becomes in the nonequilibrium steady
state by the couplings with the two baths α = L, R. This
coupling effect is described by [47]

Hmix =
∑

α=L,R

Nt∑
i=1

∑
p,q,σ

[
eiμαt�αcα†

q,σ ap,σ e−iq·Rα
i eip·rα

i + H.c.
]
,

(6)

where �α=L,R is a tunneling matrix element between the
system and the α bath. In this paper, we set �L = �R ≡ �,
for simplicity. In Eq. (6), the tunneling is assumed to occur
between randomly distributing spatial positions Rα

i in the
α bath and positions rα

i in the system (i = 1, . . . , Nt � 1).
Although the translational invariance of the system is then

broken, this symmetry property will later recover by taking
the spatial average over these tunneling positions [47].

In Eq. (6), the factor eiμαt describes the situation that
the energy band in the α bath is filled up to μα (at
Tenv = 0) [49], when the energy is measured from the bot-
tom (εp=0 = 0) of the energy band in the main system.
When we write μL = μ + δμ and μR = μ − δμ, the sys-
tem becomes in the nonequilibrium state in the case of
δμ 	= 0. We call δμ the nonequilibrium parameter in this
paper. Without loss of generality, we take δμ � 0. In the
nonequilibrium steady state, tunneling current flows from the
left (pumping) bath to the system (≡ JL) across the junc-
tion, as well as from the system to the right (decay) bath
[≡JR (=JL)]. However, the current does not flow in the main
system, after taking the spatial average over the tunneling
positions.

We briefly note that the system is in the thermal equilib-
rium state when δμ = 0, although the system-bath coupling
still brings about nonzero quasiparticle damping.

We also note that the system temperature is not well
defined in the nonequilibrium state. In the present case, the
superfluid instability of the system is controlled by the tem-
perature Tenv of the thermal equilibrium baths. To emphasize
this, we write the superfluid phase transition temperature as
T c

env in this paper.

B. Keldysh Green’s function in the main system

We extend TMA developed in the thermal equilibrium
Fermi gas [13,34] to the nonequilibrium steady state. For
this purpose, we introduce the 2 × 2 matrix Keldysh Green’s
function [35–37] in the main system,

Ĝsys,σ (p, ω) =
(

GR
sys,σ (p, ω) GK

sys,σ (p, ω)

0 GA
sys,σ (p, ω)

)
, (7)

where the superscripts “R,” “A,” and “K” represent the
retarded, advanced, and Keldysh components, respectively.
Strong coupling corrections to single-particle excitations can
conveniently be described by the 2 × 2 matrix self-energy,


̂NETMA,σ (p, ω) =
(


R
NETMA,σ (p, ω) 
K

NETMA,σ (p, ω)

0 
A
NETMA,σ (p, ω)

)
,

(8)

which appears in the Dyson equation [35–37] [see also
Fig. 3(a)],

Ĝsys,σ (p, ω) = Ĝenv,σ (p, ω)

+ Ĝenv,σ (p, ω)
̂NETMA,σ (p, ω)Ĝsys,σ (p, ω).

(9)

The Keldysh propagator Ĝenv,σ has the same matrix structure
as Eq. (7), but only involves effects of the system-bath cou-
pling. Within the second-order Born approximation in terms
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FIG. 3. (a) Dyson equation for 2 × 2 matrix Keldysh Green’s function Ĝsys,σ (thick solid line) in the main system. The self-energy 
̂NETMA,σ

describes effects of pairing fluctuations in NETMA. (b) Particle-particle scattering matrix �̂ in NETMA. The wavy line is the pairing interaction
−U . The Keldysh Green’s function Ĝenv,σ (double solid line) involves effects of the two baths within the second-order Born approximation.
(c) Dyson equation for Ĝenv,σ . The solid square denotes the tunneling �α between the system and the α bath. D̂α=L,R

0,σ is the Keldysh Green’s
function in the α bath, given in Eq. (A4). Ĝ0,σ is the single-particle propagator in the initial thermal equilibrium state in Eq. (11). In dealing
with this Dyson equation, we take the spatial average over the tunneling positions Rα

i and rα
i , to recover the translational invariance.

of �α=L,R [see Fig. 3(c)], it obeys the Dyson equation,

Ĝenv,σ (p, ω) = Ĝ0,σ (p, ω)

+ Ĝ0,σ (p, ω)
̂env,σ (p, ω)Ĝenv,σ (p, ω),

(10)

where we have taken the spatial average over the tunneling
positions Rα

i and rα
i , and

Ĝ0,σ (p, ω) =
(

GR
0,σ (p, ω) GK

0,σ (p, ω)

0 GA
0,σ (p, ω)

)

=
(

1
ω+−εp

−2π iδ(ω − εp)[1 − 2 fini(ω)]

0 1
ω−−εp

)

(11)

is the bare Green’s function in the initial noninteracting
thermal equilibrium state at t = −∞ [35–37]. Here, ω± =
ω ± iδ, where δ is an infinitesimally small positive number.
fini(ω) = 1/[eω/Tini + 1] is the Fermi distribution function,
where Tini is the initial temperature. We will later find that
the final nonequilibrium steady state actually looses the initial
memory.

The self-energy 
̂env,σ (p, ω) in Eq. (10) describes effects
of the system-bath coupling, given by [47]


̂env,σ (p, ω)

=
(


R
env,σ (p, ω) 
K

env,σ (p, ω)

0 
A
env,σ (p, ω)

)

=
(

−2iγ −2iγ
[

tanh
(

ω−μL

2Tenv

) + tanh
(

ω−μR

2Tenv

)]
0 2iγ

)
.

(12)

For the derivation of Eq. (12), see Appendix A. In Eq. (12),
γ = πNtρ|�|2 is the quasiparticle damping, where ρ (=ρL =
ρR) is the single-particle density of states in the baths. (Note
that we are setting �L = �R = � in this paper). Here, we
have ignored the α(=L, R) dependence of the density of states
ρ, for simplicity. We have also employed the so-called wide-
band limit approximation [37,50], where the ω dependence of
ρ is ignored. This approximation is justified when both the L
and R baths are so huge that the energy dependence of the bath
density of states around the Fermi level can be ignored, within
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the variation of μα=L,R to tune the nonequilibrium properties
of the main system (which is assumed to be much smaller
than the baths). We briefly note that the density of states ρ(ω)
in the main system is not identical to ρ in the baths, but has

ω dependence. The detailed expression will later be given in
Eq. (30).

The Dyson equation (10), as well as Eqs. (11) and (12),
give

Ĝenv,σ (p, ω) =
(

GR
env,σ (p, ω) GK

env,σ (p, ω)

0 GA
env,σ (p, ω)

)

=
( 1

ω−εp+2iγ
−4iγ [1− f (ω−μL )− f (ω−μR )]

[ω−εp]2+4γ 2

0 1
ω−εp−2iγ

)
. (13)

As mentioned previously, the Fermi distribution functions f (ω − μα=L,R ) in Eq. (13) has nothing to do with the initial
distribution fini(ω) in Eq. (11). Instead, they are just the momentum distributions in the equilibrium pumping and decay baths,
given in Eq. (5). This is because the initial condition is wiped out by the coupling with the pumping and decay baths [37,50].
Because of the same reason, the main system in the nonequilibrium steady state is affected by, not the initial temperature Tini,
but the (environmental) bath temperature Tenv, as seen in Eq. (13).

We point out that two kinds of bath effects are involved in Eq. (13): One is the quasiparticle damping 2γ . The other is the
deviation of the momentum distribution (≡nenv

p,σ ) from the Fermi distribution function [35–37]:

nenv
p,σ = −i

∫ ∞

−∞

dω

2π
G<

env,σ (p, ω)

=
∫ ∞

−∞

dω

2π

2γ

[ω − εp]2 + 4γ 2
[ f (ω − μL) + f (ω − μR)]

� 1

2
[ f (εp − μL) + f (εp − μR)], (14)

where

G<
env,σ (p, ω) = 1

2

[
GK

env,σ (p, ω) − GR
env,σ (p, ω) + GA

env,σ (p, ω)
]

(15)

is the lesser Green’s function [35–37]. In obtaining the last line in Eq. (14), we have taken the limit γ → 0, for simplicity. In the
thermal equilibrium case (μL = μR), Eq. (14) is reduced to the expected ordinary Fermi distribution function f (εp − μ). When
the system is out of equilibrium (μL > μR), nsys

p,σ in Eq. (14) no longer equals the Fermi distribution function.

C. Nonequilibrium T -matrix approximation (NETMA)

We now evaluate the NETMA self-energy 
̂NETMA,σ (p, ω) in Eq. (8). As in the equilibrium Matsubara formalism [13,34],
pairing fluctuations in the Keldysh Green’s function theory are also described by the ladder-type diagrams shown in Fig. 3(b).
We explain how to sum up these diagrams in Appendix B and immediately show the result here:


R
NETMA,σ (p, ω) = [


A
NETMA,σ (p, ω)

]∗

= − i

2

∑
q

∫ ∞

−∞

dν

2π

[
�R(q, ν)GK

env,−σ (q − p, ν − ω) + �K(q, ν)GA
env,−σ (q − p, ν − ω)

]
, (16)


K
NETMA,σ (p, ω) = − i

2

∑
q

∫ ∞

−∞

dν

2π

[
�A(q, ν)GR

env,−σ (q − p, ν − ω)

+�R(q, ν)GA
env,−σ (q − p, ν − ω) + �K(q, ν)GK

env,−σ (q − p, ν − ω)
]
. (17)

Here, �R,A,K(q, ν) are the retarded (R), advanced (A), and Keldysh (K) components of the particle-particle scattering matrices
that physically describe pairing fluctuations in the system. In NETMA, these are given by

(
�R(q, ν) �K(q, ν)

0 �A(q, ν)

)
=

⎛
⎝ −U

1+U�R (q,ν)
U 2�K (q,ν)

[1+U�R (q,ν)][1+U�A (q,ν)]

0 −U
1+U�A (q,ν) ,

⎞
⎠, (18)
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where

�R(q, ν) = [�A(q, ν)]∗

= i

2

∑
p

∫ ∞

−∞

dω

2π

[
GR

env,σ (p + q/2, ω + ν)GK
env,−σ (−p + q/2,−ω)

+ GK
env,σ (p + q/2, ω + ν)GR

env,−σ (−p + q/2,−ω)
]
, (19)

�K(q, ν) = i

2

∑
p

∫ ∞

−∞

dω

2π

[
GR

env,σ (p + q/2, ω + ν)GR
env,−σ (−p + q/2,−ω)

+ GA
env,σ (p + q/2, ω + ν)GA

env,−σ (−p + q/2,−ω) + GK
env,σ (p + q/2, ω + ν)GK

env,−σ (−p + q/2,−ω)
]

(20)

are the pair correlation functions.
Substituting Eqs. (13), (16), and (17), into the Dyson equation (9), we obtain the NETMA Green’s function Ĝsys,σ (p, ω) in

the Keldysh space as

Ĝsys,σ (p, ω) =

⎛
⎜⎝

1
ω−εp+2iγ−
R

NETMA,σ (p,ω)


K
NETMA,σ (p,ω)+
K

env,σ (p,ω)∣∣ω−εp+2iγ−
R
NETMA,σ (p,ω)

∣∣2

0 1
ω−εp−2iγ−
A

NETMA,σ (p,ω)

⎞
⎟⎠. (21)

We note that, in the thermal equilibrium state, we actually only need to calculate the retarded components in
Eqs. (16), (18), (19), and (21): The advanced components equal the complex conjugate of the retarded ones, e.g., GA

sys,σ (p, ω) =
[GR

sys,σ (p, ω)]∗. The Keldysh components are also related to the retarded ones through the fluctuation-dissipation rela-
tions [35–37]. The latter example can been seen in the case of Eq. (11), as

GK
0 (p, ω) = 2iIm

[
GR

0 (p, ω)
]

tanh

(
ω

2Tini

)
. (22)

We will meet more examples in Sec. II E. Such simple relations, however, no longer hold out of equilibrium. In this case, we
need to treat the retarded and Keldysh components independently. The relation between the retarded and advanced components
holds even out of equilibrium.

D. Equation for T c
env and single-particle quantities in NETMA

We determine the superfluid phase transition temperature T c
env by extending the theory developed by Kadanoff and

Martin [51,52] to the present nonequilibrium system. According to their theory, the system experiences the superfluid instability,
when the retarded particle-particle scattering matrix �R(q, ν) in Eq. (18) has a pole at q = 0 and a certain real value of the
energy ν (≡2μ̃). This condition is given by

1 + U�R(q = 0, ν = 2μ̃) = 0. (23)

Because �R(q, ν) in Eq. (19) is a complex function, Eq. (23) involves two equations, Re[�R(0, ν = 2μ̃)]−1 = 0 and
Im[�R(0, ν = 2μ̃)]−1 = 0. Substituting Eq. (18) into the latter equation, we obtain

0 =
∑

p,s=±1

∫ ∞

−∞

dω

2π
s

tanh
(

ω+s[μL−μ̃]
2T c

env

) + tanh
(

ω+s[μR−μ̃]
2T c

env

)
[(ω + εp − μ̃)2 + 4γ 2][(ω − εp + μ̃)2 + 4γ 2]

. (24)

Because μL = μ + δμ and μR = μ − δμ, Eq. (24) is satisfied only when μ̃ = μ. Substituting this into the real part of Eq. (23),
one obtains the T c

env equation as

1 = U
∑

p

∫ ∞

−∞

dω

2π

2γω
[

tanh
(

ω+δμ

2T c
env

) + tanh
(

ω−δμ

2T c
env

)]
[(ω − εp + μ)2 + 4γ 2][(ω + εp − μ)2 + 4γ 2]

. (25)

Above T c
env (normal state), �R(q = 0, ν) has a complex pole in the lower-half complex plain (Im[ν] < 0), as shown in Fig. 4.

This means that when this fluctuation mode is excited, it finally damps out, that is, the system is stable. Figure 4 also shows that
the complex pole moves to the upper half plane (Im[ν] > 0) when Tenv < T c

env, indicating the growth of this mode. This means
the breakdown of the theory which is based on the assumption of stable normal state [51–53]. This indicates the superfluid
instability at T c

env.
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As in the equilibrium BCS-BEC crossover theory [34], we solve the T c
env equation (25), together with the equation for the

total number N of Fermi atoms,

N = −i
∑
p,σ

∫ ∞

−∞

dω

2π
G<

sys,σ (p, ω)

= −2i
∑

p

∫ ∞

−∞

dω

2π

2iγ [ f (ω − μL) + f (ω − μR)] + 
<
NETMA,σ (p, ω){

ω − εp − Re
[

R

NETMA,σ (p, ω)
]}2 + {

2γ − Im
[

R

NETMA,σ (p, ω)
]}2 , (26)

to determine T c
env and μ self-consistently. Here,

G<
sys,σ (p, ω) = 1

2

[
GK

sys,σ (p, ω) − GR
sys,σ (p, ω) + GA

sys,σ (p, ω)
]

(27)

is the NETMA lesser Green’s function, and


<
NETMA,σ (p, ω) = 1

2

[

K

NETMA,σ (p, ω) − 
R
NETMA,σ (p, ω)

+
A
NETMA,σ (p, ω)

]
. (28)

In the normal state above T c
env, we only solve the number

equation (26) to determine μ for a given parameter set
(N, δμ, (pFas)−1, Tenv).

Once μ is determined, the single-particle spectral weight
(SW) A(p, ω), as well as the single-particle density of states
(DOS) ρ(ω), can be calculated from the retarded component
of the NETMA Green’s function as

A(p, ω) = − 1

π
Im

[
GR

sys,σ (p, ω)
]
, (29)

ρ(ω) = − 1

π

∑
p

Im
[
GR

sys,σ (p, ω)
]
. (30)

We also consider the photoemission spectrum (PES) L(p, ω),
which has recently become observable in cold Fermi gas
physics [54–56]. Because PES involves information about the
occupation of SW, it is related to the lesser component as

L(p, ω) = −ip2G<
sys,σ (p, ω), (31)

FIG. 4. Complex pole ν of the retarded particle-particle scat-
tering matrix �R(q = 0, ν ) near T c

env. We set (pFas )−1 = −0.6 and
δμ/εF = 0.1.

where we have suppressed an unimportant constant fac-
tor, for simplicity. In the thermal equilibrium state at Tenv,
Eq. (31) reproduces the well-known expression [56], by us-
ing Eq. (27) and the fluctuation-dissipation relations among
GR,K,A

sys,σ [35–37],

L(p, ω) = π p2A(p, ω) f (ω). (32)

E. NETMA in the thermal equilibrium limit

The coupled T c
env equation (25) with the number equa-

tion (26) in NETMA look very different from the correspond-
ing equations in TMA [13,34]. Before ending this section,
we show that NETMA coincides with TMA in the thermal
equilibrium limit δμ → 0 and γ → +0.

We first consider the condition for the superfluid instability
in Eq. (23). When δμ = 0 and γ → +0, the Green’s function
Ĝenv,σ (p, ω) in Eq. (13) is reduced to

Ĝenv,σ (p, ω)

=
(

1
ω+−εp

−2iδ(ω − εp)[1 − 2 f (ω − μ)]

0 1
ω−−εp

)
.

(33)

Substituting this into Eq. (19) and carrying out the ω integra-
tion, we obtain

�R(q, ν) =
∑

p

1 − f (εp+q/2 − μ) − f (ε−p+q/2 − μ)

εp+q/2 + ε−p+q/2 − ν+
.

(34)

Equation (34) with ν = 2μ is just the same as the pair-
correlation function [34],

�M(q, νn) =
∑

p

1 − f (εp+q/2 − μ) − f (ε−p+q/2 − μ)

εp+q/2 + ε−p+q/2 − 2μ − iνn
,

(35)

in the Matsubara formalism at νn = 0 (where νn is the boson
Matsubara frequency [53]), when μ is interpreted as the
Fermi chemical potential. Equation (23) is thus equivalent
to the Thouless criterion [57], 1 = U�M(q = 0, νn = 0), in
the thermal equilibrium limit. TMA uses this criterion to
determine the superfluid phase transition temperature [13,34].

We also obtain the same conclusion for the T c
env equa-

tion (25): Taking δμ → 0, and γ → +0 in this equation,
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we obtain

1 = U

2

∑
s=±1

s
∑

p

1

εp − μ

∫ ∞

−∞

dω

2π
tanh

×
(

ω

2T c
env

)
lim

γ→+0

2γ

[ω − s(εp − μ)]2 + (2γ )2

= U

2

∑
p

1

εp − μ
tanh

(
εp − μ

2T c
env

)
. (36)

This is just the ordinary BCS gap equation at the superfluid
phase transition temperature [58]. TMA also uses this equa-
tion [13,34].

We next consider the number equation (26). In the thermal
equilibrium limit, the Keldysh component in Eq. (33) satisfies
the fluctuation-dissipation relation [35–37],

GK
env,σ (p, ω) = [

GR
env,σ (p, ω) − GA

env,σ (p, ω)
]

tanh

(
ω − μ

2Tenv

)
.

(37)

Using this, we find that �K(q, ν) in Eq. (20), as well
as �K(q, ν) in Eq. (18), obey the following relations,
respectively,

�K(q, ν) = [�R(q, ν) − �A(q, ν)] coth

(
ν − 2μ

2Tenv

)
, (38)

�K(q, ν) = [�R(q, ν) − �A(q, ν)] coth

(
ν − 2μ

2Tenv

)
. (39)

Substituting Eqs. (37) and (39) into Eq. (17), one finds


K
NETMA,σ (p, ω)

= [

R

NETMA,σ (p, ω) − 
A
NETMA,σ (p, ω)

]
tanh

(
ω − μ

2Tenv

)
.

(40)

Then, the lesser component 
<
NETMA,σ (p, ω) of the self-energy

in Eq. (28) in the thermal equilibrium limit can be expressed
by using the retarded component as


<
NETMA,σ (p, ω) = −2iIm

[

R

NETMA,σ (p, ω)
]

f (ω − μ).

(41)

Thus, the number equation (26) in the thermal equilibrium
limit is written as

N = 2
∫ ∞

−∞
dωρ(ω + μ) f (ω), (42)

where DOS ρ(ω) is given in Eq. (30). Using the fluctuation-
dissipation relations in Eqs. (37) and (39), one finds that the
retarded self-energy 
R

NETMA,σ (p, ω + μ) in Eq. (16) in the
thermal equilibrium limit has the form


R
NETMA,σ (p, ω + μ)

= −
∑

p

∫ ∞

−∞

dν

π
Im[�R(q, ν + 2μ)]

nB(ν) − f (εp − μ)

ω+ − ν + εq−p − μ
.

(43)

FIG. 5. Calculated superfluid phase transition temperature T c
env

in a two-component nonequilibrium Fermi gas, as a function of the
interaction strength (pFas )−1 and the nonequilibrium parameter δμ.
We set γ /εF = 0.01. This value is also used in the following figures.
εF = p2

F/(2m) and TF are, respectively, the Fermi energy and the
Fermi temperature in an assumed free Fermi gas with N = p3

F/(3π 2)
fermions in the equilibrium state.

Here, nB(ν) = [eν/Tenv − 1]−1 is the Bose distribution func-
tion, and �R(q, ν) involved in �R(q, ν) [see Eq. (18)] is
given in Eq. (34). Equation (43) coincides with the TMA
self-energy [34]. The number equation (42) is thus the same
as that in TMA.

The above discussions show that NETMA is a natural
extension of TMA to the nonequilibrium steady state.

III. STRONG-COUPLING PROPERTIES OF A FERMI GAS
IN THE NONEQUILIBRIUM STEADY STATE

In this section, we consider the superfluid phase tran-
sition, as well as single-particle excitations, in the BCS-
BEC crossover regime of a Fermi gas in the nonequilibrium
steady state. As a typical many-body phenomenon discussed
in the thermal equilibrium case, we pick up the pseudogap
phenomenon.

A. Superfluid phase transition temperature T c
env

Figure 5 shows the superfluid phase transition temperature
T c

env in the nonequilibrium steady state of an ultracold Fermi
gas. When the nonequilibrium parameter δμ vanishes, the
system is in the thermal equilibrium state. In this limiting
case, although effects of the quasiparticle damping γ involved
in 
̂env,σ in Eq. (12), which comes from the system-bath
coupling, still affects T c

env, the interaction dependence of T c
env

is essentially the same as the ordinary BCS-BEC crossover
behavior known in the thermal equilibrium state [13,34]:
Starting from the weak-coupling BCS regime [(pFas)−1 �
−1], T c

env gradually increases with increasing the interaction
strength, to approach a constant value (Tc � 0.218TF) [10,11]
in the strong-coupling BEC regime [(pFas)−1 � +1].

When the system is in the nonequilibrium steady state
(δμ > 0), Fig. 5 shows that T c

env decreases from the equilib-
rium value (≡T c0

env). When the nonequilibrium parameter δμ
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exceeds a certain value, the superfluid instability no longer
occurs.

This suppression of T c
env is because the system-bath cou-

pling in the nonequilibrium state has a similar effect to the
temperature in the thermal equilibrium state: When δμ = 0
at Tenv = 0, the main system is in the thermal equilibrium
state with the Fermi energy εF = μ. Starting from this, when
δμ > 0, the pumping bath supplies atoms to the system in the
energy region μ <∼ ω <∼ μ + δμ, and the decay bath absorbs
atoms from the system in the region μ − δμ <∼ ω <∼ μ. As
a result, the Fermi surface of the main system at ω = μ is
smeared out within the energy range μ − δμ <∼ ω <∼ μ + δμ.
This smearing effect is similar to the thermal effect on the
Fermi surface in the thermal equilibrium state. Since the latter
effect is known to be unfavorable to the superfluid instability,
the increase of the nonequilibrium parameter δμ also sup-
presses T c

env.
Although the above discussion explains the suppression of

T c
env seen in Fig. 5, this figure also shows that the detailed δμ

dependence of T c
env in the BCS-unitary regime [(pF as)−1 <∼ 0]

is quite different from that in the BEC regime [(pF as)−1 >∼ 0].
In the latter, T c

env monotonically decreases with increasing
δμ. In the former case, on the other hand, T c

env exhibits re-
entrant behavior. To explain the reason for this difference, we
separately consider the BCS-unitary regime and BEC regime
in the followings.

B. Nonequilibrium effects in BCS-unitary regime

1. Single-particle excitations and pseudogap phenomenon

Figure 6(a) shows T c
env and nonequilibrium effects, when

(pFas)−1 = −0.6 (BCS regime). A similar re-entrant behavior
of T c

env is also obtained at the unitarity (pFas)−1 = 0, as
shown in Fig. 6(d). In order to examine the interplay between
nonequilibrium and strong-coupling effects in these cases, we
show DOS ρ(ω) and SW A(p, ω) in Figs. 6(b) and 6(e) and
Figs. 6(c) and 6(f), respectively.

We find in Fig 6(b1) that the pseudogap structure in DOS
(dip around ω − μ = 0) [34] gradually becomes obscure with
increasing δμ. We also find from Figs. 6(c1) and 6(c2) that
the coupling of the particle branch (ω − μ = εp − μ) with the
hole branch (ω − μ = −[εp − μ]), which is characteristic of
the pseudogap phenomenon [5,13,34], is weakened when the
system goes out of equilibrium.

Figure 6(b3) shows that the pseudogap also becomes ob-
scure, as one moves along the path (b3) drawn in Fig. 6(a).
At this temperature (Tenv = 0), Figs. 6(c4) and 6(c5) indicate
that the particle-hole coupling also becomes weak and the gap
size shrinks with increasing δμ [Fig. 6(c5) → Fig. 6(c4)].
Furthermore, the same nonequilibrium effects on the pseudo-
gap phenomenon also occur at the unitarity [(pFas)−1 = 0]:
In Figs. 6(e1) and 6(e3), the dip structure gradually becomes
less remarkable with increasing δμ along the paths (e1) and
(e3) in Fig. 6(d), respectively. The weakening of the particle-
hole coupling is also found from Figs. 6(f1) → 6(f2) and
6(f5) → 6(f4).

To understand these nonequilibrium effects, we recall that
the essence of the pseudogap phenomenon in the thermal equi-
librium state can be understood by using the so-called static
approximation to pairing fluctuations [5,34]. This approxima-

tion is also applicable to the nonequilibrium state: Assuming
that pairing fluctuations in the present case are enhanced
around q = 0 and ν = 2μ near T c

env (note that �R(q = 0, ω =
2μ) diverges at T c

env), we approximate the retarded component

R

NETMA,σ (p, ω) of the NETMA self-energy in Eq. (16) to


R
NETMA,σ (p, ω) � −�2

pgGA
env,−σ (−p,−ω + 2μ). (44)

Here,

�2
pg = i

2

∑
q

∫ ∞

−∞

dν

2π
�K(q, ν) (45)

is the pseudogap parameter �pg [5,34], describing effects of
pairing fluctuations. Substituting Eq. (44) into the retarded
component of Eq. (21), we obtain

GR
sys,σ (p, ω) � ω − μ + 2iγ + ξp

[ω − μ + 2iγ ]2 − [
ξ 2

p + �2
pg

]
= 1

(ω − μ) + 2iγ − ξp − �2
pg

(ω−μ)+2iγ+ξp

,

(46)

where ξp = εp − μ. When we ignore the damping parameter
γ for simplicity, the first line in Eq. (46) has the same form
as the diagonal component of the mean-field BCS Green’s
function [58], where the order parameter � is now replaced by
the pseudogap parameter �pg. Thus, Eq. (46) gives a gapped
DOS with the energy gap 2|�pg|. The second line in Eq. (46)
also explains the coupling between the particle branch (ω −
μ = ξp) and the hole branch (ω − μ = −ξp) with the coupling
strength �2

pg.
In this scheme, the pseudogap phenomenon is simply

characterized by the pseudogap parameter �pg, describing the
strength of pairing fluctuations. Because they becomes strong
near the superfluid instability, it is usually believed that the
pseudogap phenomenon is remarkable near T c

env.
However, Fig. 6(b2) shows that the pseudogap in DOS

continues to develop with decreasing Tenv, even after passing
through the superfluid phase transition point at (c3) shown in
Fig. 6(a). Figures 6(c2)–6(c4) also show the monotonic devel-
opment of the level repulsion associated with the particle-hole
coupling along this path. Furthermore, the same tendency is
also seen in the unitary limit, as shown in Fig. 6(e2) (DOS),
as well as in Figs. 6(f2)–6(f4) (SW).

We note that the pseudogap phenomenon in the BCS-
BEC crossover region is usually attributed to pairing fluctu-
ations associated with the superfluid phase transition. Then,
this many-body phenomenon should be the most remarkable
at T c

env. Thus, the above results imply that the remarkable
pseudogap seen around (c4) and (f4) in Figs. 6(a) and 6(d)
originates from different kinds of pairing fluctuations that
have nothing to do with the superfluid state realized below
T c

env. We will explain detailed of this point in Sec. III B 2.
To specify the region where the pseudogapped DOS exists

in the nonequilibrium steady state, we introduce the pseudo-
gap temperature T ∗

env[34], which is defined as the temperature
below which a dip appears in DOS. Although this definition
somehow involves ambiguity because the pseudogap is a
crossover phenomenon without being accompanied by any
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FIG. 6. Single-particle properties of a nonequilibrium Fermi gas in the BCS regime at (pFas )−1 = −0.6. (a) T c
env. (b) Single-particle density

of states (DOS) ρ(ω). Each panel shows the result along the path (b1)–(b3) in panel (a). We fix Tenv in panels (b1) and (b3), and fix δμ in panel
(b2). In these panels, we offset the results. The short horizontal line near each result is at ρ(ω) = 0. (c) Intensity of single-particle spectral
weight (SW) A(p, ω), normalized by ε−1

F . Each panel corresponds to the case at (c1)–(c5) in panel (a). The broad downward spectral structure
“FF” in panel (c4) is associated with FFLO-type pairing fluctuations (see Sec. III B 4). [(d)–(f)] Same plots as panels (a)–(c), for (pFas )−1 = 0
(unitarity limit).
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FIG. 7. Pseudogap temperature T ∗
env (solid line) which is deter-

mined as the temperature below which a dip appears in DOS. The
dotted line is T c

env shown in Fig. 5.

phase transition, we still expect that T ∗
env gives useful infor-

mation about pairing fluctuations out of equilibrium.
Figure 7 shows T ∗

env in the BCS-unitary regime. The region
enclosed by T ∗

env and T c
end is the pseudogap regime, where

the pseudogapped DOS is obtained. In the BCS regime when
(pFas)−1 <∼ − 0.4, we find that the pseudogap temperature
T ∗

env does not exhibit re-entrant behavior, but monotonically
decreases with increasing δμ. This again implies that dom-
inant pairing fluctuations around Tenv = 0 are different from
pairing fluctuations that are directly related to the superfluid
phase transition.

In the unitary regime [(pFas)−1 >∼ − 0.4], Fig. 7 shows
that T ∗

env is almost δμ independent when δμ/εF >∼ 0.4. This is
because the decay bath extracts atoms from the system in the
energy region μ − δμ <∼ ω <∼ μ, so that atoms in all the energy
region 0 <∼ ω <∼ μ in the system can leak into the decay bath,
when δμ >∼ μ. As a result, the δμ dependence of the atomic
momentum distribution nenv

p,σ , given in the first line in Eq. (14),
becomes weak when δμ >∼ μ. Because the modification of
the momentum distribution nenv

p,σ by the system-bath coupling
is crucial for system properties, the δμ dependence of T ∗

env
becomes weak for δμ >∼ μ.

To confirm this explanation, we compare T ∗
env with μ(T ∗

env)
at the unitarity (pFas)−1 = 0, in Figs. 8(a) and 8(b). We
find that the δμ dependence of T ∗

env becomes weak when δμ

becomes larger than μ(T ∗
env), as expected. Figure 8(c) also

shows that the momentum distribution nenv
p,σ is almost the same

in the cases of (3) and (4).

2. Enhancement of FFLO-type pairing fluctuations in the
nonequilibrium BCS-unitary regime

We discuss the two phenomena obtained in Sec. III B 1:
(1) The pseudogap continues to develop as one moves along
the paths (b2) and (e2) in Figs. 6(a) and 6(d), even after
passing through the phase transition points (c3) and (f3). (2)
The pseudogap temperature T ∗

env does not exhibit re-entrant
behavior in the BCS regime where T c

env does.
Figures 9(b)–9(d) show the real part −Re[�R(q, ν = 2μ)]

of the retarded particle-particle scattering matrix in Eq. (18).

FIG. 8. (a) Pseudogap temperature T ∗
env at the unitarity

[(pFas )−1 = 0]. (b) μ(T ∗
env ) as a function of the nonequilibrium

parameter δμ. The dashed line is μ = δμ. (c) Atomic momentum
distribution nenv

p,σ (T ∗
env ) at (1)–(4) in panel (a).

We recall that NETMA determines the superfluid phase tran-
sition temperature from the condition that it diverges at q = 0
[see Eq. (23) and the discussion below this equation]. Thus, as
the system approaches the superfluid instability, −Re[�R(q =
0, ν = 2μ)] usually increases to diverge at T c

env, as seen in
Fig. 9(b).

However, as one decreases Tenv along the path (c) drawn
in Fig. 9(a), Fig. 9(c) shows that −Re[�R(q, ν = 2μ)] grad-
ually has a peak at nonzero momentum (≡ qFF). This peak
smoothly evolves from zero to nonzero momentum, and there
is no moment that −Re[�R(q, ν = 2μ)] exhibits a double-
peak structure at q = 0 and q 	= 0. This indicates the smooth
enhancement of FFLO-type pairing fluctuations characterized
by qFF [59], although the present system has no spin imbal-
ance [59–62]. (We will explain the origin of this anomalous
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Tenv
c

Tenv*

FIG. 9. (a) Phase diagram in the BCS regime when (pFas )−1 = −0.6. SF, superfluid state; N, normal state; PG, pseudogap regime. [(b)–(d)]
−Re[�R(q, ν = 2μ)] in NETMA, as a function of the momentum |q|. Each panel shows the result along the path (b)–(d) shown in panel (a).

phenomenon in Sec. III B 4). In the equilibrium mean-field
theory, the FFLO phase transition is known to occur when
−Re[�R(qFF 	= 0, ν = 2μ)] diverges [63–66].

However, as pointed out in Refs. [67–69], the FFLO phase
transition does not actually occur in the present uniform
system, because FFLO-pairing fluctuations destroy the long-
range order. Thus, in Fig. 9(c), although the peak at qFF 	= 0
continues to develop at low temperatures (which physically
means the enhancement of fluctuations in the FFLO channel),
it never diverges even at Tenv = 0. For the lower superfluid
phase transition temperature in the re-entrant region, with de-
creasing the nonequilibrium parameter δμ along the path (d)
drawn in Fig. 9(a), the peak position moves to q = 0, as shown
in Fig. 9(d). When the system reaches T c

env, −Re[�R(q, ν =
2μ)] diverges at q = 0. It means that this superfluid phase
transition is not the FFLO type, but the ordinary BCS type
characterized by the uniform superfluid order parameter �.

Although FFLO-type pairing fluctuations prevent the sys-
tem from the superfluid phase transition [67–69], they still
contribute to the pseudogap phenomenon. Indeed, as shown
in Fig. 2, the pseudogap regime between T c

env and T ∗
env can be

divided into the following two:
(a) BCS-type pseudogap regime (PGBCS): The pseudo-

gap is caused by BCS-type pairing fluctuations that are the
strongest at q = 0.

(b) FFLO-type pseudogap regime (PGFFLO): The pseudo-
gap is caused by FFLO-type pairing fluctuations that are the
strongest at qFF 	= 0.

Figure 2(a) shows that when (pFas)−1 = −0.6, the low
temperature pseudogap regime is dominated by FFLO-type
pairing fluctuations. At the unitarity [(pFas)−1 = 0], this
regime shrinks [see Fig. 2(b)]. The PGFFLO region eventually
disappears in the BEC regime, although we do not show the
result here.

Figure 2(a) consistently explains the phenomena (1) and
(2) mentioned at the beginning of this subsection: The anoma-
lous enhancement of FFLO-type pairing fluctuations around
(c4) in Fig. 6(a) and (f4) in Fig. 6(d) gives the large pseudogap
seen in Figs. 6(b2) and 6(e2) at low temperatures, respectively.
In addition, because of the pseudogap phenomenon associ-
ated with FFLO-type pairing fluctuations, T ∗

env monotonically
decreases with increasing δμ in the BCS regime where T c

env
exhibits the re-entrant phenomenon.

3. Origin of FFLO-type pairing fluctuations

To explain the origin of FFLO-type pairing fluctuations
enhanced in the nonequilibrium steady state, we show in
Fig. 10 the momentum distribution nenv

p,σ of Fermi atoms at
(c2)–(c4) in Fig. 6(a). In Fig. 10, we find that nenv

p,σ has a
two-step structure, when Tenv = 0 (dotted line). This is a
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FIG. 10. Momentum distribution nenv
p,σ of Fermi atoms, given in

the first line in Eq. (14). We take (pFas )−1 = −0.6, and the results
are at (c2)–(c4) in Fig. 6(a). In the case of (c4), μ/εF = 0.602 and
δμ/εF = 0.112, so that the Fermi momenta of the pumping bath
and decay bath equal pFp = √

2m[μ + δμ] = 0.847pF and pFd =√
2m[μ − δμ] = 0.697pF, respectively.

combined effect of the system-bath coupling with the van-
ishing thermal broadening of the momentum distribution at
Tenv = 0. Indeed, the Fermi momentum of the decay bath
pFd = √

2m[μ − δμ] = 0.697pF and that of the pumping bath
pFp = √

2m[μ + δμ] = 0.847pF are close to the momenta at
the first and second (almost) vertical parts of nenv

p,σ at Tenv = 0.
In a sense, this two-step structure is similar to the case of

a spin-polarized Fermi gas, where two Fermi surfaces with
different Fermi momenta pFd and pFp. Of course, a crucial
difference from the latter is that the present unpolarized case
looks as if each spin component has two Fermi surfaces. How-
ever, as in the spin-polarized case, besides the Cooper pairs
with zero center-of-mass-momentum, |pFd,↑〉| − pFd,↓〉 and
|pFp,↑〉| − pFp,↓〉 (this type of pairing is known as Sarma
or breached-pair state [70,71] in the spin-polarized case), the
FFLO-type pairs with nonzero center-of-mass momentum,
|pFd,↑〉| − pFp,↓〉 and |pFp,↑〉| − pFd,↓〉, become possible.
Although the FFLO superfluid state is absent in the present
uniform system [67–69], the two-step structure of the atomic
momentum distribution may enhance fluctuations in the FFLO
channel, giving PGFFLO regime in Fig. 2.

The two-step structure gradually becomes obscure with
increasing Tenv or decreasing δμ. When pairing fluctuations
become the strongest at q = 0, the BCS-type superfluid insta-
bility can occur. This also explains the re-entrant behavior of
T c

env in the BCS-unitary regime.
Since we are considering a population-balanced Fermi gas,

the present mechanism of FFLO pairing is different from
the conventional one discussed in superconductivity under
an external magnetic field [63–66]. Recently, the possibil-
ity of FFLO superfluid in the absence of external magnetic
field has also been proposed, where the shift of the single-
particle energy induced by external current [72], or a size
effect [73], is used. The present case is also different from
these previous proposals. Since the order parameter of the
FFLO state has a spatially periodic pattern, it is rather close to

FF

(a) (b)

FIG. 11. Single-particle spectral weight A(p, ω) (SW) in the
static approximation. (a) Equation (47) is used, assuming strong
FFLO-type pairing fluctuations around |qFF|/pF = 0.2. A broad
downward branch “FF” is consistent with Fig. 6(c4). (b) Equa-
tion (44) is used, assuming strong BCS-type pairing fluctuations
around q = 0. In these model calculations, we set �pg/εF = 0.3,
γ /εF = 0.01, and use the same value of μ at (c4) in Fig. 6(a). The
spectral intensity is normalized by ε−1

F .

a pattern formation discussed in other nonequilibrium systems
[48,74–78].

4. Spectral weight A(p, ω) in PGFFLO regime

In Sec. III B 1, we used the static approximation, in order
to simply explain the pseudogap phenomenon. To see how
fluctuations in the FFLO channel affect single-particle exci-
tations, we here extend this approximation to the case when
pairing fluctuations are enhanced around qFF 	= 0 and ν = 2μ.
In this case, the NETMA retarded self-energy is approx-
omated to


R
sys(p, ω) � −�2

pg

〈
GA

env,−σ (qFF − p,−ω + 2μ)
〉
qFF

= − �2
pg

4qFF p
ln

(
ω + (p − qFF)2 − μ + 2iγ

ω + (p + qFF)2 − μ + 2iγ

)
,

(47)

where 〈· · ·〉qFF
denotes the average over the direction of qFF.

Figure 11(a) shows SW in the case when the approximate
self-energy in Eq. (47) (qFF 	= 0) is used. Comparing this
result with the case when Eq. (44) (q = 0) is used [Fig. 11(b)],
we see an additional downward broad spectrum “FF” in
Fig. 11(a). The difference between the two originates from
the fact that, while the hole branch ω − μ = −[ε−p − μ] only
couples with the particle branch ω − μ = [εp − μ] in the
latter case, FFLO-type pairing fluctuations lead to the cou-
pling between the particle branch ω − μ = [εp − μ] and hole
branches ω − μ = −[εqFF−p − μ] with various directions of
qFF. The spectral structure “FF” in Fig. 11(a) is thus regarded
as a characteristic phenomenon associated with FFLO-type
pairing fluctuations.

This additional spectral structure is indeed seen in the
PGFFLO regime, as shown in Fig. 6(c4). In the unitary limit,
although the same structure should appear in Fig. 6(f4), it
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FF

(a) (b)

FIG. 12. (a) Calculated photoemission spectrum (PES) L(p, ω)
in a nonequilibrium Fermi gas, when (pFas )−1 = −0.6. (a) shows
PES in the PGFFLO regime at (c4) in Fig. 6(a). “FF” is related to
the downward broad branch in Fig. 6(c4). Panel (b) shows the result
at the superfluid phase transition (c5) in Fig. 6(a), where pairing
fluctuations are the strongest at q = 0. The spectral intensity is
normalized by [p2

FεF]−1.

cannot be clearly seen, due to the blurry SW by the strong
pairing interaction.

The spectral structure “FF” in Fig. 6(c4) may be observed
in the photoemission spectrum (PES), as shown in Fig. 12(a).
For comparison, we also show in Fig. 12(b) PES corre-
sponding to Fig. 6(c5). Because the latter is at T c

env, pairing
fluctuations are enhanced around q = 0. Because of this, the
additional spectral structure is absent in this figure. Figure 12
indicates that the photoemission-type experiment [54–56]
may be useful for the observation of this nonequilibrium
phenomenon.

Before ending this subsection, we note that NETMA uses
not the fully dressed Green’s function Ĝsys,σ in Eq. (21) but
Ĝenv,σ in Eq. (13) in evaluating the diagrams in Fig. 3. To
see influences of this, we calculate the momentum distribution
np,σ of Fermi atoms, from the fully dressed NETMA Green’s
function as

np,σ = −i
∫ ∞

−∞

dω

2π
G<

sys,σ (p, ω), (48)

where the NETMA lesser Green’s function G<
sys,σ (p, ω) is

given in Eq. (27). When (pFas)−1 = −0.6, Fig. 13 shows
that np,σ does not exhibits the two-step structure, although
nenv

p,σ does (see the inset of this figure). Since the two-step
structure is crucial for the enhancement of FFLO-type pairing
fluctuations, this result indicates that NETMA overestimates
these fluctuations. However, Fig. 13 also shows that this struc-
ture appears in np,σ , when (pFas)−1 <∼ − 1. Thus, we expect
that the PGFFLO regime would become narrower but still
exist, even when we treat pairing fluctuations within the self-
consistent T -matrix approximation (SCTMA) [79,80], where
the fully dressed Green’s function is used in the diagrams in
Fig. 3. This improvement remains a future challenge.

FIG. 13. Momentum distribution np,σ of Fermi atoms, given in
Eq. (48). We set δμ/εF = 0.1 and Tenv = 0. The inset shows nenv

p,σ ,
given in the first line in Eq. (14).

C. BEC regime

We next consider the strong-coupling BEC regime where
T c

env does not exhibit the re-entrant behavior. Figure 14 shows
an example of this situation [see Fig. 14(a)]. In the BEC
regime, system properties are dominated by tightly bound
molecules, so that anomalous enhancement of FFLO-type
pairing fluctuations associated with the detailed (two-step)
structure of the atomic momentum distribution does not occur.
As explained previously, in the BCS-unitary regime, the initial
decrease of T c

env from the thermal equilibrium value T c0
env is due

to the broadening of the atomic momentum distribution by
the system-bath coupling, the effect of which is similar to the
thermal effect in the thermal equilibrium case. The monotonic
decrease of T c

env in Fig. 14(a) indicates that a similar effective
thermal effect also works in the BEC regime, when δμ > 0.

When (pFas)−1 = 0.6 shown in Fig. 14, DOS exhibits a
large pseudogap in the thermal equilibrium state at T c

env [see
Figs. 14(b1) and 14(c1)] [34]. Figures 14(b) and 14(c) show
that this pseudogap structure almost remains unchanged, as
one moves along the paths (b1) and (b2). These results mean
that the system is still dominated by tightly bound molecules
even in the nonequilibrium state, at least in the parameter
region in Fig. 14(a).

Figures 14(d1)–14(d3) show PES at (1)–(3) in Fig. 14(a).
Compared to Fig. 6(d1), the spectral intensity of the upper
branch in Fig. 6(d2) is slightly enhanced. This is because the
pumping bath at Tenv supplies unpaired Fermi atoms to the
system in the high-energy region 0 <∼ ω − μ <∼ δμ + Tenv.
Since our calculations fix the total number N of atoms in
the main system, this means that the molecular fraction is
somehow smaller in the case of Fig. 6(d2) than Fig. 6(d1).
Because the energy region where the pumping bath supplies
atoms to the system becomes narrower at lower temperatures,
the intensity of the upper branch again becomes weak in
Fig. 14(d3).

To conclude, except for the above-mentioned suppression
of T c

env and the enhancement of the upper particle branch
in PES, nonequilibrium effects on single-particle excitations
seem not so remarkable in the strong-coupling BEC regime as
in the BCS-unitary case.
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FIG. 14. (a) Calculated T c
env in the BEC regime ((pFas )−1 = 0.6) where T c

env does not exhibit the re-entrant behavior. (b) DOS ρ(ω). The
left and right panels show the results along the paths (b1) and (b2) drawn in panel (a), respectively. In these panels, we offset the results. The
short horizontal line near each result is at ρ(ω) = 0. (c) SW A(p, ω). (d) PES L(p, ω). Panels (ci) and (di) (i = 13) show the results at
the position (i) in panel (a).

IV. SUMMARY

To summarize, we have discussed strong-coupling proper-
ties of a driven-dissipative two-component Fermi gas in the
nonequilibrium steady state. We considered an open Fermi
gas which is coupled with two baths: One supplies atoms to
the system (pumping bath) and the other absorbs atoms from
the system (decay bath). Nonequilibrium effects are tuned
by adjusting the difference of the Fermi chemical potential
between the two baths. In this model, we have also assumed a
tunable s-wave pairing interaction associated with a Feshbach
resonance.

To theoretically treat both strong-pairing fluctuations and
nonequilibrium effects, we have extended the T -matrix ap-
proximation (TMA), developed in thermal equilibrium BCS-
BEC crossover physics, to the nonequilibrium steady state.
We have achieved this extension by employing the Keldysh
Green’s function theory.

We showed that the superfluid phase transition tempera-
ture T c

env is suppressed when the system is out of equilib-
rium. While this suppression occurs in the whole BCS-BEC
crossover region, we found that the detailed dependence of
T c

env on the nonequilibrium parameter δμ (which equals half
the difference of the chemical potential between the two
baths) is very different between the BCS-unitary regime and
the strong-coupling BEC regime. While T c

env monotonically
decreases with increasing δμ in the latter regime, it exhibits
re-entrant behavior in the former.

We pointed out that a two-step structure of the atomic
momentum distribution, which is caused by the pumping and
decay baths, is the origin of the re-entrant phenomenon: Al-

though the present system has no spin polarization, this struc-
ture brings about a similar situation to a spin-polarized Fermi
gas, where the Fermi-surface size of ↑-spin atoms is different
from that of ↓-spin atoms. That is, the system becomes close
to the FFLO instability. Although FFLO state is not actually
stabilized in the present uniform case, this situation anoma-
lously enhances fluctuations in the FFLO channel in the BCS-
unitary regime, leading to the nonmonotonic re-entrant behav-
ior of T c

env as a function of δμ. We also showed that, besides
the ordinary BCS-type pairing fluctuations, FFLO-type pair-
ing fluctuations also cause the pseudogap phenomenon. Since
the enhancement of FFLO-type pairing fluctuations does not
occur in the thermal equilibrium state of a spin-unpolarized
Fermi gas, it is peculiar to the present nonequilibrium state.
As a possible method to observe the pseudogap phenomenon
associated with FFLO-type pairing fluctuations, we pointed
out that the photoemission-type experiment may be useful.

We end by listing some future problems. The nonequi-
librium strong-coupling theory developed in this paper is

FIG. 15. Diagrammatic structure of NETMA self-energy

̂

(n)
NETMA(p, ω) in the last term in Fig. 3(a). pi± = (±pi + q/2, ±ωi +

ν/2), and η±
α=1,2 is defined in Eq. (B7).
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only valid for the normal state. Extension to the superfluid
phase below T c

env is an interesting future problem. Since the
nonequilibrium steady state has recently been realized in a
Fermi gas loaded on an moving optical lattice [16], extension
of the present theory to the moving lattice system would also
be important, in order to catch up this recent experimental
progress. We also note that, because our theory is based
on the non-self-consistent T -matrix approximation (TMA),
the fully dressed Green’s function is not used in the TMA
self-energy. To improve this, replacing TMA by the self-
consistent T -matrix approximation (SCTMA) [79,80] would

be effective. Since the recent progress in cold Fermi gas
experiments has enabled us to examine various interesting
nonequilibrium phenomena, our results would contribute to
the further development of cold atom physics in this direction.
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APPENDIX A: DERIVATION OF �̂env(p, ω) IN EQ. (12)

In this Appendix, we derive the 2 × 2 matrix self-energy 
̂env(p, ω) in Eq. (12), describing effects of the system-bath
coupling. Within the second-order Born approximation shown in Fig. 3(c), it is given by


̂env,σ (p, p′, t − t ′) =
∑

α=L,R

|�α|2
Nt∑
i, j

∑
q,q′

ei[q·Rα
i −p·rα

i ]D̂α
σ (q, q′, t − t ′)e−i[q′ ·Rα

j −p′ ·rα
j ]e−iμα [t−t ′], (A1)

where D̂α
σ (q, q′, t − t ′) is the 2 × 2 matrix single-particle Keldysh Green’s function in the α bath (α = L, R). When we take the

spatial average over the randomly distributing tunneling positions Rα
i and rα

i , the terms with i = j only remain nonzero, and the
translational invariance is recovered as 〈
̂env,σ (p, p′, t − t ′)〉av = 
̂env,σ (p, t − t ′)δp,p′ . Here,


̂env,σ (p, t − t ′) = Nt

∑
α

|�α|2
∑

q

D̂α
σ (q, q, t − t ′)e−iμα [t−t ′]. (A2)

Carrying out the Fourier transformation with respect to t − t ′, one has


̂env,σ (p, ω) = Nt

∑
α=L,R

|�α|2
∑

q

D̂α
σ (q, ω − μα ), (A3)

where D̂α
σ (q, q′, ω − μα ) = D̂α

σ (q, ω − μα )δq,q′ , with

D̂α
σ (q, ω) =

(
1

ω+−ξα
q

−2π iδ
(
ω − ξα

q

)
tanh

(
ω

2Tenv

)
0 1

ω−−ξα
q

)
. (A4)

We thus obtain


̂env,σ (p, ω) = Nt

∑
α=L,R

|�α|2
∑

q

(
1

ω+−μα−ξα
q

−2π iδ
(
ω − μα − ξα

q

)
tanh

(
ω−μα

2Tenv

)
0 1

ω−−μα−ξα
q

)
. (A5)

Assuming the white baths with the constant density of states ρ, as well as replacing the q summation in Eq. (A5) by the ξα

integration, we obtain Eq. (12).

APPENDIX B: DERIVATION OF NETMA SELF-ENERGIES �
R,K,A
NETMA(p, ω) IN EQS. (16) AND (17)

In this Appendix, we explain how to obtain the NETMA self-energies 
R,K,A
NETMA(p, ω) in Eqs. (16) and (17).

1. Pair correlation functions �R,K,A(q, ν) in Eqs. (19) and (20)

For later convenience, we first derive Eqs. (19) and (20). For this purpose, we introduce the following 2 × 2 matrix pair
correlation function:(

�−−(q, ν) �−+(q, ν)
�+−(q, ν) �++(q, ν)

)
= −i

∫ ∞

−∞
dteiνt

(
〈T̂t{�q(t )�†

−q(0)}〉 〈�†
−q(0)�q(t )〉

〈�q(t )�†
−q(0)〉 〈T̂at{�q(t )�†

−q(0)}〉

)
, (B1)

where T̂t (T̂at) represent the time-ordered (anti-time-ordered) product, and

�q =
∑

p

c−p+q/2,↓cp+q/2,↑. (B2)
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In the zeroth order with respect to the pairing interaction −U , Eq. (B1) can be written as

(
�−−(q, ν) �−+(q, ν)
�+−(q, ν) �++(q, ν)

)
= i

∑
p

∫
dω

2π

(
G−−

env,↓(p+)G−−
env,↑(p−) G−+

env,↓(p+)G−+
env,↑(p−)

G+−
env,↓(p+)G+−

env,↑(p−) G++
env,↓(p+)G++

env,↑(p−)

)
. (B3)

Here, we have introduced the abbreviated notation, p± = (±p + q/2,±ω + ν/2). The single-particle Green’s functions G±±
env,σ

are related to GR,K,A
env,σ in Eq. (13) through the Keldysh rotation as [35–37]

(
GR

env,σ GK
env,σ

0 GK
env,σ

)
= K̂τ3

(
G−−

env,σ G−+
env,σ

G+−
env,σ G++

env,σ

)
K̂†, (B4)

where K̂ = [1 − iτ2]/
√

2 with τi being the Pauli matrix. The correlation functions �±± are also related to �R,K,A through
the same Keldysh rotation. Using these relations (�±± ↔ �R,K,A and G±±

env,σ ↔ GR,K,A
env,σ ), we obtain Eqs. (19) and (20). In this

procedure, we have used the following analytic property:

∫ ∞

−∞
dωGR

env,σ (p+)GA
env,−σ (p−) = 0. (B5)

2. NETMA self-energies in Eqs. (16) and (17)

We next derive the NETMA self-energy in Eqs. (16) and (17). Figure 15 shows the nth-order self-energy diagram

̂

(n)
NETMA,σ (p, ω) with respect to the pairing interaction −U , which gives


̂
(n)
NETMA,σ (p) = −(−iU )n

∫
dq

∑
α±

1 ,α±
2 ,···,α±

n =1,2

∫ n−1∏
i=1

d piη
+
α1

Ĝenv,σ (p1+)η+
α2

Ĝenv,σ (p2+) . . . η+
αn

× Tr
[
η−

α1
Ĝenv,−σ (p1−)η−

α2
Ĝenv,−σ (p2−) . . . η−

αn
Ĝenv,−σ (q − p)

]
. (B6)

Here, we have used the abbreviated notations, p = (p, ω), q = (q, ν), pi± = (pi + q/2,±ωi + ν/2),
∫

dq = ∑
q

∫
dν/(2π ),

and
∫

d pi = ∑
pi

∫
dωi/(2π ). The vertex matrices η±

α=1,2 are given by [35]

η+
α = 1√

2
τ2−α, η−

α = 1√
2
τα−1. (B7)

We rewrite Eq. (B6) in the form

[



(n)
NETMA,σ (p)

]
a,b = − i

2

∑
c,d

∫
dq�

(n)
(a,b),(c,d )(q)Gd,c

env,−σ (q − p)

= − i

2

∫
dqTr

[
�̃

(n)
a,b(q)Ĝenv,−σ (q − p)

]
, (B8)

where

�̃
(n)
a,b(q) =

(
�

(n)
(a,b),(1,1)(q) �

(n)
(a,b),(1,2)(q)

�
(n)
(a,b),(2,1)(q) �

(n)
(a,b),(2,2)(q)

)

=

⎛
⎜⎜⎜⎜⎝

�
(n)
(11),(11)(q) �

(n)
(11),(12)(q) �

(n)
(12),(11)(q) �

(n)
(12),(12)(q)

�
(n)
(11),(21)(q) �

(n)
(11),(21)(q) �

(n)
(12),(21)(q) �

(n)
(12),(22)(q)

�
(n)
(21),(11)(q) �

(n)
(21),(12)(q) �

(n)
(22),(11)(q) �

(n)
(22),(12)(q)

�
(n)
(21),(21)(q) �

(n)
(21),(22)(q) �

(n)
(22),(21)(q) �

(n)
(22),(22)(q)

⎞
⎟⎟⎟⎟⎠. (B9)
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Each matrix element in this equation can be written by using the Kronecker product ⊗ as

�
(n)
(a,b),(c,d )(q) = −2i(−iU )n

∑
α±

1 ,α±
2 ,···,α±

n =1,2

∫ n−1∏
i=1

d pi
[
η+

α1
Ĝenv,σ (p1+)η+

α2
Ĝenv,σ (p2+) . . . η+

αn

]
a,b

× [
η−

α1
Ĝenv,−σ (p1−)η−

α2
Ĝenv,−σ (p2−) . . . η−

αn
Ĝenv,−σ (q − p)

]
c,d

= −2i(−iU )n
∑

α±
1 ,α±

2 ,···,α±
n =1,2

∫ n−1∏
i=1

d pi
[[

η+
α1

Ĝenv,σ (p1+)η+
α2

Ĝenv,σ (p2+) . . . η+
αn

]

⊗ [
η−

α1
Ĝenv,−σ (p1−)η−

α2
Ĝenv,−σ (p2−) . . . η−

αn
Ĝenv,−σ (q − p)

]]
(a,b),(c,d ). (B10)

Using the formula

(ÂĈ) ⊗ (B̂D̂) = (Â ⊗ B̂)(Ĉ ⊗ D̂), (B11)

we further rewrite Eq. (B10) as

�
(n)
(a,b),(c,d )(q) = (−U )n[η̂[�̃(q)η̂]n](a,b),(c,d ). (B12)

Here,

η̂ = 2
∑

α=1,2

η+
α ⊗ η−

α =
(

τ1 τ0

τ0 τ1

)
(B13)

and

�̃(q) = i

2

∫
d pĜenv,σ (p+) ⊗ Ĝenv,−σ (p−)

=

⎛
⎜⎜⎜⎝

�̃(11),(11)(q) �̃(11),(12)(q) �̃(12),(11)(q) �̃(12),(12)(q)

0 0 0 �̃(12),(22)(q)

0 0 0 �̃(22),(12)(q)

0 0 0 �̃(22),(22)(q)

⎞
⎟⎟⎟⎠. (B14)

The vanishing matrix elements in Eq. (B14) are the consequences of the absence of the (2,1) component of the Keldysh Green’s
function Ĝenv,σ in Eq. (13), as well as the analytic property in Eq. (B5). Comparing the detailed expressions for the nonvanishing
components in Eq. (B14) with �R,K,A(q) in Eqs. (19) and (20), we obtain the following relations between them:

�R(q) = �̃(11),(12)(q) + �̃(12),(11)(q), (B15)

�A(q) = �̃(12),(22)(q) + �̃(22),(12)(q), (B16)

�K(q) = �̃(11),(11)(q) + �̃(12),(12)(q) + �̃(22),(22)(q). (B17)

The self-energy 
̂NETMA,σ (p) is then obtained from the summation of Eq. (B9), which gives


̂NETMA,σ (p) =
∞∑

n=1


̂
(n)
NETMA,σ (p) = − i

2

∫
dqTr[�̃(q)Ĝenv,−σ (q − p)], (B18)

where

�̃(q) =
∞∑

n=1

�̃(n)(q) = −η̂
U

1 + U�̃(q)η̂
=

⎛
⎜⎜⎜⎝

0 �A(q) �A(q) 0

�R(q) �K(q) �K(q) �R(q)

�R(q) �K(q) �K(q) �R(q)

0 �A(q) �A(q) 0

⎞
⎟⎟⎟⎠. (B19)

In obtaining the last expression, we have used the relations in Eqs. (B15)–(B17), as well as the expressions for �R,K,A(q) in
Eq. (18).
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The NETMA self-energies 
R,K,A
NETMA,σ (p) are then obtained from the (1,1), (1,2), and (2,2) components of Eq. (B18),

respectively. For example, the retarded component 
R
NETMA,σ (p) = [
̂R

NETMA,σ (p)]11 is given by


R
NETMA,σ (p) = − i

2

∑
q

∫ ∞

−∞

dν

2π
Tr[�̃11(q)Ĝenv,−σ (−p + q)]

= − i

2

∑
q

∫ ∞

−∞

dν

2π
Tr

[(
0 �A(q)

�R(q) �K(q)

)(
GR

env,−σ (−p + q) GK
env,−σ (−p + q)

0 GA
env,−σ (−p + q)

)]

= − i

2

∑
q

∫ ∞

−∞

dν

2π

[
�R(q)GK

env,−σ (−p + q) + �K(q)GA
env,−σ (−p + q)

]
. (B20)

Equations (16) and (17) can also be obtained in the same manner. We briefly note that [
̂NETMA,σ (p)]21 vanishes, as expected.
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