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Solving for W
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We get, therefore, by substitution of the above
into Eq. (5) and after some cancellations,
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Here, we recall thatn=0, 1, 2. .. , and l W-1.
This is the Sommerfeld-Dirac fine-structure for-
mula.
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An arbitrariness of virtual orbitals in the Hartree-Fock theory is discussed, and it is ex-
plicitly demonstrated that the energy spectrum of the virtual orbitals can be manipulated so
that the convergence property may be improved in the perturbation theory and the configura-
tion interaction calculation based on the Hartree-Fock equation.

INTRODUCTION

In the Hartree-Fock theory of many-electron
systems, the occupied orbitals are the only orbit-
als physically relevant; but since we usually obtain
the occupied orbitals from some kind of eigenvalue
equations which give us more orbitals than needed
to accommodate the electrons of the system, we
have the so-called virtual orbitals. In many cases,
they have no use and accordingly they are simply
ignored.

There are certain cases, however, in which we
do need to use those virtual orbitals resulting from
the Hartree -Fock eigenvalue equation. Among
them are the configuration interaction calculation
and the perturbation calculation based on the
Hartree-Fock solutions. As an example we shall
discuss Kelly's many-body perturbation theory ap-
plied to Be. '& 2

For a closed-shell electron configuration of
atoms and molecules, the Hartree-Fock operator
E may be written (in a. u. )

F=--,'~-P(Z. /~, )+ Z (2Z, -Z,.),
fyOCC

and the Hartree-Fock equation is

E(t); = &,.(t,. (2)

)(;(u)u(u)= f4";(u)4(u) du, "ui(u)1
(4)

For the(1s)~(2s)~ 'S state of the Be atom, we have

Here the suffix i numbers doubly occupied orbitals.
The operators J; and K; are defined as follows:

&;(~)e(.) = y*;(u)y;(~) «.x y(.),1
V pp
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F = ——,
' 6 —(Z/x)+(2Z„—K„)+(2J,—K,), (5) ARBITRARINESS IN VIRTUAL ORBITALS

and F Ql, =ElsQls

&42s = &2A'2s ~

(6)

(7)

By the use of appropriate coupling operators,
one may bring the Hartree-Fock equation to the
following form, including general open-shell cases:

If one uses the obvious relations,

(z„-K„)y„=o,
(z„-K,.)y„=o,

(9)

(io)

Eqs. (6) and (7) are reduced to

[ ——,
' a —(Z/X) +J„+(2J,—K,)]ltd „=e „P„,(6')

(2~is Kls) +~2s]42s ~2sf'2s

It is to be noted that, for the virtual orbitals, the
Hartree-Fock operator as it is in Eq. (8) under-
goes no such reduction.

In his second paper on Be, Kelly turned to use
the operator in Eq. (7') to acquire the virtual or-
bitals needed in the perturbation calculation;

[ —,
' g (g/x)+(2J„—K„)+J,]g„=e„g„. (11)

This is Eq. (13) of his second paper. He made
the choice in order to expedite the convergence of
the perturbation expansion by generating discrete
negative virtual energy levels. However, a draw-
back of the choice is that the new "(1s)"orbital
differs from the Hartree-Fock (1s) orbital given

by Eq. (6'), and all the s-type orbitals, except
(2s), are not expected to be rigorously orthogonal
to the original (is) orbital, although it was shown

that the orthogonalities hold to a high approxima-
tion.

In the following, we shall first demonstrate ex-
plicitly an arbitrariness in our choosing the virtual
orbitals which are orthogonal to the occupied or-
bitals in the Hartree-Fock theory and then we shall
show, by utilizing the arbitrariness profitably, that
the nonorthogonality problem mentioned above may
be avoided while still retaining the desirable re-
semblance to the single-particle excitation of the
system in the energy spectrum of the virtual or-
bitals. Finally, an illustrating numerical example
will be given in the case of Hartree-Fock-Roothaan
calculation of the He atom. The mathematical idea
to be proposed in the following is a simplified ver-
sion of the one discussed by Silverstone and Yin. '

Kelly first adopted the same operator to produce
necessary virtual orbitals;

[ --,' ~ —(Z/~)+(2Z„-K, .)+(2Z,.-K„)]y„=e„y„.
(8)

This is Eq. (4. 3) of his first paper, and it turned
out that all the virtual levels given by Eq. (8) were
in the continuum.

V= (1 —P)A(1 P)-
where P= Z ~p, )( y,. ~

Z2 OCC

(13)

(14)

is the projection operator which belongs to the so-
called Hartree-Fock manifold and 0 is an arbitrary
Hermitian operator. Ne shall now show that, by
adding the operator V to the original operator R,
physical characteristics of the second group can be
changed without affecting the first. Let a new op-
erator R' be

R'=R+V

then it is easily established that for the occupied
orbitals,

(2: occupied) (16)

thus restoring the original form in Eq. (12), and
for the virtual orbitals we have

R' g„)=(R+0-PQ) P„)= iP„)e„ (i7)

CHOICE OF n

From Eq. (17), we have the equation

&„= & y„~R+a~y„) (is)

which suggests immediately one possible choice of
the operator 0 in order to modify the energy spec-
trum of the virtual orbitals; an additional static
potential energy operator

0= U(y)

For the atomic case, we have

U(~) = (~/~)

which can be a simple but yet interesting possibil-
ity, supplying an ion-core potential for the outer-
most "excited" electron.

More sophisticated choices of 0 can also be
made. Let us take the beryllium case again as an
example. In this case,

(i2)

The equation is primarily designed to yield the
occupied orbitals of the system. The virtual or-
bitals should be regarded as a sort of by-product.
Thus, the eigenvalues and the eigenfunctions of
Eq. (12) can be divided into two rather distinct
groups, the first group corresponding to the occu-
pied orbitals and the second corresponding to the
virtual orbitals.

Let us introduce the following operator V:
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R = --,' b. —(Z/r)+(2Z„—K„)+(2J2, K-28), (20) TABLE II. Occupied and virtual orbitals.

and we choose 0 to be

0 = —(J2, -K2,) (21)

+(y„(Z„-K„)y„)y„=&„y„. (25)

The second term in the left-hand side makes Eq.
(25) different from Eq. (11)which was used by
Kelly in his second paper. It is interesting to
note that the eigenvalue spectrum should remain
the same since

&„=( y„[ -2 ~ -(Z/~)+(2Z„-K„)+Z„] y„,),(26)

and still all the virtual orbitals should be orthogo-
nalto theoriginal(1s) and (2s) Hartree-Fock orbit-
als since all of them are generated by a common
operator (R + V).

NUMERICAL EXAMPLE

As an illustration we shall treat the He atom in

the Hartree -Fock-Roothaan approximation. We

use five Slater-type functions of the form

[(2~) )]-1/2(2))n+ &/2&n - &&
—Cry. (27)

Then we see immediately that

(R + V)
~ P ~, ) =R P„), (22)

(R+V) (y„)=R ~y2. ), (23)

(R+V) P„) =(R+0 —~P„)(y„~Q) y„) . (24)

From the above we conclude that for the (1s) and
(2s) orbitals it amounts to use the same equations
given in Eqs. (6') and (V') and for the virtual orbit-
als we use

[ --'. ~ —(Z/y)+ (2Z„-K„)+Z„]y„

C(g

Cis

C(4

C&&

C2(

C22

C23

C24

C25

C3(

C32

C33

C34

C»

C4i

C42

C43

C44

C4s

C5

C»
C»
Cs4

C)5

—1.0

—0.368 418
—0.741 786

0.374 665
1.177 639

—0.802 269
0.358 601

—0.084 968

0.140 081
—0.070 054
—0.414 990

1.563 820
—0.461 025

—0.041 389
0.064 854

—0.028 931
—0.245 607

1.141 571
—1.587 007

0.686 395
—1.832 508

1.934 623
—1.283 606

1.164 562
—0.564 993

—0.5

—0.074 780
—0.124 977
—0.159136

1.011753
0.001 792
0.032 809

—0.023 319
—0.045 305
—0.071 400

0.476 795
—0.350 487
—0.802 850

0.001 196
0.066 557
0.171426

—1.156 229
2.261 807

—1.554 814

1.912464
—1.977 387

1.956 803
—0.824 120

0.714 102
—0.340 377

0.0

—0.918129
0.179897
0.844 129
0.001 671

—0.000 740
0.000 253

0.004 060
0.001 813

—0.026 857
0.086 539

—0.033 746
1.002 234

0.023 269
—0.018 633
—0.017 005
—0.077 585

1.582 519
—1.197736

0.140 992
—0.053 063

0.435 187
—1.677 518

1.708 966
—0.816 839

3.271 182
1.982 169

—1.923 145
0.662 903

—0.567 878
0.269 587

0.5

0.032 282
—0.010 526

0.027 639
—0.122 435

0.511743
—1.316 563

0.079 891
—0.024 736

0.041 092
—0.299 647

1.742 077
—0.963 614

0.293 541
—0.137 528

0.518 402
—1.677 873

1.483 108
—0.678 525

4.657 730
1.978 010

—1.902 023
0.589 050

—0.502 230
0.238 035

TABLE I. Basis set parameters.

(nZ)

X1

X2

X3

X4

Xg

O.s)
(1s)
(2s)
(3s)
(4s)

2.915 569
1.454 603

as the basis set for the Roothaan expansion and the

choice of the parameters is given in Table I. The
first two f's are taken from the best double-g cal-
culation, and the choice of the rest of n's and f's
is dictated by an intention of producing reasonable

virtual orbitals corresponding to (1s)(2s), (1s)(3s),
(ls)(4s), ... excitations.

First we perform an ordinary Hartree-Fock-
Roothaan calculation on the ground state of the He

atom with these five basis functions. The general

form of the atomic orbitals is given by

5

@;= Z C@,)t.'~
P =1

(28)

The results can be seen in the third column of
Table II. The total energy, —2. 861675 a. u. , is
close enough to the Hartree-Fock value of
—2. 861680 a.u.

As for the choice of the operator 0, let us try the
simple idea indicated in Eq. (19). With n = —1.0,
for instance, the "virtual" electron will be seeing
something akin to a He ion at the center. The
results for several values of Q. are shown in Table
II. Mathematically, the implication is almost triv-
ial. It simply means that there is an infinite
amount of arbitrariness in the choice of virtual or-
bitals, the only restriction upon which is that they
should be orthogonal to the original occupied orbit-
als.

From a practical point of view, however, the



1288 S. HUZINAGA AND C. ARNAU

arbitrariness of the virtual orbitals may be utilized
profitably in such a way that the convergence may
be improved in the perturbation theory and the con-
figuration interaction calculation based on the

Hartree-Fock equation. It is hoped that the discus-
sion presented here will also have some pedagogi-
cal value in furthering a sound understanding of the
nature of virtual orbitals.
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A weak depolarized Rayleigh wing has been observed for liquid xenon and for several liquids

composed of spherical-top molecules. The intensity contours for these liquids decrease ex-
ponentially with increasing frequency shift. This behavior is similar to that predicted for
spectra of collision-induced scattering from gases.

The existence of a continuous depolarized spec-
trum of scattered light centered at the exciting fre-
quency has long been known' for liquids composed
of anisotropic molecules. This spectrum, com-
monly called the "Rayleigh wing,

"' is believed to
arise from orientation fluctuations of individual
molecules and has been the subject of many pa-
pers. " Depolarized scattering by liquids com-
posed of spherical-top (tetrahedral) molecules has
also been observed, ' but is not well understood.
Recently, Levine and Birnbaum have discussed the
scattering of light arising from the change in an-
isotropic polarizability produced in pairs of atoms
or molecules during collision and have derived ex-
pressions for the intensity of the spectrum and the
degree of depolarization. Mc Tague and Birnbaum'
have observed depolarized spectra of gaseous Ar
and Kr at high pressure in general agreement with
this theory, and they attribute the spectra to col-
liding pairs. Also, Thibeau and Oksengorn have
developed a theory based on the fluctuations of the
internal field at each atom, which explains their
observations on the depolarization of Rayleigh scat-
tering in compressed Ar. We have observed de-
polarized spectra from liquid Xe, CC14, SiC14,
TiC14, SnC14, SnBr4, C(CHS)4, and Si(CHs)4. These
spectra are all of very-low intensity; they have de-
polarization ratios of —, (for plane-polarized inci-
dent light); and they exhibit an exponential de-
crease in intensity with increasing frequency shift.

A He-Ne laser provided plane-polarized radia-
tion of 50 mW power at 6328 A. Reagent-grade
liquids were filtered or vacuum distilled into glass
Raman cells designed to minimize stray light. The
cells were enclosed in a temperature-controlled
metal block (+0.5'), and the liquids maintained at
a temperature of 295'K, with the exception of
SnBr4 which was kept at 313 K. Research-grade
Xe was liquefied and maintained at 164'K. Depo-
larized radiation scattered at an angle of 90' was
selected by a polarizer placed between the sample
and spectrometer. The scattered light was ana-
lyzed with a Spex 1400 double monochromator, the
total instrumental width (laser plus spectrometer)
being 1.lcm for a slit width of 100 p, m. A cooled
photomultiplier tube (ITT-FW130) with a dark count
of 2 to 3 per sec was used for detection. This was
followed by photon-counting equipment and a chart
recorder. The spectrometer-detector combination
was calibrated for sensitivity to light of different
polarization directions over the wavelength region
6000 —VOOO A.

Depolarized spectra having a continuous distri-
bution of intensity out to 50-100 cm, with a max-
imum at the exciting frequency were observed for
all the liquids studied. The spectra are all of very-
low intensity. For example, for Xe, the total in-
tegrated intensity is-10 of that of the polarized
Rayleigh-Brillouin triplet; moreover, this spec-
trum disappears in solid Xe. The relative intensi-


