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A path integral for spinning particles is developed. It is a one-particle theory, equivalent to the usual
quantum mechanics. Our method employs a classical model for spin which is quantized by path integration.
The model, the spherical top, is a natural one from a group-theoretic point of view and has been used before
in a similar context. The curvature and multiple connectedness of the top coordinate space [.SO(3)] provide
some interesting features in the sum over paths. The Green’s function which results from this procedure
propagates all spins, and recovery of the usual Pauli spinors from this formalism is achieved by projection

to a specific spin subspace.

1. INTRODUCTION

ECENTLY, Feynman, who invented the subject,
had this to say about path integralst:

“, . . path integrals suffer most grievously from a

serious defect. They do not permit a discussion of
spin operators . . . in a simple and lucid way. . . .
Nevertheless, spin is a simple and vital part of real
quantum mechanical systems. It is a serious limita-
tion that the half-integral spin of the electron does
not find a simple and ready representation.”

This representation, for the nonrelativistic case, is
our present concern. The formulation is in terms of a
classical model for spin which is familiar and non-
controversial, and our efforts will be directed at path
integration of this model.

To our knowledge, existing path-integral theories for
spin® concentrate on the statistical aspects of the
problem and as such are most naturally expressed as
field theories. The spin properties of the fermions or
bosons of these theories are somewhat secondary and
not especially transparent. It would appear that non-
relativistically spin and statistics are separate questions
and that a simple spin theory should concentrate on
just that, leaving the complications of several particles
to other considerations. Our goal is then a one-particle
theory with optional second quantization.

The idea behind our approach is simple. In principle,
there is no difficulty in using path integrals to get the
spin of a polyatomic molecule composed of spinless
atoms. By a change of variables it is possible to describe
this path integral as being over translational, rotational,
and internal coordinates. The second of these gives rise
to total spin. To get the simplest spinning object we
throw away the extra internal coordinates and append
to translational coordinates only rotational variables.
This will also give half-integral spin since, as is well
known, the ‘“‘ideal” top, as opposed to a bound state of
several particles, possesses all spins (j=0,4%,1, ---).

* Work supported in part by the National Science Foundation
and the Army Research Office, Durham.
1R. P. Feynman and A. R. Hibbs, Quantum Mechanics and
Path Integrals (McGraw-Hill Book Co., New York, 1965), p. 355.
2See J. R. Klauder, Ann. Phys. (N. Y.) 11, 123 (1960), and
references quoted therein,
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The word ‘top” is used here because this is the
archetype of a mechanical object described by rotational
coordinates. Thus the position of a top is determined by
a rotation (e.g., that which brings it from some fiducial
position), which is to say that its position is given by
an element of the group SO(3).

In fact, the relation between half-integral spins and
the rotation group is particularly direct in the context
of path-integral theory.? Ray representations of SO(3)
arise because its fundamental group is not trivial—
i.e., there are paths in the group which are not deform-
able into one another. The connection between homo-
topy theory and representation theory is made via
possibly multivalued functions defined on the group
manifold. In path integral theory we work directly
with the paths. Distinct homotopy classes of paths
enter the sum over paths with arbitrary relative phase
factors. The selection of these phase factors gives rise
to the various multivalued representations. Between
given endpoints in SO(3) there are two classes of paths.
Depending on the relative sign with which these are
added one obtains the propagator for a top of integral
or half-integral spin. Incidentally with this viewpoint
the distinction between an ideal top and an n-body
bound state is evident. As long as the latter can in
principle come apart its total coordinate space is R*",
which is simply connected (and therefore only integral
spins are allowed).

Another approach to spin theory can be obtained
through the use of a Hamiltonian, and Bacry* presents
a classical phase space and in fact uses fewer coordinates
for his spinning particle than we shall. Nevertheless, our
desire is to extend Feynman’s theory in its most
pristine form: a classical system with Lagrangian and
variational principle. Furthermore, it is not clear that
path integral computations in phase space are feasible
for any but the most trivial coordinate systems.

Recovery of the usual Pauli spinor formalism from
the top theory described above is easily accomplished
by projection to a fixed angular momentum subspace.
Similarly the behavior of this top in the presence of an

3 M. Hamermesh, Group Theory (Addison-Wesley Publishing
Co., Inc., Reading, Mass., 1962), pp. 331, 332.

4 H. Bacry, Argonne National Laboratory report, 1966 (un-
published) ; also H. Bacry, Commun. Math. Phys. 5, 97 (1967).
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electromagnetic field presents no problem peculiar to
path-integral theory and this question has been
satisfactorily discussed in the context of standard
quantum mechanics by Bopp and Haag.?

It is unlikely (to say the least) that the techniques
described here can compete in utility with the customary
Pauli spin formalism. Prior to projection, the Green’s
function which we compute will propagate all spins and
so carries a good deal of information which is irrelevant
when dealing with particles of fixed spin. Nevertheless,
there are situations where the present viewpoint is
helpful. One often wishes to describe a ‘particle”
which appears in several spin states. Our top is such a
particle and, moreover, may possess additional internal
coordinates [orbit labels, in case SO(3) is not transitive
on M—cf. Sec. 2].

To summarize then, we feel that we have brought
spin within the compass of Feynman’s formulation of
quantum mechanics. In the second section of this
paper, we motivate our selection of the spherical top as
the carrier of the internal motion presumed to give
rise to spin. While this may seem to be an obvious choice
it should be pointed out that there are other models
of spin having very little to do with tops, and this
section will thus serve to emphasize our point of view
and basic assumptions. As will be seen, our attitude is
that spin is basically a property of rotations and we
shall require that whatever gives rise to a spin also
has well-defined rotation properties. Thus our spin
model will bear a ‘“natural” relation to the rotation
group.

Furthermore, although we have so far been reticent
about the relativistic extension of the present theory,
it is clear that that theory demands precise isolation of
the assumptions built in the spin model. There exist
models of relativistic tops but these generally involve
many degrees of freedom, degrees of freedom whose
relation to spin is obscure. The approach of Sec. 2 has
in fact led us to a top of the same sort as the nonrelativ-
istic model but since the present work is directed
primarily to questions of path integration this other
issue will not be pursued further here.

Two aspects of the top’s path integration call for
special comment and this is the subject of Sec. 3.
There we establish a rule for summing over paths in
multiply connected spaces. We also present a formula
of DeWitt® for the Green’s function at infinitesimal
times on a space with nontrivial metric. Both of these
are relevant for the top, and finally in Sec. 4 the
equivalence of path integration and standard quantum
mechanics is demonstrated. That section closes with
some remarks on the transition from the present formal-
ism to that of Pauli spinors. Section 5 is a conclusion.

5 F. Bopp and R. Haag, Z. Naturforsch. 5a, 644 (1950).
6 Bryce S. DeWitt, Rev. Mod. Phys. 29, 377 (1957).
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2. FORMULATION OF SPIN THEORY

To establish a path-integral theory for spin it is
first necessary to specify what is meant by a configura-
tion of the system supposed to give rise to the spin.
Then to each pair of initial and final configurations
must be assigned a number depending on the possible
intermediate configurations of the system.

There is a parallel between the requirements for a
path-integral theory and those for a classical model of
spin. There, one also specifies some mechanical system
which has well-defined configurations in time and
considers its motion. In fact, this is just what we shall
do, and then quantize the system by means of path
integrals.

In quantum mechanics, one specifies the state of a
spinning particle by s and s.. We find this description
inconvenient (for immediate transcription to classical
mechanics) since the variable in question is discrete
and this poses various difficulties for path integration.
An example of some of these difficulties, in the rela-
tivistic case, is given by Feynman in the Appendix to
one of his papers.” There, by putting spinors in the
exponential, he achieves a theory which in a sense is
equivalent to the Dirac equation but which is not
fully satisfactory as a path-integral theory. At least
part of this incompleteness Feynman attributes to the
‘“‘geometrical mysteries involved in the superposition
of hypercomplex numbers.”?

Instead we consider this angular momentum to be
the angular momentum of something; something is
spinning. This, however, is just another way of saying
that there is an internal variable. Call the space of this
internal coordinate M. We intend to think of M as a
more typical sort of coordinate space, a continuous one
in which the system has a true path (a curve). In a
sense, we are using the license provided by path-
integral theory to speak more concretely of the internal
coordinate space.

To determine the structure of M, we follow an
argument of Finkelstein.®? We ask for the desired trans-
formation properties of this space. In our case we shall
demand transitivity of M under the (3-dimensional,
real) rotation group. Then, says Finkelstein, M can
be identified with a coset space of SO(3), where for
simplicity the metric and topology are assumed carried
over by the one-to-one correspondence which must
exist. The argument relating M to quotient spaces of
its transformation groups can be found in Hermann’s
book.?

Why transitivity under SO(3)? We know the trans-
formation properties of the momenta to which our
internal variables are to be conjugate—these are just
the usual spin angular momenta. Now the variables to

”R. P. Feynman, Phys. Rev. 84, 108 (1951), Appendix D.

8 D. Finkelstein, Phys. Rev. 100, 924 (1955).

9 R. Hermann, Lie Groups for Physicists (W. A. Benjamin,
Inc., New York, 1964), p. 3.
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which these momenta are conjugate must have some
transformation properties under rotation since if there
is some underlying Lagrangian dynamics (which is
what we are looking for in order to path integrate) the
momenta are directly related to the coordinates and
their velocities. Let the orbit of m&EM be O, [=the
image of m under all UESO(3)]. Then the simplest
assumption we can make is transitivity, i.e., O,=M.
If this is not the case, then we either have some discrete
complication or an additional degree of freedom. Since
we intend our particle to have no structure other than
spin, we take On,=M.

Thus the candidates for M are limited to the coset
spaces of SO(3). These are

(1) SO(3), the group itself,
(2) SO(3)/S0(2), essentially a 2-sphere, S,
3) S0(3)/S0(3), just a point.

The subgroup relative to which the quotient is taken
is the isotropy group of the system, i.e., those rotations
which leave unchanged the mechanical object to which
internal coordinates are ascribed. For example, case (2)
might describe a dipole. In case (3), the object is
spinless. An object having M =S0(3) itself is the top.
Both SO(3) and the position of a top can be para-
metrized by the Euler angles.

There is more to a classical model, however, than
specifying a coordinate manifold M. A dynamics too
must be given, for example, by a Lagrangian. In our
case, since M is identified with a quotient space of a
compact Lie group it automatically inherits a mechan-
ics; the paths of the system are geodesics of the coset
space. There is a natural metric associated with this
Lie group and what we are saying is that if M is the
group then the metric coincides with the Lagrangian.
This, however, does not exhaust the possibilities.
Geodesic motion in SO(3) corresponds to a spherical
top. Symmetrical and asymmetrical tops are more
general and have Lagrangians differing from the SO(3)
metric. We have not found any reason to employ these
more general objects and will concentrate on spherical
tops. Therefore, if M=S0(3) the spinning object is a
spherical top. “Is” in the foregoing sentence means
mechanically indistinguishable from. We do not imply
any finite extension for our “electron.” If M=S50(3)/
SO(2) then the metric is the (naturally) induced one,
and the geodesics are in fact great circles on the sphere.

That we should come in the end to calling our spin-
ning object a top should not be surprising in view of the
parallel requirements of spin models and path integrals.
In 1950, Bopp and Haag? studied the quantum mechan-
ical top with just this goal in mind, namely, to establish
it as a model for spin. They brought out the fact that
wave functions (and differential operators) could be
defined on the internal coordinate space (these wave
functions are the components of the rotation matrices—
the “curly D’s”’) and that both integral and half-integral
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spins appeared. When this top was placed in an electro-
magnetic field, agreement was found with the usual
Pauli spinor theory.

Thus the path-integral theory is formulated as
follows: The path of the spinning object is a curve in
R3*X.S0(3) with specified initial and final points in the
composite space. For each of these curves use the given
Lagrangian to compute the action S along this curve.
Then sum the quantity exp(sS/#%) over paths and this is
the propagator between the two endpoints. Later on,
after obtaining the propagator we shall show how to
recover the usual form of quantum mechanics (i.e.,
with spinors).

3. SIMPLE EXAMPLES

Before discussing the path integral for the top, we
shall examine some simpler cases. The top differs from
most systems heretofore path-integrated in two distinc-
tive ways. The examples to be given in this section
embody these features separately. First, the coordinate
space of the top is multiply connected. The fixed-axis
rigid rotator (FARR), whose position can be para-
metrized by the points on a circle, is similar in this
respect and we shall examine its path integral. Second,
SO(3) is curved. Its metric tensor is not diagonal and
is a function of the coordinates (e.g., Euler angles).
Because of the stochastic character of the integral this
will lead to the keeping of higher-order differentials even
for free motion (i.e., dS=Ld¢ is not sufficiently ac-
curate). Illustrating this phenomenon will be free
motion in the plane employing polar rather than
Cartesian coordinates. This was studied by Edwards
and Gulyaev!® and we shall cite some of their observa-
tions. The correct short-time propagator is given by
DeWitt® who expresses it as a function of the endpoints
using the metric g of the space, its derivatives and
whatever potentials are present. The meaning of “cor-
rect” and the dangers of casualness in this regard will
also be discussed.

FARR is a system with one coordinate ¢, 0< ¢ <2,
and Lagrangian
(3.1)

This space is the group manifold of the group SO(2)
and with the metric corresponding to Eq. (3.1) it is
flat. The interesting feature here is the identification
of the points 0 and 27. Although the “integral spin”
version of this system has been treated in the literature
and we offer only a mild generalization, still we feel
some interesting aspects of the problem were ignored
and it is just these points which must be cleared up
before attempting the top problem.

In setting about to path-integrate the FARR, we
consider the general instructions for such a computa-

1S, F. Edwards and Y. V. Gulyaev, Proc. Roy. Soc. (London)
279A, 229 (1964).

1'W, K. Burton and A. H. DeBorde, Nuovo Cimento 2, 197
(1955).
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tion. For a given pair of points in a space (1, ¢2 in our
case) consider curves from # to £ between them. For
each such ¢(¢) let

SLe®1=SLLe(1)dt.

Then the propagator K from (¢1,f1) to (¢s,f) is the
sum over the paths of exp(zS/%).

This is ordinarily a sufficient prescription, aside from
the decidedly nontrivial question of how to perform
this sum. Given paths ¢(¢) and ¢(f) with the proper
end points there is no question of relative phase between
their contributions to the propagator. For example, we
could not have

K~eiSlellh_giSlng ...

The reason for this lack of ambiguity is evident. If we
deform ¢ () continuously into ¢(f), the contribution due
to ¢ (e®W¥1/%) must continuously go over into that due
to o.

For FARR this argument breaks down. This is
precisely because there are paths between given end-
points which are #nof deformable into one another.
(We remind the reader that paths which loop around a
circle different numbers of times are in different
homotopy classes—i.e., cannot be continuously de-
formed into one another.) Thus although paths in the
same homotopy class cannot have arbitrary relative
phase factors there is no @ priori restriction on the over-
all sign (or phase factor) of the summands in one class
relative to those in another. We thus arrive at a more
general prescription: In one homotopy class, sum
as usual. Then add these partial sums with some
relative phase factors determined perhaps from other
considerations.

In order to visualize and simplify the homotopy sum,
it is easiest to path-integrate in the universal covering
space of the original space which is of course simply
connected. Let M have universal covering space M*
with covering projection p:M* — M which is locally
homeomorphic. (See Fig. 1.) Corresponding to paths
from m to n (m, n&M) in M we have paths from some
fixed m*€p~l(m) to all the n*&Sp~'(x) (§ running
through the fundamental group of M) in M*. In M* we
form path integrals to each of the preimages of »
where p is also used to bring the Lagrangian from M to
M*. Then sum over j with phase factors which are so far
arbitrary. If M=S0(2), M*=the real line R and p
takes real numbers modulo 27. The Lagrangian on R
corresponding to (3.1) is that of a free particle in one
dimension. p~(¢2)={¢:+2nr|n=0, %1, ---}. The
path integral from ¢; to ¢o-2nr in R is easy: It is just
the usual free-particle propagator. Hence the propagator
has the following form:

K(¢21t2; <P1,t1)= Z aﬂkﬂ(q’;t) )

(3.2)

e=@s— @1, t=ts—1,
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M
M
FiG. 1. Paths in M*,
where
I \12 il
nto=(==) e —to—2mm),
2mihi P 2%

la.|=1. (3.3)

Now we consider the conditions to be imposed on the
phase factors a@.. In quantum mechanics one expects a
transformation which is physically the identity to
introduce no more than a phase factor. The choice
a,=e" causes K— e®K when ¢2— ¢a427. With
the notation

K(‘P""ﬂoly T—I—tl) P1, t1)=K(¢)T)=K8(¢’:T)7
y=I/4T, (3.4)
we have
YA
Ki(o,T)= (2—-) > etndgivle—mm2 - (3 5)

e

Recall the definition of the Jacobi theta function'?:

03(2,15): Z eiwm?e%nz,

n=—00

(3.6)

and the fundamental identity which it satisfies by virtue
of the Poisson summation formula:

03(z,0) = (—it) Ve limgy(z/t, —1/8).  (3.7)

In the half-plane Im(£)>0, 83 is analytic in 2. Clearly
K; is a theta function, and making use of the obvious
fact that 05(z,f) =03(—3, {) we have:

v 2
Ka(€07T)=(2—j) 7920, (yro—36,2vm).  (3.8)

Y42

Note Imy =0, depriving the series of its absolute conver-
gence and opening the door to all sorts of pathologies,
which as we shall see do not miss this opportunity.
Nevertheless, for manipulative convenience we can
take the moment of inertia, I (or v), to have a small
positive imaginary part, restoring analyticity. This

12 Richard Bellman, A Brief Introduction to Theta Functions
(Holt, Rinehart, and Winston, Inc., New York, 1961).
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strategem is a familiar one in situations where one
must handle a Green’s function and is not at all peculiar
to path integrals. However, an extension of this idea
has been used by Nelson'? to give a rigorous formulation
of the idea of sum over paths (as opposed to iteration
of the infinitesimal Green’s function, which is what
Feynman’s prescription amounts to). For pure imag-
inary mass (or I), quantum mechanics becomes diffusion
and then the Wiener integral is for Brownian motion
what Feynman’s sum over paths would like to be for
quantum mechanics. An analytic continuation to real
mass in the diffusion Green’s function then provides the
quantum Green’s function. In any case, these questions
are not the concern of the present work and we shall
always be content with the prescription I — I-|-7e.

What does conventional quantum mechanics have
to say about the Green’s function for this problem? In
general, this can be written as a sum over stationary
states

G(p2ia; ot) =2 ¥m(@)¥m* (pr)e i En—t/%  (3.9)

Schrodinger’s equation follows by the usual quantization
methods from the Lagrangian (3.1) and yields the
stationary states

ei(m+a)¢, (3_1())

Ym(p)= m=0,+1,£2, -

(2m)v2

with

0<a<l1, E,=#/2I)(m+a). (3.11)
The change in phase of ¢ under rotation by 2= is e?7%=.
We can now use (3.9) to form G5, where 6=2wa. As a
notational convention we call the path-integral propaga-
tor K and that computed by the usual quantum
mechanics G. The object of course is to prove them
equal. From (3.9)-(3.11), with obvious notation, we
have

Gs(o,T)
- 2 ool i) ool (o) ]
—-21r = EXp| 1| 7 2,”. €Xp 27 n 21r

1 b 162 5 —1
S Eac ]
2 2w 8yw? 8yr 2yw
To compare (3.8) and (3.12) use the identity (3.7) to
transform one into the other. Verification is direct
and we find the path integral gives the “right” answer.
The cases =0 and é== are obviously of most
interest since these correspond, in some sense, to integral
and half-integral spin. =1 are the only phase factors
which arise for the top since SO(3) is only doubly
connected, in contrast to SO(2) which is infinitely
connected.

18 Edward Nelson, J. Math. Phys. 5, 332 (1964).

(3.12)
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The degree of pathology exhibited by this Green’s
function is entertaining, especially in view of the ele-
mentary nature of the example. This pathology of course
has nothing to do with path integrals since the Green’s
function is that obtained from ordinary quantum me-
chanics. For Im#>0 the zeros of the theta function
are doubly periodic (the function is only quasiperiodic)
forming an infinite lattice in the z plane. As Im¢— 0
the lattice collapses and the zeros move towards the real
z axis. For ¢ real and rational there will be a finite
number of zeros in any interval. For ¢ irrational the
zeros are dense on the real z axis.!* This does not imply
Gisidentically zero since we are now very much without
analyticity. In fact, we know that as an integral kernel
G is norm preserving and has nonzero integrals.

In addition to its topological features, FARR serves
as a preview to the top in some other respects. We first
meet the theta function which reappears in the top
propagator. We also see a recurrent phenomenon in path
integrals. Let the “classical path” be that followed by a
particle obeying its classical equations of motion.
What we have seen is that the FARR path integral,
like that for the free particle in Euclidean space, like
that for the harmonic oscillator, and like other examples,
collapses from a sum over all paths to a sum over
classical paths [cf. (3.2) and (3.3)]. In fact, this
phenomenon seems to occur for all time-dependent
quantum mechanical Green’s functions which have
been evaluated in closed form (of which I am aware).
This, however, is not a random subset of all Green’s
functions and the property appears not to hold univer-
sally*® although a theorem, proved using path-integral
techniques, claims its generality. It would indeed be
interesting to know under what circumstance the
statement is true, particularly since similar results exist
for optics.'?

The accuracy with which one must handle infini-
tesimal quantities in path-integral theory is greater
than that to which one is accustomed in the usual
calculus. The underlying reason is that one is dealing
with essentially a Brownian motion and is forming a
stochastic integral. A rule of thumb in Brownian motion
is (dx)?=dt (dx is the distance covered in time df),
corresponding to the fact that the square of the distance
a particle diffuses is proportional to the time it has been
diffusing. The erratic nature of the path makes it
cover a lot of ground microscopically but not to appear
to get very far macroscopically. By the rule of thumb,
if one wishes first-order accuracy in the df he must keep
terms of order (dx)2. Consider the action S which is the
integral of L over some path. One would ordinarily

14 This is just Kronecker’s theorem: If ¢ is irrational the set of
points (ng), n=0, 1, ---, is dense in the interval (0,1). ((x) =«
—[«]). See G. H. Hardy and E. M. Wright, An Introduction to
the Theory of Numbers (Clarendon Press, Oxford, 1962), p. 376.

L. S. Schulman, thesis, Princeton University, 1967 (un-
published).

16 M. Clutton-Brock, Proc. Camb. Phil. Soc. 61, 201 (1965).

17 7, B. Keller, J. Opt. Soc. Am. 52, 116 (1962).
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expect to drop terms like (dx)*/(df) in approximating
S. However, counting differentials we see that for a
path integral or Brownian motion this is of order dt.
The need to keep these higher-order differentials was
noted by Edwards and Gulyaev? (and by Feynman!8)
who performed the path integral for a free particle
using polar rather than Cartesian coordinates. The
Lagrangian in two dimensions is

L=1(i2472¢%). (3.13)

This is obtained from the corresponding Cartesian
expression by the rules of differential calculus. If used
in a path integral it is found to give the wrong answer
and it is necessary to use the action integrated along
the classical path [accurate to (dx)*/(d{)] even for
infinitesimal d¢. This justifies our earlier statement,
dS£ Ldt. (This is essentially the reason why the theorem
mentioned above'® on the sum over classical paths is
not reliable.)

In general, when maintaining this greater accuracy
the infinitesimal (in time) propagator consists of more
than just exp(s5/%). For curved spaces and complicated
mechanical systems, the normalization of the prop-
agator, which we have so far ignored, is a function of
the coordinates, which is not the case for, e.g., the
harmonic oscillator. With this factor, and some others
to come, the path integral looks less like a sum over
paths and more like an infinite folding of the infini-
tesimal Green’s function. Be that as it may, over the
years the correct form of the short-time Green’s
function has evolved, tracing its earliest roots to
improvements in the WKB approximation by Van
Vleck,! continuing with the work of Morette® and
Pauli?* and finally given in full generality for curved
spaces by DeWitt.® The ultimate test, marking this as
the “correct” propagator, is the following: It satisfies,
to first order in (df), the equation for the Green’s
function of Schrédinger’s equation,

a
(H"—iﬁa—;)G(x”,t”; @\ 1) = — i (! — )8 (1 — 1)
¢

with H the general expression for the Hamiltonian in a
curved space. We now give DeWitt’s expression with a
slight reduction of his generality suitable to our
purposes.

A particle moves in a curved n-dimensional space.
The Lagrangian is

(3.14)

with summation convention. The coordinate is «
= (%%, - -,#*) with the dot indicating total time differen-
tiation. There are potentials @; and v which may be

= %gijiiii:j+diii2i— v

18 R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).

17, H. Van Vleck, Proc. Nat. Acad. U. S. Sci. 14, 178 (1928).

20 Cecile Morette, Phys. Rev. 81, 848 (1951).

21 W. Pauli, Feldquantisierung, lecture notes, Zurich, 1951 (un-
published), Appendix.
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functions of # and #. The coefficients g;; of the quadratic
form for the kinetic energy will be looked upon as a
metric and we shall assume the space is of constant
curvature, R. Given two points x”/, ' and times ¢, ¢
there is a classical path connecting them, and the action
as a function of these points, S(x”,t”; «',)')=/"Ldt, is
defined as the line integral taken over this path. S is
also the solution of the Hamilton-Jacobi equation and
can be expanded to order d¢ [meaning terms of order
(dx)*/ (dt) are retained] using g, its derivatives, a, its
derivatives, and v. Such an expression is given by
DeWitt. Using S, we define the Van Vleck determinant

Dji=—02S (" 1" ; ' ,t')/0x"" 0",
D=D(""; «'t')=detDy;. (3.15)

Define g™ by g™"ga,=0",=XKronecker delta. Also
define g=detg,;. R, the curvature, is built as usual from

i+
Lrki]=3(gssatgor.i—8ix.i) »
Ripji= %(gij,kz—gil,kj—gkj,u‘l‘gkl,z‘j)
+gm" ([lj’m][kl:n]_ [k],')ﬂ:”:’tl,n]) ’
Rij=—g"Ryj1, R=g"R;;. (3.16)

In terms of these quantities the propagator is given
by22,23

K ("t of f)= (2mik) 12 " WADV2 (2" 1" 5 &'t )g"~H14
X et RU12 exp[iS («" " ; &' ¥) /%] (3.17)

with g”"=g(x"), g'=g'), t=¢"—¢. With this formula
all obstacles are removed for the final assault on the top.

4. PATH INTEGRAL FOR THE TOP

The top moves in both external position space and
internal spin space. For a free top, these motions are
uncoupled and the Green’s function is a product of the
individual Green’s functions. The position-space propa-
gator does not concern us here and we confine attention
to that for spin motion.

For this motion we need the following information
concerning its classical mechanics: Given initial and
final configurations of the top, what is the action
computed along the classical path connecting them?

2 We have put the curvature term exp(:%R¢/12) in the prop-
agator rather than modify the Lagrangian, as DeWitt (Ref. 6)
suggests. For a nonconstant curvature, following his technique,
the original Lagrangian L is replaced by L+-#2R/12. Then the
propagator (3.17), without the explicit exp(¢4R¢/12) (but with
the effect of the added term in the action), is the Green’s function
for the Schrédinger equation obtained from L alone by the usual
quantization methods. This is a clearcut difference between path
integral and other forms of quantization, a difference which (1)
disappears as # — 0, (2) disappears if R=0, and (3) appears to be
irrelevant if R=constant as in our case. [ See discussion in WADC
Technical Report No. 57-216, ASTIA Document No. AD 118180
(unpublished). ]

% If the Lagrangian has a mass parameter (L=3mg;;@%di=4-+)
keep (3.17) exactly as is, except replace R by (R/m) where R is
still computed from g alone. The D2 factor will then provide the
m™? dependence one generally finds in propagators.



1564 LAWRENCE
(A “classical path” conforms to the classical equations
of motion.)

To a top with Euler angles ¢, 0, ¢ is assigned the
SU (2) element

U(e,8,¢)=exp(—i¢o./2) exp(—ifoy/2) exp(—ifo./2)
“4.1)

with the usual ¢ matrices.

Active rotation of the system through angle a about
an axis 7 is effected by left multiplication of U(¢,04)
with the matrix

exp(—iafi-0/2). (4.1)

Passive rotation of the observer is also effected by left
multiplication but with o replacing —a. A right
multiplication of U interpreted actively moves the top
in its body system. Appendix A gives a rationale for
this description and shows left multiplication to be a
kinematic symmetry of all tops, while right multiplica-
tion leaves invariant only the Lagrangian of the
spherical top.

The metric tensor for SU(2) [or SO3)] is gee=gee
=gyp=1, goy=gyo= cosh, other components zero. Euler
angles will be denoted by E with the convention
E=(¢,0,¢). Then

(ds)*=gid EdE;= (d6)*+ (de)*+ (d)*+2 cosf do dp.

For a spherical top the relation between metric and
Lagrangian is

L=1(ds)*/2(dl)*=31(6*+ ¢*+*+2 cosd &), (4.2)

where I is the moment of inertia. The action .S from
Einitial to Efing1 is a function of U; and U; (and of course
T=t—1t;), S=f(U;Uy). Rotational symmetry of the
external world requires f to be invariant under left
multiplication of its arguments. The spherical nature of
the top demands in addition invariance under right
multiplication. [Now it is clear why the spherical top
Lagrangian corresponds to the metric: The (natural
Lie group) metric too is invariant under both left and
right multiplication.] Thus for any 4AESU(2), f(B,C)
= f(B4,CA)= f(AB,AC). Left multiply with arbitrary
A and right multiply with U;141:

S=f(1,AUU;47).

For the diagonalizable matrices with which we deal the
only invariants under similarity transformation are
the eigenvalues and their multiplicity (or functions
of these). For SU(2), the determinant and unitarity
conditions leave but one independent invariant. For
convenience we define

cosil=1 TrU;U;! 4.3)

and .S must be some function of T'. In terms of the
representation (4.1)

cosiT'=cosd (6;—0;)cost (o5— ¢:)cost (Yr—¢:)

—cos} (0,40:)sing (or— ¢)sing (Yr—ys).  (4.4)
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To identify the functional dependence of S on T,
consider the boundary conditions 6,=0;=0, ¢;= ¢;.
The motion can now obviously be taken as uniform
rotation with the figure axis pointing in the 6=0
direction. The resulting ambiguity in ¢ and ¢ is resolved
by taking ¢=constant. Then constant=y= (Y;—y.
+2nr)/(4;—1;), where n is the number of times ¢
passes through ¢, for (<{. By (4.2), S=(I/2T)
X (Yr—yi+2nm)2 From (4.4) [or (4.3)] we have only

I'=y;—¢; (mod 27). 4.4)

T' can be made a well-defined function of this orbit
with the definition I'=y;—y;+2#7. Then

S=(I/27)I". (4.5)

Clearly T is just the arc length of the geodesic in
SU(2) connecting U; and Uy. The multivaluedness of
the arc cosine which appears in the inverse of Eq. (4.3)
corresponds to the discrete set of geodesics connecting
points in SU(2), each of which is but a local minimum.
Physically one can imagine a top going from one
configuration to another in a fixed time by spinning
once at a certain rate about a certain axis, or by
spinning twice about the same axis at a greater velocity
or by spinning # times, etc.2* To be more precise, in
the case of the physical top the group of interest is
SO(3) and the relevant paths correspond to solutions of

cosiI'=+1 TrU;U1. 4.3

For each solution of this equation (both signs) there is
amotion of the top starting and ending at the prescribed
Euler angles and taking the given amount of time.
[(4.4) actually corresponds to (4.3').]

Recalling the connection between geodesics and one-
parameter subgroups, it is also easy to write the position
of the top on the SU(2) group manifold as a function
of time.

U(t)=exp(—iTth-0/2T)U;. (4.6)

With this solution it is clear that I" and 4 are related to
Usand U; by

U;Uit=exp(—il'A-a/2) 4.7

[times =1 for SO(3)]. Thus the constant angular
velocity vector is Q=T4%/T.

There is one more factor to compute for the evaluation
of (3.17), the expression for the short-time propagator.
This factor is (g')~V4DV2(g'")~'/4 Like S it is a function
of U; and U,, and like S it is rotationally invariant.
In Appendix B, there is a proof of this statement and
the expression is evaluated. The result is

I 3/2 P
(?) 2sindT

2 If the top is symmetric but not spherical this picture breaks
down, and while there is a discrete infinity of paths, they are not
all about the same axis.

(4.8)



176 PATH
Finally, the curvature of SU(2) is R=% and is easily
computed from (3.16).

Using (3.17) the path-integral expression for the
infinitesimal propagator is

X ( I )3/2 T (ihT) (iII‘2) 4.9)
= exp{ — Jexpl — ] . 9
2wihT/ 2 sinjT 81 21T

T'in (4.9) is the smallest (in absolute value) solution of
(4.3"). Denoting this by TI'y, the other solutions are
I'=To+2nmr, n==1, &2, ---.

As in Sec. 3, we check this against the standard
quantum mechanical result. Schrodinger’s equation is

—h? oy
— Ay =ih—
21 at

(4.10)

with A the Laplacian on SU(2) [or SO(3)]:

92 0 1 702 9
A=—--cotf— ( -+
96? dp?  IY?

62

2 cos @ ) . (4.11)
80 sin?% dpdy
The stationary states are labeled by j, 7, £ which are
related respectively to the eigenvalues of J2, J,,
J¢ (Jy=7,-J, where 7; points along the figure axis).
The normalized eigenfunctions having the appropriate
rotational properties together with their energy eigen-
values are

AR B
( ) Dei* (o), Em=—i(i+1). (412)

8m?

(These are the ®’s, the representation matrices of the
rotation group.) As in (3.9) we have for the Green’s
function

2j4+1 .
G(E%T; E1,0)= Z Dmkj*(E2)Dka(E1)

jmk 8

2
T
><exp(—;j<]+1)), (.13)

where the sum either includes all integral (G,) or half-
integral (G_) values of 7, m, k. This is required in order
that G have well-defined rotation properties.

We now show G to be related to the theta function.
Consider the argument of D to be U(E)ESU(2),
rather than just E. By unitarity D,..*(U)= D3, (U™Y).
For any j,

Zk D nii*(U2)D i (Ur) = }_;c D i (U2) D™ (U1™)
=Z Dmmf*(U2U1‘1)=Ter*(UgUr‘). (414)

Since the trace is invariant under similarity transform
we can take D7 diagonal. This will be the case if the z
axis is taken along the direction # defined by U, and
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U, through Eq. (4.7). In that case Dun?(UUi™)
=exp(#mI’), with the I' of Egs. (4.3). It follows that

sin (j+3)T
TrD#*(UyU ) = — (4.15)
siniT’
and
o L 2 5 ol (43T
= — — 2 COS z)T
= Sin(3T) 82 0T 7 a
(-—ihT( 5
Xexp(——i(j+ )
Y}

-2 1 9
sin(3T") g'; 6—1‘
g+=30:(GT, —¢/m)e*!t =3¢ 103 (3T —5¢, —c/m),
g-="%¢*"[0;(3T, —c¢/m)—1] (4.17)

[using 6:(z,t) = eirt/%0;(3+3nt, t) ], where ¢c=#T/2I.
Because of the §/4T the term —1 in g_ can be ignored.
To each of these expressions apply the identity (3.7)
and rewrite the theta function as an infinite sum

g+ isfor j=0,1,---
8+ . .1 (416)
g— isfor j=3,3,---

A\Y2 o
g:‘::%eiclﬂl(f) S (F)neiTHenmiae (4.18)
1C =<0
Thus,
GRTIST ;T \312
Conm ( > S (F) (T4 2nm)
=2 sindr\2win 7/ ne

i
L (Tt2mm)2). (419
XexP(th< + M)) (4.19)

For sufficiently small 7', the only term contributing is
n=0. Hence,

I 3/2 T
Gy= eihT/SI( )
2T/ 2sin(T/2)

in agreement with (4.9).

There is a familiar ring to Eq. (4.19), the exact finite-
time propagator. Recalling the classical mechanics of
this system, it is apparent that the sum in (4.19) is a
sum over classical paths. Thus, given U(E’) and U(E"),
we obtain a solution I'g of cosiTgy==xTrU(E")U(E')!
and from this an infinity of solutions I'=T"o42nr with
action I(To+2nm)2/2T. The associated classical paths
fall into two homotopy classes depending on whether
n is even or odd. Because of the siniT' factor in Gy,
these classes enter the sum with opposite sign for
integral spin and with the same sign for half-integral
spin.

We now perform the sum over paths using the
infinitesimal propagator established in Eq. (4.9). This
is superfluous to the extent that equivalence of our

et T2I/24T

(4.20)
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formalism with ordinary quantum mechanics is
established with the equality of the infinitesimal
propagators. Proceeding from this to the finite-time
propagator is a luxury for either formulation. Never-
theless, iteration of the Green’s function (which is
the sum over paths) seems to be the peculiar domain
of path-integral theory and we now proceed with this
calculation.

By Sec. 3, the proper arena is SU(2) rather than
SO(3). In order to write the SU(2) propagator, even
infinitesimally, there are a few ambiguities to be
disposed of. First it is clear that given U, U'&ESU(2)
it is not the solutions of (4.3’) that we look to, but
rather those of (4.3). Now, which solution? The auto-
matic answer is the smallest one. This can, however,
lead to trouble because of the use of this solution in
an integral. Suppose some solution I" has been selected.
The Green’s function will be roughly (I'/sinil’)
X et ti+1=t)  where I' depends on Uj,; and Uj, which
are respectively the locations of the system at the
times #;,1 and #. (The usual path-integral context is
assumed with the interval [4;f;] being broken up into
bi=tlo, t1, *+++, i, +++, Iny1=1;. Position at ¢; is U;. The
sum over paths is effected by integrating over Uj;
j=1, -+, N.) For fixed Uj;_; and Uy, as U; varies
over SU(2) there is no one analytic expression for
Tj,;41 or Ty, The analog of this for FARR [[SO(2)]
is easy to visualize (see Fig. 2). As illustrated, no one
would doubt that the action is given by I(¢i— ¢s1)%/
2T. Suppose ¢; moves counterclockwise. Eventually the
action becomes I(2r— ¢;— ¢411)%/27. The same am-
biguity occurs in SU(2) and while we may have started
with a certain geodesic, in the course of integrating
we may find ourselves with a I' that is inaccurate
by 4. For sufficiently small Af=t¢;,,—¢; this is quite
unsatisfactory since it is only the smallest solution
that makes a significant contribution. [Note a similar
rationale in going from (4.19) to (4.20). As ¢—0,
€ V2ia®le is essentially a § function in x.] To settle the
dilemma we make use of this last fact by adding together
all the solutions. When one of the terms (I'+4n7)? is
small it will contribute. If none is near zero, none will
contribute to the iterated integral. Furthermore,
because SU(2) is simply connected there is no question
of phase factors in adding together different terms.
Then we can take as infinitesimal propagator on SU(2)

G=Gzsu(
< I )3/2 o I'+44nr
" \2mihT/) S 2 sindT

ethT /81

il (T44nm)?

T ) (4.21)

Xexp<

with T=1{;,1—#; and I some definite (but arbitrary)
solution of (4.3) (with “f”=j41 and “¢”=).
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i+l

F16. 2. Two positions of the fixed-axis rigid rotator.

Next work backwards from (4.19) to (4.13) and use
the “factored” form of the propagator for a path
integration. The arid stretch from Eq. (4.13) to (4.19)
can be summarized by

T'4-2n

Ga= (/20 T)" exp(HT/ST) 3 — ()"

2 singI’'
il (T4 2n)?
Xexp (——————)
2uT
2541

=Z(:l:)

D i (Bo) D i (By)e=3GHDTIL | (4.22)
Jmk 87{'2

where Y ) means sum over j—3(141)=0, 1, ---.

The relation among Es, E1, Us, Uy, and T is the usual.

Comparison of (4.21) and (4.22) leads to

Gsvey=G++G-.

It follows that the second sum in (4.22) can be rein-
terpreted to apply to Gspey by taking > SU®I to
mean sum over all 7, 7=0,3,1, ---

The iteration of Gguy) expressed as a sum of D’s is
trivial by virtue of the orthogonality of the D’s (this
iteration is the tedious part in the “sum over paths”);
and the form that we already have for Gsy ) turns out
to be correct for finite time. The SO(3) propagators
G, and G- follow in an unsurprising way and we
elaborate no further.

Finally, we indicate the connection of this formalism
with that of Pauli spinors. A particle initially in a
state of fixed 7, m, k& will retain this property when
propagated by the appropriate one of G,. Without
interactions one expects nothing to happen, and indeed
nothing does. Projecting, for example, to the subspace
j=k=% one can write G_ in spinor form. Generally,
spinors are obtained by Fourier transforming (the D’s)
to an angular momentum representation and projecting
to a fixed 7, k subspace.

A magnetic field in, say, the x direction introduces an
interaction term proportional to J.. This will induce
transitions from one m state to another and will modify

(4.23)
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G appropriately. That the modifications are in quanti-
tative agreement with spinor theory is demonstrated
by Bopp and Haag.5 Since states of different 7 and %
are not mixed (J, commutes with J2 and J;) the Pauli
spinor formalism is adequate. This last remark reflects
the fact that when we have no interactions that change
the total spin it is sufficient to confine attention to
that spin alone.

5. CONCLUSION

Particle models possessing spin were proposed? some
years before intrinsic spin was recognized in nature.
At first these models involved rotating objects of one
sort or another (tops), but as the significance of half-
integral spin became apparent, it came to be felt that
some extra feature, some gimmick, would be necessary
if one were to account for two-valued wave functions.
This in turn led to what is now the generally prevailing
attitude, namely, a general uncomfortableness at the
mention of internal spin variables and a reliance on
the more formal, but nevertheless completely adequate,
spinor wave functions. These are the labeled basis
vectors for a representation of SO(3), but are endowed
with no further properties.

If anything, these views were reinforced by the
limitation of orbital angular momentum to integral
values. This seemed to be one more strike against the
idea of a classical motion—and thus a motion which
could be reduced to the orbital motions of a composite
system—giving rise to spin.

Nevertheless, as it happens, there is a classical system,
which, when quantized (according to your favorite
method), gives rise to half-integral spin and two-
value wave functions. The system is the classical top,
and its quantum mechanical analysis is presented by
Bopp and Haag.® Moreover, as we have tried to
indicate in Sec. 2 of this paper, the word “‘top’’ merely
serves as a generic term for a system requiring the full
rotation group to specify its position.

What is it then that causes the top to possess this
anomalous behavior? Why does an operation that is
physically the identity change the wave function??
It is here that path-integral theory is most useful.
Clearly, there must be an ambiguity in the process of
quantization.?” In path integration one sums a func-

2 H., A. Lorentz, The Theory of Electrons (B. G. Teubner,
Leipzig, Germany, 1916), p. 217. In his 1906 lectures at Columbia
University, Lorentz anticipated problems arising from the rotation
of his extended electron, in particular, in its interaction with a
magnetic field.

26 Actually, this situation is far less rare than might be supposed.
Since massive states in nonrelativistic quantum mechanics arise
from ray representations of the Galilean group [V. Bargmann,
Ann, Math. 59, 1 (1954)] a phase factor associated with the
identity should hardly be considered an anomaly. Nevertheless,
when a classical model is available, we maintain that it is desirable
to pinpoint just where this phase factor is introduced. The
parameter » (mass), which selects the ray representation for the
Galilean group, is already present in the classical theory.

27 Klauder (Ref. 2) also speaks of an “action option,” a choice

at one stage in the process of Feynman quantization, leading to
Bose or Fermi statistics.
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tional of classical paths. But the usual recipe is not
complete. Functionals of some paths may enter the sum
with an over-all phase factor relative to those of others.
The resolution of this ambiguity leads directly to the
terminology of homotopy theory. If one path can be
continuously deformed into another, then a relative
phase can be eliminated; if not, they lie in different
homotopy classes and an over-all relative phase may
indeed be present. Because there are two homotopy
classes® in SO(3), there turn out to be two choices of
phase, and these correspond to integral or half-integral
spin. As a source of half-integral spin, this ambiguity is
precisely appropriate: It is only because SO(3) is
multiply connected that it admits multivalued contin-
uous functions, and hence ray representations.}

It is in the nature of this spin model that one does
not simply obtain spin } or some other single value.
There is some object requiring rotational coordinates,
and it can appear in any one of many spin states. This
fact enjoys a mixed reception. If one desires only a path-
integral theory for, say, an electron—which does not
appear to possess other spin states—then the coordinate
space (o,0,¢) Green’s function possesses more than
enough information (a fortiori it possesses enough). On
the other hand, if one desires that a certain particle
appear with several spin values, then this would seem
to be an appropriate framework. Needless to say, a
discussion of this sort requires a relativistic theory,
since one naturally imagines spin-related mass depend-
ences. Such an extension of the present work has been
studied by the author and will appear at a later time.

There is an important technical point which arises
in the path-integration of the top. The paths do not
lie in a Euclidean space with trivial metric, so that some
additional care is required when approximating the
classical action preparatory to performing the sum
over paths. This problem has been studied before, and
we find that the formula given by DeWitt® is adequate
for our purposes.

In Sec. 4, the Green’s function for the top is obtained
by path integration, and is written down in closed form
[Eq. (4.16)] as a derivative of the Jacobi theta function.
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APPENDIX A: SOME MECHANICS OF THE TOP

This Appendix discusses some kinematics of (not
necessarily spherical) tops.

To obtain the angular velocity vector @ for the top
from the form of U(f) [see Eq. (4.1)], consider the
effect of such a velocity on U. It is expected to rotate

28 Since we work with paths (or curves), only the fundamental
homotopy group enters.
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the top through an angle |Q| df about an axis  in

time d¢. The interpretation we have given left multi-
plication in SU(2) implies

U(i4dt)=exp(—iQ-adt/2)U (1) (A1)
or :

Q-o=(2¢/d)[U(t+d)U(t)—1]. (A2)

The effect on Q of finite left and right translations by
AESU(2) is seen to be

Left: Q' e=4Q-0471, (A3a)
Right: Q'=Q. (A3b)

For a general (free) top the Lagrangian is
L=32-1.9=10,;%, (A4)

where I is the moment-of-inertia tensor. To see what
happens to the dyadic I under rotation, and hence to
L, we construct a simple model of the top which also
provides motivation for our form of U(e,0,¢). Mass
points m; are placed at 49,2 with (p0);=ads; 1, j=1,
2, 3. These move rigidly in time and the position of the
ith vector is given by

o-0:()=U(e,0)eL- U (p,0,¢). (AS)

This will connect our notation with the usual description
of Euler angles. The g are, in effect, the body axes.
Note that exp(iac,/2), a passive rotation through the
posmve angle a, decreases ¢ by a. It was the desire to
gNe passwe rotations the plus sign that led to the
minus signs in U and ultimately to D* rather than D
in (4.12).
Since
doi/di=QX s, (A6)

the kinetic energy

3
T=2X73 Y mi(dei/dt)?

=1

(A7)

can be written
r=1iQ-1.Q (A8)
with

3
I=2a% 3" mi(oi?l— gig:), (A9)
=1

the moment-of-inertia tensor. The transformation
properties of I under rotation follow from those of .
and it will surprise no one to learn that it transforms
as a tensor. We introduce the usual homomorphism of
SU(2)—S0(3) and for AESU(2) we define R(4)
E&S0(3) to be the rotation such that R(A4)z;(ps);= (0:)'x,
where ¢’ o= A¢- 4~ By Eq. (AS) a left multiplication
of U by 4 rotates g; by R(4). Then

I';1=R;jm(A)Rn(A) mn. (A10)

Since under left multiplication @ suffers the same
rotation, the kinetic energy T remains invariant. This
conclusion also follows from the observation that left
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multiplication is equivalent to passive rotation of
the space frame which must leave kinetic energies
unchanged.

Not so for right multiplication. This transformation
can be understood with the aid of the definitions
(subscript ¢ suppressed) :

o -e=Ap" 0A™1,
o o=Up" - cU=UAg" - cA7U. (All)

We interpret 4 as causing a rotation of the system in
the body axes—or passively a relabeling of these
axes—but recalling that Q does nof change, this will
not be equivalent to some left multiplication. The effect
on I is described using B defined by UA=BU (a
definition depending on the specific U involved). Then
I transforms as in equation (A10) but with R(B).
However, since  does not change at all, T is not
invariant. There is one exception to this statement, the
spherical top (m; all equal), for which I is a multiple
of the identity. It is this exception, with its wider class
of invariances, which occupies us in Sec. 4.

APPENDIX B: VAN VLECK DETERMINANT

As a notational amenity we will denote coordinates
by ¢ and momenta by . Our interest is in the function

1@ "5 =g )y*D(q"1"; ¢',1)g(g")*  (B)

whose square root appears in the propagator (3.17).

The system for which we evaluate this is the free

spherical top and as a first step we show this quantity to

be invariant under both “left”’ and “right” rotations. For

a top whose position is correlated to UESU(2) a left

(right) rotation by 4 brings the top to AU(UA).
From the definition of D and p, we have

D=detD;;, D;=—0p"/dq; . (B2)

Consider at time ¢ a volume dp’dg’ of 2n-dimensional
phase space near the point ¢’, p’. Suppose that at the
later time #”/ this has come to occupy the volume dp"dg”
about ¢”, p"’. By Liouville’s theorem

dp'dg'=dp"dq" . (B3)

Imagine that instead of specifying ¢', p’, d¢’, dp’
and arriving at the respective double-primed quantities,
we specify ¢, d¢’, ¢"", d¢"’ and deduce (from solutions of
the equations of motion) the remaining quantities.
(There is an ambiguity here since ¢/, ¢’ may yield a
discrete set of solutions but we fix attention on one of
these.) Equation (B3) still holds. If there is an integral
of some sort to be done over p’ one can switch to an
integral over ¢” and then (B3) provides a relation
between volume elements

p'=(0p"/3¢")dq", (B4)

where the Jacobian can be evaluated at ¢’, ¢’ or the
corresponding ¢', '
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F16. 3. Rotational invariance.

What happens under rotation? Let the rotated
variables have asterisks, ¢*', etc. Then we have an
invariant volume element:

[g(q) J2dg=g(g*) ]"*dg*. (B3)

[(BS5) is true for more general transformations and has
nothing special to do with rotations.] Either sort of
rotation (left or right) is a “point transformation” and
hence a canonical transformation. This implies the
invariance of the phase-space volume element.

dqdp=dg*dp*. (B6)

Now we are given ¢/, p’ at ¢’ which at ¢ arrives at
¢, p"" with each of these surrounded by appropriate
volume elements satisfying (B3) or (B4). Let us suppose
that after rotation ¢*’, p*'’ is the position at ¢’ of a
system which was at ¢*, p* at time #. Taking into
account (B6) and (B4) we have

ap*'=Op*"/0g*)dg*" . (B7)

Equation (B4) can be divided by [g(¢")]"?=¢""? to
obtain

g/._llgdpl — g/_1/2 (6p"/aq’)g"‘”zg”l/qu"
=— "5 ¢ g (BS)

The same can be written for the asterisked quantities.
From (BS5) and (B6) it is clear that g~12dp’ is a rota-
tional invariant. Equating the starred and unstarred
versions of Eq. (B8) we have finally that

f(qll’t,,; q,)t,) = f(q*”’t”; q*l’t’) M (Bg)

It remains to examine the supposition stated between
equations (B6) and (B7) and which is represented
diagrammatically in Fig. 3. If the rotation is a passive
one (left multiplication) the transformation must be
interpreted in its action on p (which is so far unde-
termined) so as to validate the supposition. This
statement does not really need explicit mathematical
support but since the right-multiplication case is more
involved we bring in some of our SU(2) notation here
too. By (4.6) the path in SU(2) is

U(t)=exp(—ilth-0/2T)U; (B10)
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and Q=T7/T. The relation of py, p,, and py to Q is a
geometrical one, i.e., from

Q,=1y sinf cosp—f sine,
Qy=1 sinf sinp-+0 cose,
Q.= cosb+¢.

[This is @ in the space axes. Note that our conventions
differ from those of Goldstein® and are completely
embodied in Eq. (4.1) and the rule (4.1’).] Since
L=3IQ? it follows, e.g., that p,=1IQ.. The rotational
properties of the p’s follow therefore from those of Q.
Thus the validity of the diagram is equivalent to the
validity of the corresponding one with Q replacing p
everywhere (e.g., p* — Q¥). The effect on Q of left
and right multiplication is given in (A3a) and (A3b).
Left multiplying Eq. (B10) with arbitrary 4, we see
that the entire path is left multiplied and remains a
geodesic. Furthermore, the angular velocity transforma-
tion is consistent with the rules of Appendix A. This
remark is justified by

(B11)

AU()=[A4 exp(—iQ-01/2)A]JAU; (B12)
and expansion of the exponential
A exp(—iQ-o1/2)A™?
=coszQU—iA[ (Q-¢)/Q]41sind0t. (B13)

The same applies to right rotations insofar as Eq.
(B10) is concerned. Right multiplication [of (B10)7] is
seen to move the top a fixed amount but leave Q
unchanged. Again the geodesic nature of the path is
unaffected. Equation (B10) takes the form

U)=U@t)A=exp(—iQ-at/2)U/ (B14)

with U/=U;A. This is consistent with the transforma-
tion law (A3b) for © and verifies the supposition (the
question in Fig. 3 is answered affirmatively). For non-
spherical tops “‘right” invariance is not present [and
(B10) is not valid] and one observes that it really does
matter whether =0 or 6=1. In one case the top
does not precess, in the other it does.

The remainder of the computation (of f) is tedious
and we have failed to avoid taking lots of derivatives.
After performing differentiations of cosil', the end
points are specialized to

Or=01=3m, Y=y,

This can be done only because of the rotational invar-
iance whose proof has occupied so much space. The
result of the calculation is given in Sec. 4.

=T, ¢;=0.

. ®H. Goldstein, Classical Mechanics (Addison-Wesley Publish-
ing Co., Inc., Reading, Mass., 1959), p. 161.



