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9 e present details of the theory of light scattering by one- and two-magnon excitations, and compare
predictions of the theory with our experimental results in the tetragonal antiferromagnets MnF2 and FeF~.
Two mechanisms are considered for first-order (one-magnon) light scattering: one involving a direct mag-
netic-dipole coupling and the other involving an indirect electric-dipole coupling which proceeds through a
spin-orbit interaction. Experimental results on the intensity and polarization selection rules of the first-order
scattering show that the spin-orbit mechanism is the important one. On the other hand, second-order
(two-magnon) scattering is observed to be even stronger than first-order scattering in these antiferromagnets,
implying that the process is not due to the spin-orbit mechanism taken to a higher order in perturbation
theory. A theory of second-order scattering based on an excited-state exchange interaction between opposite
sublattices is given. When coupled with group-theoretical requirements for the D»" crystals, the mechanism
predicts the intensity, the polarization selection rules, and the magnetic field dependence of the second-order
spectrum. Features of the second-order spectra are related quantitatively to magnons at specific points in the
Brillouin zone. Analysis of both first- and second-order magnon scattering has thus enabled determination of
the complete magnon dispersion relation for FeF~,

I. INTRODUCTION

t 1HE possibility of light scattering by spin waves
or magnons was considered theoretically some years

ago by Bass and Kaganov' and by Elliott and I.oudon. '
These authors examined photon-magnon interactions
based on (1) a direct magnetic-dipole coupling and
(2) an indirect electric-dipole coupling via a spin-orbit
interaction, respectively. More recently Shen and
Hloembergen' have investigated further the Elliott-
I.oudon mechanism. Within the past year the erst
observation of light scattering by magnons was re-
ported in the antiferromagnet FeF2. Since then similar
observations have been reported in MnF2' and NiF2. '
In addition to the one-magnon scattering process that
had been treated theoretically, these experiments
demonstrated the existence of a relatively strong two-
magnon light scattering. Though at Grst glance the
relative strength for the one- and two-magnon processes
(the second order is equal to or stronger than the first
order) is diKcult to explain, it was suggested' that
while the one-magnon scattering is indeed due to spin-
orbit coupling, the two-magnon scattering proceeds
through an altogether diferent mechanism. This
mechanism —excited-state exchange interaction —was
outlined and tested' for the two-magnon process in
antiferromagnetic MnF2, in which the magnon-disper-

' F. G. Bass and M. I. Kaganov, Zh. Eksperim. i Teor. Fiz. 37,
1390 (1959) (English transl. : Soviet Phys. —JETP, 10, 986
(1960)j.'R. J. Elliott and R. Loudon, Phys. Letters 3, 189 (1963).' Y. R. Shen and N. Bloembergen, Phys. Rev. 143, 372 (1966).

4 P. A. Fleury, S. P. Porto, L. E. Cheesman, and H. J. Guggen-
heim, Phys. Rev. Letters 17, 84 (1966).' P. A. Fleury, S. P. Porto, and R. Loudon, Phys. Rev. Letters
18, 658 (1967).' P. A. Fleury, Bull. Am. Phys. Soc. 12, 420 (1967).

sion relation had been previously measured by neutron

scattering. ~

It is the purpose of this paper to present in full the
details of the theory for both one- and two-magnon
bght scattering and to compare several predictions of
the theory with experimental observation. The pre-
dictions of the spin-orbit mechanism are con6rmed
experimentally for the first-order (one-magnon) scatter-
ing. Also developed in Sec. II is theory for the second-
order ( two-magnon) scat tering. Predictions emerge
regarding the polarization selection rules (Raman
tensor symmetry), the intensity, the line shape, and
temperature and magnetic held dependence of the
scattered light.

In Sec. III we discuss the experimental techniques
employed in obtaining the spectra and their tempera-
ture and magnetic held dependence. We also present
the experimental results on MnF2 and FeF2.

Section IV applies the general theory to MnF2 and
FeF2 and makes numerical comparisons with experi-
ment for these materials, Since the one-magnon process
gives the Brillouin-zone-center magnon frequency and
the two-magnon process receives its strongest con-
tributions from zone-edge magnons it is tempting to
relate the features of the scattered light spectrum to
the magnon dispersion relation. This works quite well
for MnF2, where the full magnon dispersion curve has
been measured. We are also able —largely because of
the simplicity of the magnetic unit cell for these mate-
rials —to infer from the light scattering the complete
magnon dispersion curve in FeF2.

Section V concludes the paper with a brief summary
and evaluation of light scattering as a technique for

' A. Okazaki, K. C. Turberfeld, and R. W. Stevenson, Phys.
Letters 8, 9 (1964).
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studying magnetic materials in comparison with previ-
ously employed techniques.

II. GENERAL THEORY OF LIGHT SCATTERING
BY MAGNO58

In this section we cover mainly magnon scattering
of light in ferromagnets and antiferromagnets. The
theory for these two cases is very similar and the
calculations for ferromagnets apply to antiferromagnets
with only a little extra complication. The theory to be
described applies in a general way to any simple ferro-
magnet or antiferromagnet. However, the emphasis
has been determined by the experimental results
available. Morc detailed calculations which apply
paItlculaIly to thc antifcrromagncts MnF2 and FCFg
will be presented after the experimental results to
facilitate comparison.

We 6rst write down some of the standard results'
from the theory of magnons in ferro- and antiferro-
magnets which will be required later.

A. Ferromagnetic Magnons

The magnons are quantized excitations of a spin
system from its fully aligned ground state. As with any
excitation in a periodic structure, magnons may be
characterized by a wave vector k. All distinct magnons
are generated by allowing k to take on E values evenly
spaced in the Brillouin zone. Here E is the number of
unit cells in the crystal sample, there being one spin in
each unit cell of a simple ferromagnet.

The magnetic state of the crystal is then specihed
by the number ek of magnons of wave vector k excited.
In thermal equilibrium mk is the Bose-Einstein factor
appropriate to the magnon energy Ek. It is convenient
to de6ne creation and destruction operators uk~ and
o.k for the magnons. In the usual way these operators
satisfy

Ke consider an insulating ferromagnetic crystal
~here the magnetic moments are all carried by the
spins of electrons which are localized at lattice sites.
Assuming a nearest-neighbor isotropic exchange cou-
pling of strength J and a static external Geld Ho in
the s direction, the ferromagnetic spin Hamiltonian is

H= —2J Q s;.s,—gpHO Q 5,', (3)

where demagnetization has been neglected, and the
8 See, for example, C. Kittell, Qgantum Theory of Solids I,'John

%iley 8z Sons, Inc., Nevr York, 1963'); V. Jaccarino, in Magnetism,
edited by 6.Rado and H. Suhl (Academic Press Inc. , New York,
1963}, Vol. 2A, Chap. 5; D. C. Mattis, Theory of Magnetism
(Harper and Row, New York, 1965).

first summation runs over pairs of nearest-neighbor
spins counting each pair only once.

In the harmonic approximation the spin operators
are related to the magnon operators by the trans-
folIDatlOnS

5+=5*+is@=(25/X)'" Qngexp(ilr rg)

S,-= S,'—iS,'= (25/X) &~ g~, t exp( —ik.r;)

5'=5—Ã ' gngtnj, . expLi(lr' —k) r,j,

where r; is the position of the spin i and 5 is the magni-
tude of the spin vector. These transformations diagonal-
ize the Hamiltonian (3), which apart from a constant
term becomes

where
&~=&~~= gP(Hz(1 vs)+H—oj

yg
——Z—'Q exp[iir (r;—r) j

& j&

the sum being restricted to the nearest-neighbor spins
of 5;, and Z being the number of such neighbors. The
exchange field II~ is given by

AH~= 2JZ5.

B. Antiferromagnetic Magnons

The simplest type of antiferromagnct has the spins
ordered on two sublattices labeled i and j; the spins on
sublattice i( j) point in the positive (negative) s
direction. The largest exchange interaction occurs
between nearest-neighbor spins on the oppositely
directed sublattices, the exchange integral having its
sign opposite to that in a ferromagnet. Upon the inclu-
sion of a z-directed anisotropy 6eld II&, the Hamil-
tonian for an antiferromagnet takes the form

H=» Zs s-~~H. LZ5 -Zs )

-~~H.LZ s. +Z 5, j
In the magnetic ground state the s components of the

total spins on the two sublattices are equal and opposite.
The crystal therefore has zero total spin component,
5'= 0. In a simple antiferromagnet, each magnetic unit
cell contains two spins, one on each sublattice. There
are correspondingly two types of magnon for each of
the X-allowed wave vectors lr (X is still the number of
unit cells in the crystal sample) . That is, there are two
branches to the magnon dispersion curve. One magnon
branch has associated with it excitations involving
a change in thc total s component of spin to 5'= —1,
denoted I $ Ir), while the other magnon branch involves
excitations of 5*=1 which are denoted I fir). If, as
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where

sk= cosh~0k,

v„=sinh-,'e„ (12)

«nhgk= —yx/E1+ (H~/H~) 7 (1~)

pz and HJ, being given by (7) and (8). Note that 8&,

and hence also vk, are normally negative in the erst
Brillouin zone. Figure 1 shows the variation of Nk'

and vx' with k for MnI'2 in the (100) direction, k,
being the zone-boundary wave vector. Notice that for
k((k,„, magnons of both branches

I
't k) and I J, k)

perturb both sublattices substantially. However, when
k is close to the zone boundary, vk' is the small and the
excitations I t k) propagate mainly on the j sublattice
while the magnons I J, k) propagate mainly on the i
sublattice. These conclusions hold for any direction of
k in MnF2 but are not necessarily correct for other
crystal structures.

The transformations (10) diagonalize the Hamil-
tonian (9) which becomes, apart from a constant term,

Q LE/k~tk ~tk+Efk~fk ~fk7y (14)
k

in the case of the rutile-structure antiferromagnets, the
sublattices (i) and ( j) a,re equivalent, these two
magnon branches are degenerate in the absence of
external fields. Creation and destruction operators
n)k, O. tk, 0.)k, and 0.)k for the two types of magnon
are defined in a way analogous to the ferromagnetic
case.

Because both magnetic sublattices participate in
both types of magnon, the transformation from spin
operators to magnon operators in an antiferromagnet
required to diagonalize Eq. (9) takes the more com-
plicated form:

S~+= (25/cV)"' g(uxuu, +vivat xt) exp(ik r,),

5; = (25/Ã)'" g(u~n~xt+vxnt ~) exp( —ik r;),

5,+= (25/1V)'~' g(vkn~ q+uqntk") exp( —ik r;),

5, =(25/A)'2 Q(vtn) xt+uzntt, ) exp(ik r,). (10)
k

The 5' transformations are obvious generalizations of
(4) . Each magnon excited changes the z compon. ent of
the total spin of one sublattice by &nk' and of the other
sublattice by Wvk'. The requirement

Qk —Vk = j-

ensures that the excitation of a single magnon changes
the spin component of the entire crystal by &1. The
coefficients uk and vk are given more explicitly by

It is now obvious that the two types of magnon have
the same excitation energy in the absence of an external
magnetic field.

The theory reviewed above should apply rigorously
to insulating crystals where the magnetic ions have
ground states of zero orbital angular momentum I.,
e.g. , Mn'+, Fe'+, Eu'+ and Gd'+. However, the theory
should also apply well to crystals where the magnetic
ion is a transition-metal ion having quenched orbital
angular momentum. This is the case for example for
Fe'+ in FeF2. We refer to magnetic-ion ground states
which are orbitally nondegenerate as L=O ground
states, including in this category both genuine S ground
states and crystalline-field quenched ground states.

For magnetic ions which do not have I=0 ground
states, the magnetic excitations are more dificult to
treat. This category of crystal includes those where the
magnetic-ion ground state is orbitally degenerate, or
where the lifting of the ground-state degeneracy by
crystal-field eRects is smaller than or comparable to
the exchange energy. We do not present any detailed
theory for light scattering by these more complex
excitations, but include in Sec. IV 8 a brief discussion
of the symmetry characteristics of the scattering.

C. First-Order Scattering

Consider an experiment in which the incident radia-
tion has angular frequency co& and the scattered fre-
quency is co2. For Stokes scattering the diRerence cvj —~2
is equal to the frequency ~p of the magnon created. By
the usual wave-vector conservation arguments for
first-order Raman scattering, the magnon has a wave

where
E(~=Ek+gPHo,

0 0.5

"&"MaX

1.0

Etg=E), gPHo, —
Ex= Rug ——gPHEP(1+ Hg/Hs) '—yx'7'~'.

(1~)

(16)

Fzo. 1. Variation of Nk' and ek'in MnF2 as functions of k in the
(100) direction. The values at the two ends of the k/k, „scale
are the same for any direction.
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while for an antiferromagnet, according to (15) and
(16),

fuego gPt (——2Hzi+Hg) Hg]"'&gPHo.

For easily obtainable magnetic fields gPHo corresponds
to a frequency of order I—5 cm '. The frequency shift
in a ferromagnet is consequently too small to be easily
detected in a conventional Raman spectrograph. On
the other hand, Aa)p foI an antiferromagnet even in
zero applied 6eld can be quite large. For example, ~o is
~52 cm ' rn Fepg'

The first proposal for a Raman-scattering experi-
ment using magnon excitation was made by Bass and
Kaganov. ' They considered Raman scattering from a
ferromagnet using the direct magnetic-dipole inter-
action between the s in system and the electromagnetic
field. HMn ———gP H,'8;, where g, P, and S; have
their usual meanings and H; is the magnetic Geld of
the light wave at site i. The magnetic-dipole Raman-
scattering process occurs in the second order of time-
dependent perturbation theory using HMD as the
perturbation. It depends on the fact evident from

(4) that the s component of the magnetic vector of the
radiation couples to 5 which scatters a magnon, while
the x and y components are associated with creation
or destruction of a single magnon. Thus a mechanism
for the Stokes component of the scattered radiation
is obtained using magnon creation for one interaction
with the radiation and magnon scattering for the other.

There are two contributions to the perturbation
expansion, differing in the time order of the absorption
of the ~i photon and the emission of the ~2 photon. The
extinction coeKcient, de6ned as the fraction of light

g8+&)
J=S+3

J=S -L=f

J=S-l,

z8 =-8

-L-"0

FIG. 2. Energy levels to illustrate the electric-dipole Raman mech-
anism. Eo is normally very much larger than XS and AMO.

' R. C. Ohlmann and M. Tinkham, Phys. Rov. 123, 425 (1961).

vector k close to the center of the Brillouin zone. Thus
from (7) yi, is unity and for a ferromagnet according
to (6)

&woo= gNA,

scattered per cm of path length per unit solid angle, is
found to be

h= (gP) 'M, inqs'coro&s'(no+1) hi+ho* ho+hi* '
+

2A c nto+nis

In this expression subscripts 1 and 2 refer throughout
to quantities associated with the incident and scattered
radiation, respectively, M, =gPE'S/V is the saturation
magnetization, and eo is the Bose-Einstein factor for
the magnons of frequency ~0. Apart from the tempera-
ture-dependent factor, the above result is identical
to that for Raman scattering by a density of E/V
paramagnetic spins per unit volume. h+=h*+sh& and
represents a unit vector in the direction of the ngugneIic
field of the optical wave.

For scattering of incident light in the optical or
infrared regions of the spectrum where ~Q)+0 and

co~, we obtain the simplified result

h= L(gP) 3E.~,~,'~, (~o+1)/2V ~ jL(h,*h;—h,*h,*)

+(hi hp —hph, )&j.

For typical values of the saturation moment and
refractive indices, and assuming exciting radiation of
wavelength 5000 A, the order of magnitude of h is

h 10—"(n+1) cm—'sr '

The values of Ig observed experimentally are much
larger than this, and the polarization selection rules
observed are not those predicted by the Bass-Kaganov
mechanism. '0 So we conclude it can be ignored here.

A more eKcient scattering mechanism is provided
by the electric-dipole coupling of the radiation to the
crystal. Although the electric vector of the radiation
does not interact directly with electronic spins, there
is an indirect coupling due to the mixing of spin and
orbital motions. This mechanism for scattering of light
by magnons was pointed out by Elliott and I.oudon"
and is best illustrated by a specific example. Consider
a ferromagnetic crystal in which the ground state of the
magnetic ion has a spin 5 and zero orbital angular
momentum, I-=O. Ke suppose that the ion also has an
excited I' state with I-= I and the same spin 5 as the
ground state. The ground state is split into 25+1
components by the exchange Geld, and the excited state
is split into three components by the spin-orbit inter-
action (we ignore the exchange-field splitting of the
excited state). These energy levels are sketched in
Fig. 2. The energy eigenfunctions I J, I*) for the spin-

~0 A similar scattering process had been considered earlier for
magnetic-dipole couplig to individual atoms in the radio and
microwave frequency ranges by J. M. Winter, J. Phys. Radium
1Q, 834 (1958) and A. Javan, i'. 19, 836 (1958).

"See Ref. 2. The electric-dipole mechanism for one-magnon
scattering has since been discussed by several authors. In addition
to Ref. 3, we allude to Y. R. Shen, J. Appl. Phys. 38, 1490
(1967); and T. Moriya, J. Phys. Soc. Japan 23, 490 (1967). A
useful connection between the Faraday effect and the spin-Raman
eftect has been noted noted by P. S. Pershan, J. Appl. Phys. 38,
1482 (1967},among others.
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orbit split excited state can be expressed as linear
combinations of the unperturbed I I.*, 5*) eigenfunc-
tions in the usual way. "

The magnon is a linear combination of the excitations
of the individual ions from their S'=S to their S'=
5—1 states. So the first step in computing the magnon
Raman transition probability is to calculate the corre-
sponding transition probability for a single magnetic
ion. The Raman transition for a single ion can proceed
by a pair of allowable electric-dipole transitions via
the I' excited state. Such pairs are indicated by the
vertical arrows in Fig. 2; any of the three spin-orbit
split excited states can act as the virtual intermediate
state in the double transition. In one of these transitions
a quantum of the excited radiation is absorbed and in
the other a scattered quantum is emitted. Figure 2
pictures the Stokes scattering only. The energy dif-
ference between the S'=S and S'=S—1 states is
denoted fi~o in Fig. 2, corresponding to the magnon
excitation energy.

The electric-dipole interaction between the radiation
and the electrons of the magnetic ions is given by
IIsn= —e g; E,'r, . The radia, tive electromagnetic
field in a crystal is specified by the vector potential
A; at the position r;. In second-quantized notation

A;= c g (2xh/Ucoi, -rii,') '"ei, exp(ik. r.;) (bi, +b~"),

as an operator linear in S;, using the result

5-
I S, S)= (2S)'" I 5, 5—1), (22)

where the state labels refer to spin values only. The
matrix element must now be summed over all the
magnetic ions in the crystal. The result is conveniently
written in the form of a spin-operator Hamiltonian,

H ""=FQ (E*E+ E+E—*)5 (23)

where

1'= (e'X/2'i') (5 0 I
r*

I P, 0)(P, —1 I r I 5, 0)

x II 1/(Eo —&1) g L1/(Eo+M2) ]I ~ (24)

In these expressions the electric field vectors E~ and E2
of the exciting and scattered radiation are to be evalu-
ated at the appropriate ion site i. The matrix elements in
(24) do not depend on the particular ion considered,
and I' has accordingly been taken outside the summa-
tion in (23).

The final step is to replace the spin operators in (23)
by magnon operators. This can be done by means of
(4), and again using (20) the result is

'= E(2~)%(2~&~&5+) i /~i92

xr(„*„+—„+„*)g „t~(1,—1,—l ). (23)

E,= c'(dA~/dt)—, (20)

where ficoo has been neglected in the energy denomina-
tors and e+= &'+i@; r = x—iy. Subscripts j. and 2 refer
to incident and scattered Beld quantities, respectively.
The bra and ket notation is as follows: The capital
letter indicates the I. value (5 or P corresponding to
0 or 1); while the numbers indicate the value of I.,
Already evaluated and incorporated into (21) is the
matrix element (P, 0 I XI 5+

I P, —1). Again the spin
labels have been omitted from the states since they are
obvious. Equation (21) represents the leading term
of an expansion in powers of X/Eo, where X is the excited-
state spin-orbit coupling.

The matrix element M; connects the S'= S ground
state to the S'= S—1 state. It can therefore be written

» E. U. Condon and G. H. Shortley, Theory of Atom& SPectra
(Cambridge University Press, Cambridge, England, 1953).

where gi, is the refractive index at the frequency ~&

of the radiation, k and ai, are the wave and polarization
vectors of the radiation, V is the crystal volume, and
bi, ~ and bq are photon creation and destruction opera-
tors. Taking account of the three possible intermediate
states, the total matrix element for the scattering
process is

7'Ã (G&1%2) XS El c2 —Ej~f2 El E2 61 f23f;=
7jlr12U (Eo AMi) (Eo+5M2)

X (S, 0 I r,*
I P, 0)(P, —1 I r,—I 5, 0), (21)

The scattering is now a erst-order process in the effec-
tive interaction Hamiltonian Hq """and the extinction
coefficient is found by an application of the Golden
Rule to be

h=
I 2M, g2cu&(v23(no+1)/gPgic']P I e,'eg+ —c,+e,' I'. (26)

It is difficult to estimate h numerically because of a
lack of knowledge of the matrix elements and energy
denominators in the expression for I'. A range of typical
values leads to the rough estimate

h~(10 ' to 10 ') (rio+1) cm ' sr ' (27)

assuming optical or near-infrared excitation, much
larger than the magnetic-dipole result (19).

The predicted polarization selection rules governing
the scattering appear in (26) . This form shows for
example that exciting light linearly polarized along s
gives rise to scattered light which is right-circularly
polarized in the xy plane. Note particularly that the
scattering is purely altisymmetric in the polarizations
z~ and e2 of the incident and scattered light beams. This
contrasts with the case of phonons where the scattering
is predominantly symmetric" in e& and a2 and it pro-
vides an experimental means for distinguishing magnon
scattering from phonon scattering. For example, the
magnon Raman scattering vanishes when s~ and a&

are parallel, regardless of the directions of the incident
and scattered wave vectors.

"R. Loudon, Proc. Roy. Soc. (London) A2VS, 218 (1963).
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The simple antisymmetric form of H88"~" for L=O
ground states results essentially from the fact that the
excitation of a magnon in this case does not involve any
change in the orbital states of the magnetic ions; i.e.,
the magnon is very weakly coupled to the orbital
motion. There is a strong analogy here to the Raman
scattering from phonons where the purely symmetric
form of the scattering results" from the fact that, al-
though the coupling of the light waves to the phonons
takes place via the intermediary of the electrons, the
electronic excitations are entirely virtual, the final
electronic state being identical to the initial electronic
state. It is mell known that for Raman scattering in
which an ion is excited to a different final orbital state,
the scattering is neither purely symmetric nor purely
antisymmetric.

The results analogous to (23) and (24) for the
anti-Stokes scattering can be derived straightforwardly
and lead to a spin Hamiltonian

H anti —Stokes p~ g (E zg — E —E s) g+ (28)

where I" is the same as I' given by (24) except that
the energy denominators are reduced by an amount
fi~o. The difference between F and F' is small, except
under resonance conditions where A~i is close to Eo.
Setting I"=I', (23) and (28) combine to give a total
spin Hamiltonian which simplifies to

Hs= —2zI' Q L{EzoEz- Ez*Ezo)5—
+ (Ei'Eo~ E)~Eo*)SP]. (29)—

Notice that this expression is invariant under time-
reversal, since this operation reverses the signs of both
i andS.

The results derived so far have been based on the
energy-level scheme of Fig. 2. A more realistic calcula-
tion for a magnetic ion having an 5 ground state (L= 0)
and several excited P states leads to identical results,
except that a sum over all the P excited states must be
taken in the expression (24) for I".A further refinement
would take into account crystal-fieM splittings of the
excited states.

When the lowest P excited state energy is very much
greater than fzooi and fuu~, the square bracket in (21) is
approximately 2'(zoi+&oo)/Eo'. This is a small quantity
and the largest contribution to F in this case may arise
not from simple S~Evirtual excitations but from some
more sophisticated type of electric-dipole transition, for
example, involving charge transfer or forced electric-
dipole vibronic transitions. The formal. expression for
I' would be correspondingly modified, but the sym-
metry of the scattering represented by the spin-Hamil-
tonian {29)remains valid for an L= 0 ground state. The
symmetry also remains valid for a ground state having
quenched orbital angular momentum.

+ (Ei*EP Ei"Ez*)—(8,"+5,")j, (30)

where I' is given by (24) and the z(j) summation runs
only over the components of S;(S,). The Stokes-scat-
tering extinction coefhcient is found to be

h L2Mg7)QMicoo (Bo+1) (uo+ vo) ~I /gP'ggc ]
&& I oi'o,+—oi+o,* I' (31)

for the $ magnon. The result for the $ magnon is the
same except that the polarization factor is changed to

Ioioz ol oo

Thus for incident light linearly polarized along s the
two-magnon branches produce scattered light of op-
posite circular polarizations in the xy plane.

The discussion following (29) applies to the anti-
ferromagnetic case with a few obvious changes in
detail. The main difference from the ferromagnetic
case is the appearance in the numerator of (31) of the
additional factor (uo+vo)'. Expressions for uo and vo

are obtained by setting k=0, yo ——1 in (12) and (13).
In zero applied magnetic field the result is

uo ——{PgP (Hiz+H~) +fuv() j/2fuoo {'i', (32)

vo= —{tgP(He+Ha) —fz(uo]/2fiooo{'", (33)

Aoio=gpt {2Hs+Hg) Hg jii' (34)

It is seen that (uo+ vo)
' has a maximum value of unity

when H@ is much larger than H~. However it is more
common for H~ to be larger than H~, in which case
(uo+vo)' is less than unity. When Hs is much larger
than Hg,

(uo+ vo) '~ (Hg/2Hs) "'. (35)

Thus as H~ is reduced to zero, both ~0 and h approach
zero as H~'~' and antiferromagnets with smaller k=0
magnon frequencies tend to be less efBcient Raman
scatterers. In FeFz, where coo is 52 cm ', {uo+vo)' is
about 0.4, while in MnF2', where ~ is about 8.7 cm ',
(u,+vo)' is about 0.08.

Ferrimagnets have "optical" magnon branches which

may be active in 6rst-order scattering. The theory of
such scattering requires only a simple extension of the

We have treated Raman scattering from a ferro-
magnet in considerable detail despite the absence of
experimental observations in ferromagnets. The reason
is that all the results are very easily generalized to the
experimentally more interesting antiferromagnetic case.

The total spin Hamiltonian for Raman scattering
from a simple antiferromagnet constructed from the
magnetic ions of Fig. 2 is

Hs= —2iI' Q { (Ei*E*—Ei*E, ) (5;*+5,*)
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above work on scattering by ferromagnets and anti-
ferromagnets. Elliott and Loudon' have discussed the
selection rules which determine how many of the mag-
non branches in a complicated ferrimagnet are active in
first-order Raman scattering.

D. Second-Order Scattering

tdy= Ã2+2Ng. (36)

Since cvi, ranges over a band of values, the second-
order Raman radiation is distributed over a band of
frequencies.

The distribution of scattered intensity as a function
of the frequency ~2 is largely determined by the number
of rnagnons whose frequency satisfies (36), i.e., the
magnon density of states which we denote p(cu) .

BZ

p(~) = Z ~(~—~~),

The second-order Raman effect involves the creation
or destruction of a pair of magnons. lor the Stokes
component of the scattered light the difference in
frequency co&

—
co& is equal to the sum of the frequencies

cu~+a&~' of the two magnons created. Since the wave
vectors of the light waves are very small compared
with the Brillouin-zone (BZ) edge value of k, k and
k' must be very nearly equal and opposite, i.e., k
—k'. For a ferromagnet having one magnetic ion in the
unit cell, co i, is equal to cubi„and the frequency require-
ment is

this process would be bilinear in the transverse com-
pollellts of Ey alld E2.

The same conclusions about the smallness of these
two-magnon scattering intensities hold for antiferro-
magnets. However, one of the most striking features
of the original observation4 of the second-order magnetic
Raman spectrum of FeF2 is the fact that the second-
order spectrum is stronger than the first-order spectrum.
The same is true of MnF~ and NiF2. This "anomaly"
can be accounted for by a second-order scattering
mechanism which is unrelated to the above-discussed
process, and is referred to as the exchange-scattering
mechanism. ' As we shall see below, the mechanism
applies only to antiferromagnets and is inoperative for
ferromagnets where the second-order spectrum is ex-
pected to be much weaker than the first-order spectrum.

I.et us discuss first the nature of the two-magnon
state which is excited as a result of the second-order
Stokes scattering in an antiferromagnet. Since there
are two magnons having any given wave vector k and
,two having wave vector —k, it is possible to form four
types of zero-wave-vector two-magnon states as follows:

5' Parity

I2+&=IT» T
—k&

lo, +&=ITk, l —k&+Ilk, T
—k& o

Io —&=IT» l —k)—Il» T
—k)

I
—2, +&=Ilk, l —k&

where k runs over all wave vectors in the Brillouin
zone. The intensity of the second-order scattering at
frequency cv2 rejects the value of the density of states
p at the frequency (a&z

—~2)/2. However, the relationship
is not generally one of strict proportionality but in-
volves a k-dependent weighting function due to the
nature of the coupling. This is illustrated in detail
below.

The erst-order spin-orbit scattering mechanism
discussed in the previous subsection gives rise to a
second-order scattering when the calculation is extended
to a higher order. The analysis is readily generalized
to second-order by modifying Fig. 2 so that the down-
ward pointing arrows end on the 5'= 5—2 ground-state
level (this only works for S)~~). The matrix element
for the process can be written as a spin Hamiltonian
proportional to (5, )', and analogous to magnon
operators now leads to an expression for the second-
order spectrum. However, the second-order coupling
constant is smaller than the first-order coupling con-
stant 1' of (24) by a factor of magnitude X/Eo. Since
the factor is squared in expressions for the scattered
intensity, the second-order result is normally several
orders of magnitude smaller than the first-order result.
We note that the second-order spin Hamiltonian for

I
I Tk)=l T

—k»

I llk)=l l —k) (39)

where the invariance of spin vectors under inversion
has been used. The parities quoted in (38) now follow.

It is well known that only positive-parity states
can be active in Raman scattering. The two-magnon
state I 0, —) is thus ruled out for the Raman effect, but
it can give rise to a direct electric-dipole absorption
process which has been recently observed. ' " In an
applied magnetic Geld, (15) shows that I 0, +) and
I 0, —) do not shift in 6rst order, whereas the energies
of

I 2, + ) and
I

—2, +) exhibit linear shifts appropriate
"J.W. Bailey and L Silvera, Phys. Rev. Letters 15, 654 (1965)."S.J.Allen, R. Loudon, and P. L. Richards, Phys. Rev. Letters

16, 463 (1966).

(38)

Note that the first three states listed in (38) have no
analog for a simple ferromagnet having only one mag-
non branch. In determining the parity it has been
assumed that each magnetic ion is a center-of-inversion
symmetry I. This is true for MnF2, FeF2 and many
other common antiferromagnets. The inversion prop-
erties of the magnons determined from (10) are
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to S'=&2 states. Thus the three positive-parity two-
magnon states can be distinguished experimentally by
application of a magnetic 6eld.

Since only -', of the volume of the Brillouin zone lies
within one-half the zone-boundary radius of the origin,
the majority of the magnons available for second-order
Raman scattering lie in the outer part of the zone. As
discussed after (13), such magnons propagate mainly
on one or the other of the magnetic sublattices. Thus
the two-magnon states

~
2, + ) and

~

—2, + ) each pre-
dominantly involve excitation of only one of the sub-
lattices; they would be produced for example by terms
(5;+)' and (S, )', respectively, in the spin Hamiltonian
for second-order electric-dipole scattering from an
antiferromagnet. On the other hand, the states

~
0, +)

and
~
0, —) involve a simultaneous excitation of one

magnon on each of the sublattices and require inter-
sublattice coupling terms in S, S;+ for their production.
We shall see below that

~
0, +) is the important state

for the second-order Raman observations made to date.
The type of spin operator required to excite the state

)0, +) is

5; S,++c.c.=2(S; 5, +5;i'Sp). (40)

Thus any coupling of a pair of light waves to an ex-
changelike interaction between a pair of spins on oppo-
site sublattices may be effective in producing a second-
order Raman effect from the

~
0, +) state. There a,re

basically two ways in which an exchange interaction
can be coupled to a pair of light waves, either via the
phonons or via electronic excitations.

The phonon coupling can be envisaged as a two-stage

process with a virtual intermediate state: (l) the
exciting radiation undergoes ordinary erst-order Raman
scattering with production of a virtual phonon, and
(2) the phonon rnodulates the exchange integral J in
the ordinary exchange interaction and decays into two
real magnons via the term (BJ/Bj)DES, 5,+, where
I is the vibrational normal coordinate and Au is the
change in I produced by creation or destruction of a
single phonon. The effect of this mechanism is dificult
to estimate numerically due to lack of knowledge of the
quantities BJ/Bn. It does not appear to be the dominant
mechanism in the measurements so far made, as will be
discussed below.

The coupling via electronic excitations (the exchange
scattering mechanism) is closely related to a mechanism
proposed by Tanabe, Moriya, and Sugano' to account
for the electric-dipole adsorption by the state

~ 0, —) in
antiferromagnets. The formal expression for the matrix
element is the same as theirs except that an extra stage
appears because two light waves are required in the
Raman effect. Consider two representative ions i and

j, one on each sublattice, and suppose that in the
ground-state ion i has an electron r~ with s'= —', accom-
modated in an orbital p;, while ion j has an electron
r~ with s'= ——, in an orbital p;. The interactions of the
electrons with the fields and with each other are given
by the Hamiltonian

H= —e(Ei+E2) ~ (ri+r, ) +e'/ri~,

where ri~=
~
ri—r~ ~. A representative matrix element

for the Raman process accompanied by simultaneous
changes in the spin components of ions i and j is

+ &v iq, ~ I «2'rlI ~, iv, i&&y ip, ~ I ~'/rial ~ ~q, ~)&v, iq, ~ I ~Ei riI q;~y;i&

(E,+Au)g —
Sruti) (E„—5o)i)

(42)

Here q „and p„are any orbitals of ionsi and j. In order for the electric-dipole matrix elements to be nonvanishing,
the parities of the states which they connect must be opposite. However, there are no strict parity restrictions for
the exchange matrix element.

Carrying out a sum over the electrons on ions i and j in (42) and writing

~'" "=6'i~. ~ I "/r» I ~ ~~.i), (43)

the matrix element can be written as an operator:

~ (q;( ~
eE2 ri

~ &p„, &V,~'"&~.~ I
«i » ~ ~*~ )M;;= Z S; S,+.

(E„+Rug—Ao)i) (E„—Aevi)
(44)

In addition to the matrix element written out explicitly different ordering of the operators tairen from (4I) or
in (42) and (44) there are many similar matrix elements have ri replaced by r2. It is a standard exercise in third-
which connect the initial state

~ p;~p, ~& to the final state order perturbation theory to collect all possible terms

I w~&wit ) These»milar matrix elements involve a and we do not write out the complete result in cletail.

"Y.Tanabe, T. Moriya, and S. Sugano, Phys. Rev. Letters 15, 1023 (1965).
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The general expression takes on a simple form when
only a single odd-parity excited state po having energy
Eo is important in the matrix elements. Ke assume
further that Eo is much larger than Ace~ and fuo2 as is
experimentally the case for MnF2 and FeF2. The total
matrix element M;, in this case reduces to

~' =I«'(~~
I

E2 ri I ~~)l'*i(~o! Ei ri I ~')/&o'I 5'' 5'+,

(45)

where V;; is some average of the various exchange
matrix elements between ions i and j which appear in
the general expression.

There is no inherent restriction in (44) on the Car-
tesian components of E~ and E2 which can contribute
to the second-order scattering. This contrasts with the
scattering via the electric-dipole spin-orbit mechanism
discussed above, where only the x and y components of
E& and E2 appear. However, for a particular crystal
lattice and a given choice of the ions i and j, there will
be symmetry restrictions on the allowed components
of E& and E2. This will be illustrated presently.

The matrix element III;; and its complex conjugate
must now be summed over all pairs of ions ~ and j on
the opposite sublattices. Since an exchange coupling
of the ions is involved, 3/I;; can be expected to fall off
rapidly with increasing separation of the ions. The
appearance of a sum over pairs of ions leads to a de-
pendence of the expressions for the second-order Raman
spectrum on the geometrical details of the lattice. These
details and others of the theory for the special case of
the MnF2-type lattice will be presented in an analysis
of the experimental results, which we discuss in the
next section.

Finally, we emphasize that the exchange-scattering
mechanism discussed here (being proportional to
5, S,+) produces magnons in pairs and hence there is
no exchange-scattering mechanism for one-magnon
scattering. Therefore, there exists no a, priori reason
for the second-order light scattering by magnons to be
smaller than first-order scattering since the two mecha-
nisms are unrelated. We note also that the exchange
mechanism is inoperative for ferromagnets where there
is no two-magnon state corresponding to I 0, +).
III. EXPERIMENTAL TECHNIQUES AND RESULTS

The experiments discussed here utilized an argon
ion laser as the light source. Powers of 50—100 mW of
linearly polarized light at either 4880 or 5145 A were
employed. Light scattered by 90' was focused onto the
slit of a Spex double monochrometer and analyzed. The
scattered light was then detected by an S-11 photo-
multiplier and the photocurrent dc-amplified and
recorded. No pulse-height discrimination, synchronous
detection, or photon-counting techniques were neces-
sary in these experiments. The geometry of the incident
light, single-crystal sample, and scattered light for a

POLAR IZER
SPECTRO-k

METER

LASER
I

i

QUARTZ
PLATE

I ~= I (

k «
MIRROR

Pro. 3. Schematic of experimental geometry. The vertical
direction in the lab is labeled "Z" here, and all directions are with
respect to the crystal axes. Light emerges from the laser linearly
polarized in the 2 direction. The polarization incident upon the
sample is determined by inserting or omitting the quartz plate.

'7 M. B. Graifman I'private communication).
'8 F. M. Johnson and A. H. Nethercot, Phys. Rev. 114, 705

(1959}.
'9 S. P. S. Porto, P. A. Fleury, and T. C. Damen, Phys. Rev.

154, 522 (i967).

typical experiment is indicated in Fig. 3. By proper
positioning of the quartz plate (which rotates by 90'
the polarization of light passing through it), the sample,
and. the polarizer one may examine the Raman tensor
element a;, of his choice. I See Kq. (48) below. ]

Temperature control of the sample is achieved by a
scheme shown in Fig. 4, which employs cold Qowing
He gas."A range of 6 to 80'K could be conveniently
covered with this method. Measurements discussed
below using a magnetic 6eld required a different geom-
etry. We used a superconducting solenoid capable of
52-kOe maximum field, with the sample position as
indicated in Fig. 5. Temperature variation was not
attempted in this configuration. The sample instead re-
mained at a fixed, relatively low temperature (20—30'K)
determined by its thermal contact to the liquid He
bath of the solenoid and by the radiation heat leaks in
the system, including power absorbed from the laser
beam. However, the magnetic field geometry did not
hamper our ability to explore the polarization selection
rules governing the scattering.

The rutile antiferromagnets MnF2 and FeF2 become
magnetically ordered at 67.7 and 78.5'K, respectively. v'
Neutron scattering~ and infrared absorption" experi-
ments indicate that at O'K the zone-center magnon
frequency in MnF& is 8.7 cm ' while the zone-edge
magnon frequencies are 50 and 55 cm ' at the X and
Z points, respectively. In FeF2, infrared experiments "
indicate 52.7 and 77 cm ' for the zone-center and
zone-edge frequencies, respectively. The Raman-active
phonons' in MnF~ have been found to be: 8»,= 61 cm '
E,=247 cm '; A~, ——341 cm '; and 8»——476 cm—' at
room temperature. The corresponding phonon fre-
quencies" in FeF~ are 73, 257, 340, and 496 cm '. As
the temperature was lowered below the Xeel tempera-
ture, additional peaks in the scattered light emerged, as
indicated by the early data displayed in Fig. 6 for the
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FIG. 4. Temperature control
apparatus utilizing Bowing He
gas. The sample temperature
is sensed by a resistor and com-

paredd

to the desll ed value.
Deviations below and above
the desired temperature are
corrected by the heating resis-
tor and by increasing the cur-
rent in the boil-o8 resistor,
respectively.
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n„of FCFq. The signal to noise has since been improved
allowing a higher resolution study of these two lines.

(See Fig. 7.) The 52-cm ' line was identified as arising
from one-magnon scattering by (1) its polarization:

n„, n„, n„„n,„are the only nonzero Raman tensor
elements; (2) the temperature dependence of its fre-

quency: It varies as the modified Brillouin function

Bg 2 as does the antiferromagnetic resonance frequency;
and (3) it broadens and disappears as 2' approaches
T~ from below. At the lower temperatures (as shown

in Fig. 7) the width of the one-magnon line was too
slllall to be measured by our slit settings.

We con6rmed that the one-magnon Raman tensor
is indeed antisymrletric as predicted in (31) by the
following techniques. To avoid errors due to birefrin-

gence, the incident bght was directed so that k~ ——

(—Qi/K2) + (kki/v2); and Ei———(z/v2) Ei—(k/v2) Ei,
where ~, y, and k are unit vectors along the sample's x, y,
Rnd 8 axes RIld ky Rnd Ey RI'c the wRvc vcctol Rnd clcc-
tric field of the incident light. The scattered light was

observed such that )r2=f(k2/v2)+k(k2/v2) and E2=
—i(E2/v2) cos8'+gE2 sin8'+k(E~/K2) cos8', where 0' is
the setting of the polarizer placed in front of the spec-
trometer slits. For a symmetric scattering tensor the
observed intensity shou)d vary as ', (Ei2E22) sin'lI' while-
an antisymmetric scattering tensor produces

i& (EPE2') (1+cos'0') .

+y measuring thc |II vRI'1Rtlon foI" vRI'ious llncs of the
FeF2 spectrum wc conclude that: The Ji~, phonon and
the two-magnon peak (154 cm ') have symmetric
Raman tensors; the one-magnon line has an anti-
symmetric Raman tensor. The same is expected for
MnF~.

The peak at 154 cm ' in FeF2 was identi6ed as scat-
tcI'lng f

lorn

pRlI's of zone-cdgc 1Tlagnons. This ldcntl6ca-
tion was based upon the similarity with the two-magnon
absorption peak of Bailey and Silvera'4 and the fact
that the peak disappears for T&T~. The integrated
intensity of the two-magnon scattering in FCF~ is
2—3 times larger than the one-magnon scattering. Both
the n„=n„and n,„=n,„, are appreciable for the two-

magnon peak, but n, n„~, n„are all unobservably
small. The n„and n „peaks are nearly identical in
position and shape for FeF2, in contrast to the situation
for MnF2 discussed below. Finally, the magnetic 6eld
behavior of the one- and two-magnon lines in FeF2 is

partly illustrated in Fig. 8. The one-magnon excitation
3$'= ~1 splits the line by ~12 cm ' when a 6eld of

50 koe is applied to the sample. In contrast, the
same 6eld produces no measurable CR'cct on the two-

magnon hne, indicating that the
~
0, +) two-magnon

state is indeed responsible for the scattering. Figure 8
serves to illustrate that our experiments are sensitive
enough to detect an effect were the

~
+2, + ) and/or the

i

—2, + ) states responsible for the second-order scatter-
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in . The magnetic field behavior also eliminates the
previously mentioned possibility that the observed
scattering might be due to a zone-edge magnon plus a
zone-edge phonon, since that excitation carries a spin

n lmltedThe observations in MnF2 have so far been limite
to the second-order scattering, but the details of line
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shape and the polarization of the scattering are more
t'

g than in the FeF2 case. The second-order
s ectrum in MnF2 is of about the same intensity as in
FeFs (correspondt'ng to an extinction coe c'
spec run1 ln

Clent Of
1Q ts-10 "crn ' sr ') . Again the spectrutn is nnaffected
b a strong magnetic field, and the possibility that
the scattering is from one phonon plus one magnon is
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FIG. 8. Splitting of the one-magnon line in FCF2. Ia) No mag-
netic 6eld applied. (b) ~50 kOe applied

~ ( to c axis. No splitting
was observed for 3

~~
c axis. And no effect could be seen on the

two-magnon peak for 8 z or ]( c axis.
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eliminated. Again the sharp features of the second-order
spectrum appear only in the o.„, o,„„and n, „. com-
ponents. However, as is evident from Fig. 9, the posi-
tions and line shapes for the xs and xy components are
significantly different, the latter being rather symmetric
and centered near 100 cm '; the former being noticeably
asymmetric and cutting off near 110 cm '. As we will

see presently, this effect arises from the different
magnon frequencies for different positions on the
Brillouin-zone surface.

2p
I(

i&7

)2

1

I

1

(0) XZ—EXPERIMENT

FxG. 10. Unit cell of the magnetic fluoride or rutile structure
indicated by the dashed lines. The first, second, and third mag-
neticneighbors of the central ion are shown. The arrows represent
the orientations of the magnetic moments.

Fro. 9. Theoretical and experi-
mental spectra for two-magnon
scattering in MnF2 at 10'K. In-
tensity of theoretical curves are
normalized to the experimental.
(a) XZ experimental geometry;
(b) XY geometry. Solid curves are
experimental; short dashed curves
are theoretical with "nearest-
neighbor coupling;" long dashed
curves are for "extended range
coupling. "
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The Srillouin zone is illustrated in Fig. 11. The
symbols inserted against the symmetry points and
symmetry lines indicate the appropriate irreducible
representations by which the magnon wave functions

~

t'k) and
~ $k) transform. The notation is that of

Dimmock and %heeler, " and there is assumed to be
no applied external magnetic field. A single symbol in
the figure indicates that the pair of magnons is de-
generate by group theory at the corresponding sym-

80 85 90 95 IOO I05 IIO

FREQUENCY SHIFT (crn )

We are now in a position to complete the theoretical
discussion of the last section and to specialize it to the
rutile-structure antiferromagnets.

IV. THEORY FOR MnF~ AND FeF2'. COMPARISON
WITH EXPERIMENT

A. Crystal Structure and Magnons

The crystal structure in the antiferromagnetic phase
for MnF2 and FeF2 is illustrated in Fig. 10. We rely
extensively on the results of and notation used by
Dimmock and Wheeler'0 in their discussion of symmetry
properties of magnetic crystals. The space group in.

the antiferromagnetic phase, where the allowed sym-
metry operations must leave invariant not only the
locations of the ions but also their magnetic moments,
is D2I,"or I'„„.

~ J. O. Dimmock and R. G. Wheeler, Phys. Rev. 12'7, 391
(1962).
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FIG. 11. Brillouin zone of the magnetic fluoride structure show-
ing the symmetry characters of the magnons. The representations
at I' and on the line A joined by + signs are degenerate by time-
reversal.
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Fio. 12. Magnon dispersion in

MnF2 at 4.2'K in the (100) and
(001) directions as determined by
neutron scattering in Ref. 21. (Data
kindly supplied by Turber6eld. )
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metry point or line. A pair of symbols indicates that
there is no degeneracy, except for the points I and A

where the two one-dimensional representations are
degenerate by time-reversal.

Okazaki, Turberfield, and Stevenson' have deter-
mined the dependence of magnon frequency on wave
vector along the lines A and 6 in the Brillouin zone for
MnF2 using neutron scattering. Their results are shown
in Fig. 12. For both FeF2 and MnF2, » given by (7)
is determined by a sum over the nearest antiferro-
magnetically aligned neighbors, which in this case are
the second neighbors of a given spin, the nearest neigh-
bors being on the same sublattice. From Fig. 10 the
result is seen to be

»——cos(-,'ak. ) cos(-', ak„) cos(-,'ck, ).
Thus pj, is unity at k=0 and decreases uniformly to
become zero at all points on the surface of the Brillouin
zone. The dispersion relation (16) cited for a simple
antiferromagnet predicts ~k to be independent of k
on the zone surface in contrast to the neutron scattering
results and also to our light-scattering results. The
dispersion relation may be generalized to include a
small ferromagnetic exchange coupling between each
spin and its two nearest neighbors and four third
neighbors. The result is'

&~=~~= 2~
I J2 I Z2E(1+~~)'—»'7"

(H~/2SZ——, [ J, })+(2Z&J&/Z,
I J, I) sin'(-', ck,)

+ (Z3J3/Z2 I A I) }sin'(—',ak, )+sin'(g~ak„) I, (47)

where J~ and J3 are the exchange interactions along the
(001) and (100), (010) directions, respectively, and

J& is along the (111)direction and replaces J in (16).
The FeF& magnons are expected to obey a similar

dispersion relation since crystal-field quenching pro-
duces a ground-state ion which behaves similarly to a
pure spin.

The theoretical dispersion relation predicts the mag-
nons

I f lr) and
I J, lr) to be degenerate for all lr in zero

applied 6eld. This degeneracy arises" because the ex-
change Hamiltonian has greater symmetry than the
lattice. Inclusion of dipolar forces produces a small
splitting (~1 cm ') of the magnon branches at all
points in the zone except where Fig. 11indicates a degen-
eracy. No splittings have been detected experimentally.

3. First-Order Scattering

The general features of the first-order scattering
from a simple antiferromagnet have been derived in
Sec. II C. Ke now consider the application of this theory
to the case of MnF~-structure antiferromagnets. It is
well known" that the symmetry of a crystal lattice
imposes certain requirements on the symmetry of the
light scattering by excitations in the crystal. %e here
evaluate these symmetry restrictions and relate the
results to the more explicit calculations of Sec. II C.

The D2~" space group of MnF2 in the antiferro-
magnetic phase increases to D4g in the paramagnetic

"W. Brinkman and R. J. Klliott, J. Appl. Phys. 37, 1457
(1966); and Proc. Roy. Soc. (London) A294, 343 (1966)."R.Loudon, Advan. Phys. 13, 423 (1964);14, 621 {E) {1965).
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phase above the Neel temperature" where the spin
orientations can be ignored and all Mn sites can be
treated as equivalent. Below the Neel temperature
the space-group operations which occur in D4~' but
not in D2~" have the eGect of reversing all the spin
orientations and are therefore not allowed. They be-
come allowed, however, if they are combined with the
operation of time reversal which reinverts the spins
to these original directions. Such space-group operations
which include time reversal are said to be antiunitary.
The operations contained in D2q" do not contain time
reversal and are known as the unitary operations.
Physical properties of the antiferromagnetic crystal
must be invariant under all the space-group operations,
both unitary and antiunitary.

It is customary to display the results of a calculation
of scattering symmetries in the form of matrices 0 p

delned so that the extinction coeKcient is given by

(48)
Pr~rg(rZ

where A is independent of polarization directions. The
determination of the matrices o,„is a standard group-
theoretical exercise, and these matrices have been
tabulated for all the nonmagnetic crystal structures. "

The a matrices for antiferromagnetic MnF2 are
calcula, ted by exactly the same method as for a non-
magnetic space group, using both the unitary and anti-
unitary operations of the antiferromagnetic state. There
are four types of Raman-active zero-wave-vector
excitation having symmetries labeled F&+, F2+, F3+,
and F4+ by Dimmock and Wheeler. The four representa-
tions are nondegenerate, but F3+ and F4+ are degenerate
with each other due to time reversal. " As shown in
Fig. 1i the magnons in MnF2 and FeF2 have symmetry
I's++I'4+ at k=0, and we are not interested here in
the F&+ and F2+ types of excitation. However, such
excitations occur in CoF& in a frequency region which
makes their detection by light scattering experiments
feasible. "

Table I lists the scattering matrices for all four
types of excitation. For the degenerate pair I's++I'4+
the matrices have been chosen so as to refer to the
zero-wave-vector magnons I 1, 0) and I $ 0). The restric-
tions imposed by symmetry involve relations between

TABLE I. Ram' matrices for antiferromagnetic MnFa.

0. 0 0 0 0 y 0 0 8 ' 0 0

0~'0 ~*00 00 9* 0 0 Q*

0 0 P 0 0 0 c is* 0 —e is* 0

I
1'o&

r,++r,+

"R. A. Cowley, P. Martel, and R. W. H. Stevenson, Phys. Rev.
Letters 18, 162 (1967).

TArrzz II. Symmetry of the two-ma&non state
~ 0, +) given bp

(38) for k corresponding to Brillouin-zone symmetry points.

F3+ or I'4+

complex conjugates of elements of the matrices. This
is due to the occurrence of the antiunitary symmetry
operations, since time-reversal includes the operation
of complex conjugation.

Comparing the I's++I'4+ matrices with the results

of the calculation of Sec. II C, it is seen that to obtain
agreement between the symmetries of (31) and (48)
the additional restrictions —e=b and Im~=Im5=0
must be imposed on the matrix elements. It is not
dificult to see why the calculations leading to (30)
and (31) produce a result which is less general than
the symmetry of the lattice would allow. In the 6rst
place the magnetic ions were assumed to have S-type
ground states appropriate to Mn'+ and the orbitally
quenched ground state of Fe'+. As discussed after (27)
relaxation of this condition leads to a scattering matrix
which is not purely antisymmetric in the components
of E& and E2. Such lack of antisymmetry may be ob-

servable in CoF2, where the ground-state orbital mo-

mentum is not quenched, but for FeF& the antisymmetry
condition —e=b is well satisfied experimentally (see
Sec. III) .

The second lack of generality in (31) is due to treat-

ing the ions on the two sublattices as having identical

wave functions and energy levels. It is seen in Fig. 10
that the symmetries of the Quorine configurations about
the two types of site diGer by a 90' rotation. This
leads to diR'erences in the orthorhombic crystal-field

components of the ionic wave functions and ultimately

to imaginary components in the matrix elements e and

b. For Mn'+, which has a true S ground state, the or-

thorhombic splittings of the odd-parity excited states
are very small compared to the excitation energy of

these states and it is a good approximation to treat
the two types of ionic state as equivalent. The same

approximation may be valid in Fe'+, although Moriya'4

has argued that the lack of equivalence between the
two sites in FeF2 may lead to signi6cant imaginary

components in e and b. Such components lead to an

extinction coeKcient similar to (31) buthaving (Is+vs)'
replaced by (us —vs)'. This produces a small change in

the magnitude of h for FeF2. The observed value of
h for FeF2 given in Sec. III in fact lies slightly below

the lower end of the predicted range given by (27) with

the additional antiferromagnetic factor included.
As mentioned above, the magnon frequency and its

temperature dependence agree with previous results

of antiferromagnetic resonance experiments. The split-

~T. Moriya (private communication); J. Appl. Phys. 39,
1042 (l968).
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ting of the 6rst-order line in a magnetic 6eld is 4ISB2,
in agreement with (18) for g= 2.

C. Second-Og der Scattering

a;,~= sign(r, —r;), A= Xq yq Sq

We have already presented experimental evidence
that the second-order scattering in both MnF2 and FeF2
is due to the 10, +) two-magnon states. We now use
this fact to derive additional predictions for the D»,"
materials. The density-of-states curve for the magnons
has sharp critical-point discontinuities of slope at the
magnon frequencies for the symmetry points I', X, N,
Z, R, and A in the Brillouin zone (see Ref. 15 for a
calculation of the magnon density of states in MnFR).
The slope discontinuity corresponding to a particular
symmetry point should also appear as a feature in the
second-order Raman spectrum provided that the scat-
tering is an allowed process for the I 0, + ) pair of mag-
nons at the given symmetry point.

Table II shows the symmetry of I 0, +) correspond-
ing to the symmetry points. A zero entry indicates that
l 0, +) vanishes at the corresponding symmetry point.
For point E, the state ( 0, +) has a symmetry which is
diGerent for the two examples of this type of point
which occur in the Brillouin zone (see Fig. 11). Com-
paring Tables I and II, it is seen that the critical. point
I' contributes to the second-order scattering for polari-
zation components xx, yy, and ss (here xx is shorthand
for El*ER', etc.); M contributes for xy and yx; and E
contributes for xs, sx, ys, and sy.

To obtain more information on the second-order
spectrum and its relation to the symmetry of the
magnons in the Brillouin zone we set up a spin Hamil-
tonian for the two-magnon process.

We must sum the matrix element M;; given by (44)
or (45) over all pairs of ions i and j on the opposite
sublattices, taking account of the requirements im-
posed by the symmetry of the D»" lattice. Since the
matrix element includes an exchange integral between
the pair of ions, M;; will diminish with increasing
separation of the ions. As a erst approximation we
restrict the summation to nearest neighbors on opposite
sublattices. The simplest procedure is to determine the
most general form of spin Hamiltonian which is propor-
tional to a component of E~, a component of E2, and
to the spin combinations S;+S; and S; S;+. Crystal
symmetry requires the resulting Hamiltonian Hz to
be invariant under all the operations of the antiferro-
magnetic space group, i.e., Hg must transform like I'q+.

As shown by (40) the operator S, S,"+S,iwSlw is the
type required to excite the two-magnon state 0, +).
This spin function transforms like F~+ in the anti-
ferromagnetic group. In forming the spin Hamiltonian
the relative phases of the contributions of the eight
neighbors i of a given spin i can be adjusted by intro-
ducing a vector d'&' defined by

where r;—x; is the vector connecting ions ~ and j.Thus
the g;, are equal to either +1 or —1 and merely deter-
mine the relative signs of terms in the i, j summation.

To form JIB we multiply the spin operator by those
combinations of E~, E2, and d'& which belong to F~+. This
ensures that II& transforms like I'&+. The required
combinations are

gzgz ~ (El*ER*+ ElwERw)
~

(p'~*Ep+ElwE~&) g 6g, &i

(Ei ER +El E2 )az ae + (El E2 +El E2 ) &'g as

(El'ER*—El'E2') a,"a,"+(El"AR*. El*E2 ) a—„"g,". (50).

From these considerations then the required spin
Hamiltonian is

&S= Q f ~ (El*&*+I1"&2")+&Li*I"2*

k (M2) (64S gRM1MR C /V'pig ) (21 62 +61 62 )

)&g (22/+ 1)2(NR'+212') sin'(-,'akg) sin'(21 ak„)

Xcos'(-R, gk, ) 8(M1—MR
—2Mk) . (52)

Other polarizations give quite similar expressions
but with di6erent trigonometric terms. These trigono-
metric factors provide the weightings of the magnon
density of states which emphasize particular regions in

the Brillouin zone and thus determine the shape of the
second-order spectrum. In Table III we list the bilinear
electric 6eld components, their corresponding trigono-
metric factors, and the critical points tllep emphasize.

+Q(pl*ERw+E, wER*)a, ia i+a/(E, wE" +E;ERw)a 'ia, 1

+ (El'ER*+El'ER') g,"g,"j+Fp(ElwER' Ei'ERw) a„"g,"— .

—(E *F ' E*E') g. "g. '&—jI (5 "S'+ 1 wS ") (51)

In this expression A, 8, C, D, and F are coupling con-
stants determined by (44) with the electric fields and

spin operators removed and appropriate components
of rl and r2 substituted. Since experiment (see Sec. III)
shows the second-order scattering to be symmetric we

conclude that Ii is negligible for Mnp~ and FeF2 even

though the presence of this term is a,llowed by sym-
metry. There is a close analogy between (51) and the
spin Hamiltonian which controls the two-magnon
electric-dipole absorption process. "

The summations over spin operators in (51) can be
replaced by summations over magnon operators by
use of (10).We consider as an example the part of the
spin Hamiltonian in the product of the x and y com-
ponents of the 6elds. The xy Stokes-scattering extinc-
tion coeScient per unit frequency interval of sca, ttered
radiation is
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TAM,E III. Electric-Geld polarizations with corresponding weight-
ing factors and emphasized critical points.

gp~~; gpEp; El'Ep. ~ .cos(yuk ) cos(~uk„} cos()cks) ~ ~ ~ j.'

EpSp; EJECT

ge+s. g&eP a

E~E2* EpEp

~ ~ sin(-,'-uk, ) sin()uk„) cos($ck,) ~ ~ M

~ ~ ~ sin(~~uk~) cos(puky) sin(2cks)

~ ~ cos(~2uk ) sin(~2ukz) sin(+&ek, ) ~ ~ R

Note that the latter agree with the results derived
earlier in the present subsection.

The spectra calculated using (52) for k~ and a
similar expression for h" are compared to the experi-
mental results for MnF~ in Fig. 9. The anisotropy Geld-

and first-, second-, and third-neighbor exchange con-
stants used here are By=1.05'K, Jy=0.35'K, J2 ——

—1.735'K, and J3=—0.025'K and are consistent
with the neutron scattering data of Okazaki et eV
Even for this "nearest-neighbor" approximation (in-
dicated by the short dashed curves) the gross features
of the spectra —position and symmetric versus asym-
metric shape —are correctly predicted. The xs spectrum
lies at approximately 2cog while the xy lies at 2&~. Thc
theoretical spectrum for the xx, yy, and ss polarizations
is broad, Bat, and featureless in agreement with the
lack of any detectable scattering for these polarizations.

Agreement with experiment is greatly improved by
lifting the restriction on the sum over 3f;; to nearest
neighbors and assuming a more realistic fallofF to
include more distant neighbors. The long dashed curves
in Fig. 9 result from assuming an exponential fallofF

expL( —
~ r; r, I) /—roj with r, =0 4a, and. a is the lattice

constant. The same procedure was followed with success
in the case of two-magnon electric-dipole absorption in

In view of the success of the excited-state exchange
mechanism in explaining the MnF2 results, it is un-

likely that the phonon modulation of the ground-state
exchange matrix elements, which was mentioned above
as a possible scattering mechanism, is of any importance
here. Since the phonon-modulation theory relies on
the ordinary ground-state exchange integrals, the
range of the scattering interaction would bc expected
to be the same as the range of the exchange integrals
themselves. The longer range of interaction required to
explain thc experiments can be accounted for in the
excited-state exchange theory in terms of the odd-parity
excited-state wave functions being more extended in

space than the ground-state wave functions which

determine the ordinary exchange integrals.
It is evident from the form of the dispersion relation

(47) tllat tile aIllsotlopy of tllc 111ag11011 cIIcl'gy of tllc
Brillouin-zone surface is due to J~ and J3, That J~ is
appreciable for MnF2 is seen from the difFerence in

peak frequencies of the xy and xs spectra, . The high-

frequency cutoff in the xs spectrum shouM give the
highest magnon frequency in the Brillouin zone. The

Q(CO1) dId2

= (g~~ ~1~1~1&'/gPm~') («e"+~P~I ) (53).
It is interesting to compare this with the result (31)
f01' GIst-order scatterIng. Denoting thc order of the
scattering by subscripts on h,

(h,/hI) =&4SC'/(u, yI, )2r2j (54)

assuming that the polarization factors are both unity.
To get a rough estimate for the size of this ratio

we use the approximations (24) and (45) for F and
C, respectively, assuming the r matrix elements to be
equal and taking the limit Eo»fuvi and fuo2. This leads
to the very rough estimate

(h,/h, )=t'4S/(~+;) Ij(52 V1Z, /~%2~, 1).

For MnF1, taking &o~56s&I, and X 1000 cm ' (we are
indebted to A. Kiel for this estimate), the above ratio
Is about V'/10, where V Is in cm—'. A similar estims, te
for FCF1 gives V'/60. The experimental ratio for the
latter crystal is about 2—3, suggesting V j.0 cm ',
which is the same value as found by Tanabe et al. ,"
for the somewhat similar exchange matrix element
which controls the two-magnon absorption in FeF2. If

second-order spectrum thus contains a good d.eal of
information about magnons at extremal regions of the
Brillouin zone. Indeed, were the zone-center magnon
frequency available from Grst-order scattering in
MnFq, this together with the above analysis of the
second-order spectrum and (47) would provide a rather
complete picture of the entire magnon dispersion
relation.

In fact we may follow just such a procedure in FCF~.
From the Grst-order scattering we know the F-point
magnon frequency to be 53 cm '. From the second-order
scattering we know the zone-edge frequency to be
154 cm '. The fact that the second-order xs and xy
spectra for FeF2 are at the same frequency implies that
J~ and J3 are negligible in this material. The magnon
dispersion relation in FCFg can be adequately described
by (47) with the values E4=29.9'K, J2———2.52'K,
J3=JR~0,' all determined from thc llgh't-sca ttcl'Ing

experiments.
The single remaining experimental quantity to be

compared %1th thcor'y 1s thc 1atlo of 1IltcgI'atcd 1n
tensities for the 6rst-order scattering (spin-orbit mecha-
nism) and the second-order scattering (exchange
mechanism) .

The main features in the second-order spectra are
caused by magnons close to the zone boundary for
which Ni, j. and vJ, 0. Assuming also a sufhcicntly
low temperature that III, can be neglected, (52) can
be integrated to give the total scattering:
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V is the same for MnFs then (55) predicts the intensity
of the 6rst-order line to be only ~'~ that of the second-
order peak.

V. CONCLUSION

To the methods for studying spin waves —neutron
scattering, infrared absorption, optical sideband ab-
sorption —has been added another: inelastic light
scattering. In the above paper wc have presented the
theory for both one- and two-magnon light scattering
and have explained our experimental results in MnF2
and FCF~. It was shown that details of the magnon
dispersion relation could be extracted from the spectra
of scattered light. %'c should note that for the D21,I2

materials the selection rules for two-magnon scattering,
two-magnon absorption, and optical-magnon sidebands
are all diGerent —so the experimental methods arc
complementary. %'e should also note that the ability
to study magnons at the zone center and the zone edge
in the same experiment is best suited to light scattering.
In at least one cas" -NiF2—studies of zone-edge

magnons by two-magnon absorption are not possible
due to a strong infrared-active phonon (E ) at 225
cm '. However, since this phonon is not Raman active,
it has not interfered with the study of the zone-edge
magnon by second-order light scattering. '

All of the magnetic materials thus far examined by
light scattering have quite simple magnon branches.
But as techniques lIQprovc aI1d cxpcricncc grows lt ls
quite likely that the use of light scattering will become
much more important in the study of magnetic materials.
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A microscopic theory of the ef'feet of spin-lattice interaction on the ground-state and spin-vrave excitations
UQ, is presented. Three parameters required by a Jahn-Teller description of the local spin-lattice inter-

actions and an exchange constant are introduced as basic variables to describe the system at T=O'K. The
spin-lattice ground state reveals a competition between the Jahn-Teller forces and the exchange energy
that results in a reduction of the magnitude of the spin. It is also shown that the indirect quadrupole-
quadrupole interaction caused by the virtual exchange of an optical phonon is as large as the exchange
coupling ( 30 K.), and signi6cantly modi6es the spin-wave energies and wave functions. Values for the
interaction parameters are obtained by Gtting the theory to the excitation spectra and to wave functions
deduced from far-infrared absorption spectroscopy and from the inelastic scattering of neutrons. The theory
is consistent with the upper limits placed on the lattice distortion and with the anomolous behavior of the
elastic constant C44.

I. INTRODUCTION

lHK ground-state degeneracy of a concentrated.system of magnetic ions at T=O'K is usually lifted
by the exchange interaction. However, if the single-ion
ground state is orbitally degenerate and possesses an
even number of electrons, interesting alternatives to
the exchange splitting may occur. These usually mani-
fest themselves as electrostatic quadrupole-quadrupole
interactions or cooperative Jahn- Teller distortions. The
electrostatic interactions appear to be comparable with
the exchange interaction in the rare-earth' and. probably

' R. J. Birgeneau, M. T. Hutchings, and R. N. Rogers, Phys.
Rev. Letters 16, 584 (1966); R, Finkelstein and A. Mencher, J.
Chem. Phys. 21, 472 (1952);B.Bleaney, Proc. Phys. Soc. {Lon-
don'I "Iv, j.j.j (196j.); J. M. Baker and A. F. Mau, Can. J. Phys.
45, 403 (1967).

the actinide-series insulators. Uranium dioxide appears
to be a particularly striking example of this situation.
The ground-state degeneracy is largely due to the
unquenched orbital motion of the two Sf electrons and
there is evidence that the interaction between the spin
and the lattice is as strong as the exchange interaction
between pairs. ' '

In the present paper a microscopic theory of the
ground electronic state and elementary electronic exci-
tations (spin waves) is described. The basic interaction
between the local spin and the distortion of the nearby
lattice is parametrized by a set of constants prescribed

'G. Dolling and R. A. Cowley, Phys. Rev. Letters 15, 683
{1966).

I Q. Q. Brandt and C. T. Vfalker, Phys. Rev. Letters 18, 11
(1967&.


