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Cesium oscillator strengths are calculated using one-electron wave functions. These functions are nu-
merical solutions of the Schrédinger equation with a central, symmetric potential and with the spin-orbit
term. The potential is chosen so that the binding energies of the lowest ten levels agree with spectroscopic
values to 3% ; the next 30 levels agree to better than 1%,. The validity of the wave functions is demonstrated
by comparison of experimental and calculated values of : (i) ratios and magnitudes of principal series oscil-
lator strengths, (ii) fine structure splitting of the doublets, and (iii) hyperfine splitting of the ground state.
Oscillator strengths are presented for over one hundred transitions in the visible and infrared. Experimental
support for many of these oscillator strengths is given by line intensity measurements.

I. INTRODUCTION

PECTROSCOPIC examination of the light emitted
by a plasma coupled with knowledge of oscillator
strengths for the transitions involved can yield valuable
information about temperatures and densities of the
plasma. Because cesium is often used in plasma experi-
ments and because of the lack of experimental values,
the oscillator strengths for cesium have been calculated
for transitions in the optical and infrared region.

The necessary matrix elements are calculated from
wave functions that are solutions of the one-electron
Schrodinger equation with a central symmetric po-
tential. The spin-orbit interaction is included to obtain
the doublet structure. The potential accounts for the
nucleus and closed shell electrons and has been chosen
so that the binding energies of the lowest 40 levels agree
well with experiment. The accuracy of the wave func-
tions themselves is considered by comparison of perti-
nent calculated quantities with experiment, where
possible. These quantities include values and ratios of
principal series oscillator strengths, spin-orbit splitting
of the doublets, and ground-state hyperfine splitting.
A more qualitative check of the oscillator strengths is
provided by a measurement of the intensity of lines.
All calculations are numerical.

Section II shows the equations and notation used,
Sec. IIT presents the potential and discusses how it was
obtained, and Sec. IV deals with the accuracy of the
wave functions and presents the oscillator strengths.

II. EQUATIONS

The doublet levels of cesium are well determined by
the one-electron, nonrelativistic Schrédinger equation
with the spin-orbit term. The radial part of this equa-
tion in atomic units is

[d2F (x)/d?%—V (x)+1(@+1)/22+H'JF (x) =M\F (x), (1)

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

T Based on part of a thesis submitted to the University of
Michigan in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Nuclear Engineering.

with

The position x is the radius in units of the first Bohr
radius (20=0.529 A) and A is the binding energy in
units of the ground-state energy of infinite mass hydro-
gen (—13.605 eV). In the expression for the spin-orbit
interaction, H’, the coefficient a, is the fine-structure
constant (=1/137). The potential V(x) is spherically
symmetric and describes the nucleus and the closed
electron shells of cesium. It is usual to write the po-
tential as
V(x)=—Z(x)e*/x.

Expressed this way, Z(x) shows the departure of the
potential from the hydrogen potential (Z=1). The
wave function for a state is written

Fj(x)

unljm= Z a’mcljmylml(oj SD)——-_E"‘:’ (2)
mytmes=m %

where the a,,, are constants and Y., are spherical
harmonics. The £., are two eigenstates of the Pauli
spin matrices with eigenvalues #=1/2. The wave func-
tions for all states of a given level (values of #lj) have
the same radial part. If the spin-orbit term in Eq. (1)
is negligibly small, then F(x) is independent of j and
all states of a given doublet (values of /) have the same
radial part. This, however, is not true for cesium.

The oscillator strength for a transition from an initial
level 4 (numbers #lj) to a lower level A’ (numbers
#'l'j") with energy difference kv is defined as!

(4,47 8"2"”( ! )S(A A7) @)
FAA) = 21/
with

S(4,4")= Z, | (tnrvr jrme | €X | Unijm) |2 4)

In terms of the f number, the intensity of energy emitted

1E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, New York, 1957).
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in the transition (erg/sec) is

8w2e?hv® 125" +1
(G s, ©
27+1
where N (A) is the number of atoms in the initial level.
When Eq. (2) is substituted into Eq. (4), the sum-
mation can be performed. The result can be written

S(4,4")=eé*(nlj;n'V ;") K (1,1 7"). (6)

The quantity ¢? involves only the integral over the
radial part of the wave function,

I(4,40=
mz

o2(4,4")=ay / Fat(x)F 4 (x)xdx,

while the summation and integration over the spin and
angular parts is included in K. This last is a symmetric
quantity, i.e.,

K(@l'j)=KW5 1)

Values of K of interest here are?
K (Sy2,P112) =2/3, K (P1/2,D32)=4/3,
K(S12,P32) =4/3, K (Dsj2,Fr2) = 3.4286,
K (Ps2,D52) =2.40, K (Ds/2,Fs2) =0.17143,
K (Pyj2,D32)=0.2667,  K(Ds2,Fys) =2.40.
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Fic. 1. The potential used here as compared with previous
potentials. The quantity Z(x) is an “effective charge’ at the radial
position x. For £>7.0 all potentials have 2Z(x)—2=0. They
agree precisely for x <0.5 and become 108.0 at x=0.

2 H, A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and 7Two—Electron Atoms (Academic Press Inc., New York, 1957),
p. 273.
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III. DETERMINATION OF V(x)

A potential must be chosen such that the binding
energies obtained as solutions of Eq. (1) agree well
with spectroscopic values.? The associated eigenfunc-
tions are then taken as the wave functions for the
atoms.

For a given potential the wave functions and binding
energies are obtained by numerical integration of Eq.
(1) using standard and well-known techniques.* These
entail starting an inward integration from a very large
radius and an outward integration from the origin and
varying A until the logarithmic derivatives of the two
parts match at an intermediate point. A power-series
solution is used for the starting values at the origin
and the inward integration is begun at a sufficiently
large radius that the wave function is decaying ex-
ponentially. Care must be taken to use the relativistic
form of the spin-orbit interaction® when developing the
power series near the origin. The spin-orbit expression
associated with Eq. (1) is nonrelativistic and is not
valid at small radii. It becomes valid for cesium at
x>0.002.

The Hartree self-consistent field potential® for Cst
was used as a first trial for the potential. The binding
energies so obtained for the lower levels were small by
approximately 309, except those for /=3. These were
accurate to better than 19,. These levels are very nearly
hydrogenic, implying that their wave functions do not
penetrate the cesium ion core. The accurate calculation
of their energies implies that the Hartree potential is
about the right size [Z(x)=1 at the proper radius].

Another potential has been obtained for cesium by
Moto.” He found a potential that gives reasonable
values for the binding energies when the Schrodinger
equation is solved in the WKB approximation. When
this potential is used and the equation solved numeri-
cally, the binding energies are found to be high by
about 509,. Moto’s and Hartree’s potential are the
same at small radii, indicating that the inner core
electrons are insensitive to the state of the valence
electron.

A more satisfactory potential would be one that falls
between the Hartree and Moto potentials. It would
agree with them at small radii (x<0.50) and become
hydrogenic (Z=1) at the same radius -as Hartree’s
(x=17.0). A plot of log(2Z—2) vs x is shown in Fig. 1.
Both the Hartree and Moto potentials become almost
linear at x>2.0. The first attempts at an improved
potential were ones that also dropped linearly in this

3 C. E. Moore, Atomic Energy Levels as Derived from the Analyses
of Optical Spectra, National Bureau of Standards Circular No.
467 (U. S. Government Printing Office, Washington, D.C., 1949).

4D. R. Hartree, The Calculation of Atomic Structures (John
Wiley & Sons, Inc., New York, 1957).

5 See reference 2.

¢ D. R. Hartree, Proc. Roy. Soc. 143, 506 (1934).

7T. Moto, Proc. Phys.-Math. Soc. Japan 12, 93 (1930).
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TaBLE I. Comparison of calculated and experimental binding energies of cesium.

2 (eV) Error A (eV) Error
Level Calculated Spectroscopic (%) Level Calculated Spectroscopic %)
6S1/2 0.28430 0.28636 —0.72 5D 0.15861 0.15415 +2.89
7S1/2 0.11617 0.11736 —1.01 5Ds/g 0.15633 0.15326 +2.00
8S1/2 0.06412 0.064640 —0.80
9S1/2 0.04072 0.040993 —0.67 6D; o 0.08094 0.080398 +0.67
10812 0.02853 0.028323 +0.73 6Ds/2 0.08031 0.080006 +0.38
11S1/2 0.020636 0.020758 —0.59
1281/2 0.015773 0.015871 —0.62 TDsp2 0.04896 0.048860 +40.20
0.04368 0.04866¢ |
6Pz 0.18675 0.18444 +1.25 TDus ? +0.03
6P;/2 0.17811 0.17938 —-0.71 8D32 0.03281 0.032782 +0.08
1P 0.08904 0.087904 41.20 8Ds/2 0.03267 0.032676 —0.02
7P 0.08638 0.086253 +0.15 9Dy 0.02350 0023494 +0.03
8Py 0.05250 0.051948 +1.06 9Ds/2 0.02341 0.023438 —0.12
8P 0051315 0.051194 +0.23 10Dy2 001766 0.017672 —0.07
9P, 0.034052 0.033961 0.27
¥ ? + 11Dy 0.01376 0.013768 —0.06
10P,, 0.024610 0.024432 +0.73 11Dy 0.01372 0.013739 —0.14
10P;/, 0.024237 0.024187 +0.21
12D;/2 0.011024 0.011030 —0.05
11Py/e 0.018380 0.018263 +0.65 12Dy5/2 0.010996 0.011008 —0.11
11P;)e 0.018135 0.018104 +0.17
4F 0.062817 0.063225 —0.65
12Py)s 0.014250 0.014168 +0.58 SF 0.040270 0.040439 —0.42
12P;) 0.014089 0.014059 +0.21 OF 0.028066 0.028055 +0.04

region but at various rates between the limits of
Hartree and Moto.

For each trial potential the ground state (6s) and
lowest /=1 (6p) and =2 (5d) states were calculated.
No single potential with log(2Z—2) falling linearly
gave acceptable values for the binding energy of all
three states. But it became clear that the charge dis-
tributions (FFx?) for the 6s and 6p state always peaked
at £>4.50, and for the 5d state it peaked at x<3.50.
A potential giving good binding energies for the 6s and
6p states was poor for the 5d state and vice versa. A
relatively abrupt change in the potential at x~4.00
might give all three with sufficient accuracy. In this
way the potential marked “numerical” in Fig. 1 was
determined. This potential gives accurate binding
energies for the 40 lowest levels as indicated in Table I.
Table II gives the values of 2Z(x) for the potential.

All calculations were done on an IBM 704 computer.
The machine was programmed to try combinations of
one, two, and then three exponential decay rates for
Z(x)—1. The 6s, 6p, and 54 levels were calculated first
and then higher levels if the first set agreed with experi-
ment to within preset limits. The computer made
simple interpolations to obtain the next potential. The
final potential was determined by an evaluation of the
computer results. The computer itself did not obtain a
wholly satisfactory potential.

The irregular change in the potential is a reflection
of the different penetrations of the various orbits. In
particular, the lowest /=2 level penetrates considerably

TaBLE II. Cesium potential. The position x is in
units of Bohr radii.

x 27 (x) x 27 (x) x 27 (x)
0.000 110.00 0.20 51.29 1.3 9.60
0.002 108.71 0.22 48.41 1.4 8.70
0.004 107.44 0.24 45.79 1.5 7.80
0.006 106.20 0.26 43.44 1.6 7.10
0.008 105.00 0.28 41.31 1.8 5.87
0.010 103.83 0.30 39.39 2.0 4,96
0.015 101.09 0.32 37.64 2.2 4.27
0.020 98.56 0.34 36.03 24 3.73
0.025 96.21 0.36 34.55 2.6 3.30
0.030 94.00 0.38 33.17 2.8 3.00
0.035 91.89 0.40 31.87 3.0 2.94
0.040 89.87 0.45 28.89 32 2.89
0.05 86.05 0.50 26.21 3.4 2.85
0.06 82.51 0.55 23.79 3.6 2.80
0.07 79.22 0.60 21.60 3.8 2.76
0.08 76.17 0.65 20.20 40 2.60
0.09 73.35 0.70 19.30 4.5 2.34
0.10 70.73 0.75 18.00 5.0 2.18
0.11 68.29 0.80 17.10 5.5 2.10
0.12 65.99 0.90 15.20 6.0 2.05
0.14 61.78 1.0 13.70 6.5 2.02
0.16 57.96 1.1 12.10 . 7.0 2.00
0.18 54.47 1.2 10.75 >7.0 2.00

This is consistent with its principal quantum number
of 5 while the ground state has #=6.

IV. RESULTS AND ACCURACY

An accurate calculation of the binding energy of a
state does not imply a similar accuracy in the wave
function. In fact, the wave function error may be
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considerable. A test on the wave functions is a com-
parison of calculated and experimental oscillator
strengths. Table III shows such a comparison for the
principal series of cesium, the only series for which
experimental values®!! are available. The agreement is
not unreasonable when the wide differences in the
experimental results are considered.

Equations (3) and (4) show that the oscillator
strength is dependent primarily on the wave functions
at large radii. The wave functions are expected in-
tuitively to be good at such radii because the potential
has become hydrogenic. The difference in the oscillator
strengths of transitions from the two levels of a doublet
to the same final level is a test of the wave functions
at small radii, because it is there that the spin-orbit
interaction is large. Table III shows such ratios for the
principal series and compares with experiment. A ratio
of two comes about from the K’s, i.e.,

K(13,03)/K(13,02) =2,

while anything over 2 is due to differences in o The
continued increase of the calculated ratios has been
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F16. 2. Values of J(4,4") for transitions in the sharp, diffuse,
and fundamental series. The J(4,4’) are determined from meas-
ured values of the intensity (erg/sec per cm3 of plasma for 4=
steradians) and calculated values of the oscillator strength. The
solid lines enclose the region determined by the radiative re-
combination temperature 7'=2490470°K. The cathode tem-
perature of the cell was 2470-£40°K.

8S. A. Korff and G. Breit, Revs. Modern Phys. 4, 471 (1932).

9 G. Kvater and T. Meister, Leningrad. Univ. Vestnik No. 9,
137 (1952).

1S, Sambursky, Z. Physik 49, 731 (1938).

UWH. White, Introduction to Atomic Spectra (McGraw-Hill
Book Company, Inc., 1934), 1st ed., p. 119.
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observed qualitatively by Kratz.?? The reasonable values
calculated for this ratio imply that the p-state wave
functions behave properly at low radii.

The ground-state wave functions at small radii can
be tested by a calculation of the hyperfine splitting of
the state. It is assumed that all the splitting comes
from the valence electron. The equations are®®

SE=3a(2I+1),
a=$Mo(M /)| R(0)|*1/ (20>~ p),
p=(1—a)s,
a=Ze/kc,
where I is the nuclear spin, M7 is the magnetic moment
of the nucleus, M, is the Bohr magneton, R(0) is the

radial part of the wave function at the nucleus, and §E
is the hyperfine splitting. For cesium

I=7/2,
M=1.303X10"2 erg/G,
My=0.927X10"2 erg/G,
Z=55,
p=0.916,
R(0)=1.65X101,
giving
a=1.61X10717 erg,
SE=06.44X107" erg.
This splitting is 6.6%, higher than the experimental
value* of 6.04X1077, If all the other quantities are
correct, it indicates an error in the absolute value of the
wave function at the origin of only 2.6%,.

An approximate check on the accuracy of oscillator
strengths for any series can be obtained by a measure-
ment of the intensity of the lines. For a plasma in
thermodynamic equilibrium at temperature 7, the
number of atoms in energy state E4 is

N(4)=(2j+1) exp(—Ea/kT).
Equation (5) then gives

logJ (4,4")=const+ (— E4+/kT),
_ 1A/
27+ 1)f(4,4")

Agnew'® has made measurements of I(4,4") from a
hot-cathode, low-voltage cesium discharge. From radia-
tive recombination measurements, he places the elec-
tron temperature at 2490+70°K. Figure 2 shows values
of J(A,A’) using the calculated oscillator strengths vs
E,4. Lines of the sharp, diffuse, and fundamental series

with

J(4,4)

12 H. Kratz, Phys. Rev. 75, 1844 (1949).

13 G. Breit, Phys. Rev. 35, 1447 (1930).

4 N. Ramsey, Nuclear Moments (John Wiley & Sons, Inc.,
New York, 1953).

151.. Agnew (to be published).
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TaBLE III. Comparison of calculated principal series oscillator strength f with experiment.

The ratio for the doublet is R.

1155

iti Calculated Korff and Breit® Kvater and Meister® Sambursky*®
Initial
state f Rd f R f R R
6P;3/2 0.814 0.66 0.796
6Py2 0.304 2.06 0.32 2.06 0.392 2.03 20
7P 1.74%1072 1.15X1072 1.29X1072
7Py 2.84X10¢ 6.12 2.60%10- 3.3-4.3 3.00X10- 429 5.0
8P; 3.49%X 1073 _ 2.74X1073
8P:/: 317%1074 11.10 3.83X107% 4.7 342X 10~ 8.0 10.0
9P3/s 1.25%1073 - 7.66X1074
9Py 7.25X10° 17.24 2.3 X107 9.43%107 81 15.0
10Py/2 6.2 X10™* - 4.17X10™*
10P; 2 2.89% 105 21.45 1.79X 1075 514%10° 8.1 25.0
11P;)2 3.56X10~¢ _ 2.27X10*
1Py, 124X 1075 281 1411070 2.85X1078 80 158
12P;)2 2.08X10™* - .
12P,rs 6.2 X106 33.5 1.02x10°5 1.58X10~4 5.7
a Reference (8).
b Reference (9).
© References (10) and (11).
d The continual increase of the ratio, R, has been observed by Kratz (reference 12).
TastLe IV. Cesium oscillator strengths.
Transition Transition Transition
(4,B) /(4,B) (4,B) f(4,B) (4,B) f(4,B)
7S1/2, 6P32 0.208 1181/, 7Pss2 0.00455 11P3/2, SDsj2 0.01842
7S1/2, 6P1)2 0.171 11812, 7Pis2 0.00501 5Dj3/9, 6P1)9 0.2509
8S1/2, 6P3/2 0.0204 125172, 7P3/2 0.00259 6Ds/2, 6P3 /2 0.3322
8S1/2, 6P1)2 0.0202 12512, 7P1s2 0.00287 6Dj/5, 6P32 0.0397
9S1/2, 6P3/2 0.00687 13S1/2, 7Pss2 0.001643 6D3/2, 6P1/2 0.2980
9S1/2, 6P1/2 0.00702 13812, 7P1s2 0.001829 7Ds/3, 6P32 0.0951
10S1/2, 6P3/2 0.00299 14S1/2, 7P3/2 0.001128 7Ds;5, 6P3o 0.0110
MR eh g wRuh o dem g e
125 3/2 . 5/2y 3/2 .
115112, 6P1/2 0.00193 7Pss2, T1S12 1.115 8Dj32, 6P32 0.0048
1251/2, 6P3/2 000117 7Px/2, 751/2 0556 SDs/z, 6P1/2 00419
125172, 6P1s2 0.00122 8Pz, ;Sl/z 88(2)2152 9Ds/2, ng 0.022%
1351/, 6P 0.00078 8Pis2, 1S12 . 9D;/5, 6P3/2 0.002
1351/ 6Py 0.00082 OPya TSus 0.00502 9Dss, 6P1rz 0.0228
14S1/2, 6P3ss 0.00056 9P1ss, 1S172 0.00062 10Ds/2, 6P32 0.0135
145172, 6P1j2 0.00059 10P3/2, 7S1/2 0.00187 10D32, 6P3/2 0.0015
10P1/2, 751[2 000017 10Da/2, 6P1/2 0.0139
e 4 e temy o mman oo
125 / g 1/2, 1/2 . 3/2y 3/2 .
91 TPara 0.0256 12P3s, TSue 0.000486 11Ds/s, 6Pyra 0.0002
9S1/2, TPis2 0.0305 12Pys2, 15172 0.000027
10S1/2, 7Psj2 0.00842 6Ds/2, TP3/2 0.309
1051/2, 7P1/z 0009()4 SDs/z, 6P3/z 02042 6D3/2, 7P3/2 0032
g o phel  om gnus  tm
125 /2 . 1/2y 3/2 . y 5/2 g
TDsrs, TPis 0237 7Pya, 5D 0208 4F, 5Dy 03022
8Ds/2, TP3/2 0.089 7 P32, SDs)s 1.533 SF, 5Ds 0.1272
8D3/s, TPs/2 0.0105 8Pz, 5D3/2 0.0915 SF, 5Ds 0.1215
8Dz, TPz 0.0822 8P3/2, 5D3/2 0.0299 O6F, 5Ds 0.0650
9Ds/2, TP3)s 0.0410 8P3s2, 5Ds/2 0.2185 6F, 5D 0.0627
9D3/s, TP3/s 0.0047 9P1s2, 5D3/2 0.0309 7F, SDsp 0.0383
9D3/2, TP1j2 0.0391 9P3ss, SD3/2 0.0100 7F, 5Ds 0.0373
10D5/2, 7P3/z 00228 9P3/2, 5D5/2 00733 8F 5D5/2 00241
10D32, 7P3/2 0.0026 10Py/5, SDs/2 0.0143 8F, 5Ds 0.0235
10Ds/2, 7P1j2 0.0221 10P3/9, 5D3/2 0.0045 9F, 5Dsp 0.0164
11Dsjs, TP3ss 0.0142 10P3/2, SDs/2 0.0335 9F, 5Dsp 0.0160
11Ds/s, 7P3j2 0.0016 11Pyss, 5D32 0.00798 10F, 5Dsp 0.0115
11Dys, TPz 0.0139 11Py;2, SDsy2 0.00248 10F, 5Dy, 0.0114
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TaBLE V. Comparison with the Coulomb approximation
of Bates and Damgaard.®

Calculated oscillator strengths

Present Coulomb
Transition work approximation
6Pz, 6S1/2 0.394 0.348
6P3/5, 6512 0.814 0.750
7 P12, 6512 0.00284 0.00671
7P3s3, 6S1/2 0.0174 0.0174
8Pz, 6S1/2 0.000317 0.00134
8P3s2, 6S1/2 0.00349 0.0046
6Ds/2, 6P3/2 0.332 0.298
6D35, 6P3/2 0.0397 0.0351
6D3/3, 6P1/2 0.298 0.284
7Ds/2, 6P3/2 0.0951 0.0880
7Dsya, 6P3/2 0.0110 0.0102
1Ds/2, 6P1/2 0.0927 0.109
8Ds/2, 6P3/2 0.0418 0.0405
8D3/2, 6P32 0.0048 0.0045
8Ds/2, 6P 12 0.0419 0.0419

» See reference 17.

are included. Ideally, the values would fall on a straight
line of slope (¥T)~%. The deviation from any straight
line is due to errors in f(4,4") and experimental un-
certainties in the measurement of 7(4,4’). The values
do, however, all fall within the region specified by the
radiative recombination temperature, indicated by the
solid lines on the plot. This implies that the calculated
oscillator strengths are accurate to better than 509.
Table IV presents the calculated oscillator strengths.
The quadratic Stark shift of the 7P levels has been
measured'® and provides a further check of the 7P

16y, T. Tao, Z. Physik 77, 307 (1932).

STONE

wave functions. In an electric field of 100 kV/cm the
shifts are 1.17 cm™ and 1.49 cm™ for the 7Py, and
7P3s levels. The corresponding ‘values calculated from
the wave functions obtained here are 1.18 and 1.51.
This good agreement is further evidence of the validity
of the wave functions at larger radii.

A common procedure for calculating oscillator
strengths is the Coulomb approximation of Bates and
Damgaard.”” It is expected that this method would
give quite accurate values for an alkali metal and it is
worthwhile to compare the results of such a calculation
with values obtained here. Table V shows such a com-
parison for the lower transitions of the principal and
diffuse series. The Coulomb approximation agrees well
in the diffuse series but differs considerably for the
nP1s — 6S1/2 transitions. This is because the Coulomb
wave functions do not include the effects of the spin-
orbit interaction correctly, and these effects are most
significant for the P levels.

Finally, since the wave functions used here are eigen-
functions of an Hermitian operator, they are orthogonal
and the usual sum rules apply.
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