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Universal Efimov spectra and fermionic doublets in highly mass-imbalanced cold-atom
mixtures with van der Waals and dipole interactions
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We study the Efimov states in highly mass-imbalanced three-body systems composed of two identical heavy
atoms and one light atom, focusing on the Er-Er-Li and Dy-Dy-Li cold-atom mixtures with strong dipole-dipole
interactions between the heavy atoms. By solving the Born-Oppenheimer equation for varying s-wave scattering
lengths between the heavy and light atoms, we demonstrate for both bosonic and fermionic systems that the
Efimov spectra and hence the three-body parameters are universal even with the dipole interaction comparable
in strength to the van der Waals interaction. While the bosonic systems exhibit Efimov states only in the Mz = 0
channel, the fermionic systems show a characteristic doublet of the Efimov states in the Mz = 0 and Mz = ±1
channels due to the interplay of finite angular momentum and the anisotropy of the dipole interaction. Both
numerical results and analytical formulas obtained with the first-order perturbation show that the ratio of the
three-body parameters between these two fermionic channels exhibits universality, particularly well in the limit
of large mass imbalance. Leveraging this universality, we provide quantitative predictions for the values and
ratios of the three-body parameters for experimentally relevant Er-Li and Dy-Li isotopes.

DOI: 10.1103/z5rx-51yx

I. INTRODUCTION

Physical systems are regarded to be universal when they
display the same behaviors and can be described with a
unified effective theory. A prominent example of universal
few-body quantum phenomena is the Efimov effect [1–6],
where an infinite series of three-body bound states can emerge
universally when the interparticle s-wave scattering length is
large. Systems with large scattering lengths arise in various
contexts, such as 4He atoms [7,8], halo nuclei [9–12], and
cold atoms [13]. To uncover the nature of Efimov states in
these systems, extensive studies have been conducted both
theoretically and experimentally, particularly in cold atoms
where the s-wave scattering length can be precisely controlled
via Feshbach resonances [14,15]. A notable finding is that the
key parameter characterizing the Efimov states, the three-body
parameter a− (s-wave scattering length at which the Efimov
states dissociate into three atoms), is universally determined
by the van der Waals length scale [16,17]. This suggests that
short-range details of the atoms, such as their electronic struc-
tures and spin states, are irrelevant, and physical properties
of the Efimov states are solely determined by the long-range
features of the atoms. This universality has been demonstrated
for various atomic species, including identical bosons [16–20]
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and bosonic mixtures [21,22], except for systems close to a
narrow Feshbach resonance [23–33].

While the understanding of the Efimov states has advanced
considerably for the bosonic systems, less has been explored
for systems involving identical fermions. In fermionic sys-
tems, the centrifugal barrier originating from the nonzero
angular momentum due to the antisymmetrization suppresses
the formation of Efimov states for atoms with similar masses,
which accounts for the stability of the unitary Fermi gases
[34,35]. To overcome this, a mass-imbalanced mixture with a
mass ratio exceeding 13.6 is required [2,34]. This condition
is satisfied in cold-atom mixtures such as Yb-Li [36–39],
Er-Li [40–42], and Dy-Li [43]. In particular, broad Feshbach
resonances have been observed for Er-Li [40,41] and Dy-Li
[43], offering promising platforms for the near-future obser-
vation of the fermionic Efimov states of angular momentum
L = 1. However, Er and Dy atoms possess large magnetic
dipole moments [44], making the dipole-dipole interaction
comparable in strength to the van der Waals interaction. Due
to the anisotropy of the dipole interaction, the total angular
momentum L is no longer a good quantum number, whereas
its azimuthal value Mz along the external magnetic field axis
remains conserved [45–47]. This leads to a fundamental ques-
tion: “Does the universality of the Efimov states persist even
in the presence of strong dipole interactions? How do the
fermionic Efimov states differ from the bosonic ones?”

These questions were partially addressed in a previous
study [47], where the Mz = 0 state was studied and the uni-
versality of the Efimov states has been demonstrated at the
unitary limit of the heavy-light scattering length. Here, we
extend the analysis to the entire values of the heavy-light
s-wave scattering length and investigate the universality
across the full Efimov spectrum. In the bosonic system, the
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Efimov states appear only in the Mz = 0 channel for the mass
ratios of our interests, Er-Li and Dy-Li. We show that the
Efimov spectrum and hence the three-body parameter a− is
universal. In contrast, in the fermionic system, the Efimov
states emerge in both the Mz = 0 and Mz = ±1 states. Due
to the interplay of finite angular momenta and the anisotropy
of the dipole interaction, their degeneracy is lifted, analogous
to the splitting of a p-wave Feshbach resonance [48–55].
This leads to a characteristic doublet structure in the Efimov
spectrum. We show that the ratio of the three-body parameters
a− between these two channels is universal, especially in
the limit of large mass imbalance. These results provide a
practical experimental criterion for identifying Efimov states
in dipolar systems: one three-body loss peak per limit cycle
for the bosons and two peaks per cycle for the fermions. We
provide quantitative predictions for the values and ratios of
the three-body parameters for experimentally relevant Er-Li
and Dy-Li isotopes, paving the way for exploring universal
fermionic Efimov physics.

This paper is organized as follows: in Sec. II, we introduce
the model and method we use in our calculations. In Sec. III,
the results of our numerical calculations are presented and
compared with our perturbative analysis, followed by our
estimates of the three-body parameters for Er-Li and Dy-Li
isotopes. We conclude in Sec. IV. Throughout the paper, the
natural unit h̄ = 1 is used.

II. MODEL AND METHOD

We follow the method of Ref. [47]; we consider a three-
body system consisting of two heavy particles (mass M) and
a light particle (mass m) without any internal states, which
models spin-polarized cold atoms. The heavy particles, as-
sumed to be either identical bosonic or fermionic atoms,
interact via both the van der Waals interaction and dipole
interaction. The light and heavy particles are assumed to in-
teract via the zero-range contact interaction with an s-wave
scattering length a(HL) whose value can be controlled by the
Feshbach resonance [14,15]. While the zero-range approxi-
mation is well suited for describing the Efimov states near
broad Feshbach resonances, it becomes inadequate for narrow
resonances [23–33], where it is necessary to incorporate the
closed-channel degree of freedom.

In highly mass-imbalanced systems, such as Er-Li [40,41]
or Dy-Li [56] cold-atom mixtures, the Born-Oppenheimer
approximation gives good quantitative descriptions for the
Efimov physics [2,21,34,57]. The Schrödinger equation of the
relative motion between the heavy particles is analytically
written with the potential induced by the light particle VBO(r)
as follows [3,47,57]:[

−∇2
r

M
+ VBO(r) − C6

r6
+ Cdd(1 − 3 cos2 θ )

r3

]
ψ (r) = Eψ (r),

(1)
where θ is an angle measured from the z axis taken to be par-
allel to the orientation of the dipoles (parallel to the external
magnetic field). C6 and Cdd are, respectively, the coefficients
of the van der Waals and dipole interactions between the
heavy particles, from which we can define their characteristic
length scales: the van der Waals length rvdw ≡ (1/2)(MC6)1/4

and dipole length add ≡ MCdd/3. VBO(r) is given as [57]

VBO(r) ≡ − 1
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))2
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(
r

a(HL)
+ 1

)
,

(2)
where W is the Lambert W function and θ (x) is the Heaviside
step function introduced to get a smooth Born-Oppenheimer
potential VBO at r = |a(HL)| when a(HL) is negative.

In the short-range region r � |a(HL)|, a boundary condi-
tion is needed to avoid the collapse induced by VBO ∝ −1/r2

[1,3,6] and by the van der Waals and dipole potentials [47,58–
60]. In our analysis, we introduced the hard-wall boundary
condition ψ (|r| = Rmin) = 0 at a short distance Rmin � rvdw,
which is equivalent to imposing the quantum defect Kc as

u�(r) = f c(r) − Kcgc(r) (3)

between the two independent solutions f c and gc at short
distance. Indeed, the quantum defect parameter Kc is related
with Rmin as [47]

Kc = − tanh
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)Re
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tan
[ 2r2
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R2
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− π
4

] , (5)

where the asymptotic form of the Bessel function Jn is used in
the second line.

Due to the dipole interaction in Eq. (1), the total orbital
angular momentum L, i.e., the angular momentum between
the heavy particles, is no longer a good quantum number,
while its projection along the z axis Mz is. The quantum
statistics of the heavy particles plays a crucial role in the
Efimov effect: for bosonic heavy particles, Efimov states can
emerge only in the Mz = 0 state for mass ratios M/m �
38.6... [2,3,61,62], a condition relevant for Er-Li [40,41] or
Dy-Li [56] systems. Indeed, for a Mz = 2 state, for example,
none of the orbital angular momentum channels L = 2, 4, 6...

contributing to this state show the Efimov effect. In contrast,
for fermionic heavy particles, Efimov states can appear in both
the Mz = 0 and Mz = ±1 states. In the absence of the dipole
interaction, all these states are degenerate. As we demon-
strate in Sec. III, the dipole interaction lifts this degeneracy,
while Mz = +1 and Mz = −1 states remain degenerate due
to the azimuthal symmetry. Efimov states do not appear for
Mz = ±2 (and similarly for larger |Mz| states) because the
minimum allowed angular momentum under the antisym-
metrization, L = 3, requires M/m � 75.9... for the Efimov
effect to occur [2,3,61,62]. Therefore, to investigate Efimov
physics in Er-Li [40,41] or Dy-Li [56] systems, we focus on
Mz = 0 for bosons, and Mz = 0 and Mz = ±1 for fermions,
which amounts to numerically solving the coupled-channel
equation with L = 0, 2, 4, ... and L = 1, 3, 5, ..., respectively.

III. RESULTS

In this section, we show the results of our numeri-
cal calculations; we diagonalize Eq. (1) by discretizing the
radial coordinate in a nonuniform manner such that the
Wentzel-Kramers-Brillouin (WKB) phase increment between
adjacent grid points remains nearly constant. We typi-
cally take Rmax = 400rvdw − 12 000rvdw with 3000−5000
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FIG. 1. Binding energy of the Efimov trimer as a function of the
heavy-light s-wave scattering length a(HL) for (a), (b) the bosonic
(Mz = 0) and (c), (d) fermionic (Mz = 0, ±1) Efimov states. (a) Re-
sults with (without) the dipole interaction are denoted by the blue
solid (green dashed) curves for add = 0.867 55...rvdw, corresponding
to 166Er-6Li. (c) Results with the dipole interaction in the Mz = ±1
(Mz = 0) states are shown by the upper red (lower orange) solid
curves for add = 0.870 54...rvdw, corresponding to 167Er-6Li. (b),
(d) Cases showing avoided crossings with the higher partial-wave
channels [a smaller dipole strength add = 0.1rvdw is taken in panels
(b) and (d)]. The pink [black] dash-dotted curves in panel (b) [in
panel (d)] represent the energy of the d-wave [ f -wave] trimer, evalu-
ated by including only the diagonal dipole contribution (see text). In
panel (d), only the Mz = 0 state is shown for clarity of the figure. The
heavy-light dimer energy is indicated by black dashed lines. Rmin is
taken as follows: (a) Rmin = 0.272rvdw, (b) 0.2641rvdw, (c) 0.27rvdw,
and (d) 0.2597rvdw.

grid points with the maximum angular momentum �max =
8−9. With these parameters, the numerical error of three-body
binding energy and a− is confirmed to be less than 0.5%
in most cases, except near avoided crossings, where strong
admixture of higher angular momentum channels increases
the error to up to 4%. Except for Sec. III D where the results
of Er-Li and Dy-Li systems are quantitatively compared, we
primarily present the results for Er-Li as the overall behavior
of the Dy-Li system has been confirmed to be qualitatively
similar. That is, in the bosonic system, we have chosen
M/m = 27.5855 . . . which corresponds to 166Er-6Li and a
scaling factor eπ/|s0| = 4.643 26 . . . . In the fermionic system,
we have chosen M/m = 27.7521 . . . , which corresponds to
167Er-6Li and eπ/|s1| = 8.262 36 . . . .

A. Efimov spectrum

We first show the Efimov spectrum as a function of the
heavy-light scattering length a(HL). Figure 1(a) shows the
three-body binding energy for the bosonic Mz = 0 state, ob-
tained by numerically solving Eq. (1) with a fixed Rmin. For
add = 0.867 55...rvdw (blue solid), corresponding to 166Er-6Li,
the results exhibit a typical Efimov spectrum with the dis-
crete scale invariance: at |a(HL)| � rvdw and |E | � 1/Mr2

vdw,
the spectrum is invariant under the transformation a(HL) →

eπ/|s0|a(HL), E → (eπ/|s0|)−2E , where eπ/|s0| = 4.643 26 . . . .
For a(HL) < 0, the three-body system is in the Borromean
regime where three-body bound states appear without a two-
body bound state. In contrast, for a(HL) > 0, the three-body
bound states lie below the heavy-light dimer threshold (black
dashed line) and approach it as a(HL) decreases, eventually
merging into the threshold and dissociating. The binding en-
ergy in the presence of the dipole interaction (blue solid) is
larger than that without the dipole interaction (green dashed).
This enhancement arises from the attractive nature of the
dipole interaction in the bosonic L = 0 channel, as demon-
strated in the unitary limit using the second-order perturbation
theory in Refs. [47,63].

The three-body bound states shown in Fig. 1(a) can be
identified as the ground, first excited, and second excited
Efimov states. They form part of a series that continues to
higher excited Efimov states, which are not shown in Fig. 1 or
in the subsequent sections for clarity. On the other hand, we
also find deeply bound states with energies |E | � 50/Mr2

vdw,
which deviate significantly from the discrete scale-invariant
behavior and thus cannot be regarderd as the Efimov state. We
therefore assign the trimer of |E | � 1/Mr2

vdw as the ground
Efimov state.

Figure 1(b) shows the results with different Rmin, optimally
chosen to ensure the appearance of a weakly bound d-wave-
dominant bound state (pink dash-dotted) in addition to the
s-wave-dominant states. While the s-wave-dominant trimers
form an infinite Efimov series, only a single d-wave-dominant
trimer appears in the spectrum because the Efimov effect does
not occur in the d-wave channel for the bosonic Er-Li mass
ratio M/m = 27.5855 . . .. Without the dipole interaction, the
s-wave (green dashed) and d-wave (pink dash-dotted) states
remain uncoupled because the angular momentum is a good
quantum number. Once the dipole interaction is introduced
(blue solid), an avoided crossing between the s-wave- and
d-wave-dominant states occurs. However, such an avoided
crossing is relatively rare; we have found that a fine-tuning
of the parameter Rmin is necessary for the higher partial bound
states to appear near zero energy (a similar result was found
in Ref. [47] at the unitary limit). Therefore, in most realis-
tic cold-atom experiments, we expect that such an avoided
crossing rarely occurs, and the Efimov spectrum behaves as
in Fig. 1(a).

The fermionic system [Figs. 1(c) and 1(d)] is found to
show similar Efimov spectra. One notable difference is that
there are three Efimov states, corresponding to an Mz = 0
state (orange bottom solid) and twofold degenerate Mz = ±1
states (red upper solid). In the absence of the dipole interaction
(green dashed), all these states of L = 1 are degenerate. The
dipole interaction breaks the rotational symmetry, so that this
degeneracy is lifted; the Mz = 0 state is shifted toward a
tighter binding, while the Mz = ±1 states are shifted toward a
shallower binding. This behavior can be understood from the
difference in the diagonal element of the dipole interaction: it
is attractive 〈Mz = 0|Vdd |Mz = 0〉 = −12add/5Mr3 < 0 for
Mz = 0, while it is repulsive 〈Mz = ±1|Vdd |Mz = ±1〉 =
6add/5Mr3 > 0 for Mz = ±1.

As shown in Fig. 1(d), the fermionic Efimov states can
also exhibit avoided crossings with a higher angular momen-
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tum state, similar to the bosonic system; when an f -wave
state (black dash-dotted) happens to appear at low energy—
obtained using the single-channel approximation of Eq. (1)
in the L = 3 channel considering only the diagonal dipole
contribution—it can couple to the fermionic Efimov states of
L = 1 (green dashed) via the dipole interaction, leading to an
avoided crossing. We note, however, that as in the bosonic sys-
tem, a fine-tuning of Rmin is necessary for the avoided crossing
to appear, suggesting that the fermionic Efimov spectra most
likely behave as in Fig. 1(c).

Figure 1 has an important implication for the experimen-
tal identification of the fermionic Efimov states in Er-Li
and Dy-Li systems: the emergence of a doublet structure
in observables. In cold atoms, Efimov states are typically
observed via enhanced three-body loss rates near the disso-
ciation point a− < 0, at which the Efimov trimers dissociate
into three particles [13,16,17,64–70]. Figure 1(c) suggests that
the fermionic system should exhibit two loss peaks, each cor-
responding to Mz = 0 and Mz = ±1. As the latter is twofold
degenerate, the resulting loss spectrum should display an
asymmetric doublet structure, repeating periodically in accor-
dance with the discrete scale invariance of Efimov physics.
This behavior contrasts sharply with that of bosonic Efimov
states [13,16,17,64–66,70] and of distinguishable fermions
[67–69], which produce a periodic loss pattern with a single
peak per cycle.

B. Universality of the Efimov spectrum and κ∗a−

We have tested the universality of the Efimov spectrum
by comparing the results obtained with different short-range
parameters Rmin. While variations in Rmin can generally shift
the binding energies of the Efimov states, it can be interpreted
as a modification of the three-body parameter. Furthermore,
as long as the value of the quantum defect Kc in Eq. (3)
remains fixed, the Efimov states are expected to exhibit quan-
titatively similar behavior, hence universal. As demonstrated
in Ref. [47] at the unitary limit 1/a(HL) = 0, we have also con-
firmed that this universality with respect to a change in Rmin

holds true for a variable a(HL) in the range 0.25 < Rmin/rvdw <

0.40 we examined, with smaller Rmin showing smaller vari-
ance of spectrum originating from difference of Rmin, hence
better universality.

We have also tested the universal relation between the
two commonly used three-body parameters: κ∗ = √

M|E |, the
binding wave number at the unitary limit 1/a(HL) = 0, and
the negative heavy-light scattering length a− at which the
Efimov state dissociates into three atoms. Figure 2 shows
the dependence of κ∗a− on Rmin, reexpressed in terms of the
quantum defect parameter Kc using Eq. (5). In the zero-range
low-energy limit of the Efimov theory, these quantities are
connected by the universal relation κ∗a− = const, which is
denoted by the black dotted lines in Fig. 2; κ∗a− = −4.34 for
bosonic 166Er-6Li and κ∗a− = −7.81 for fermionic 167Er-6Li.
We have found that the universal relation holds remarkably
well for a highly excited state (red open square) for the full
range of Kc, except for Kc � 1 (Kc � −3) where an avoided
crossing with a higher angular momentum state L = 2 (L = 3)
breaks the universality for bosons (fermions), respectively
[see Figs. 1(b) and 1(d)]. In contrast, more deeply bound

FIG. 2. κ∗a− as a function of the quantum defect parameter Kc

for (a), (b) the bosonic and (c), (d) fermionic states in Mz = 0. (a), (b)
add = 0.867 55...rvdw. (c), (d) add = 0.870 54...rvdw. The left (right)
panels are for negative (positive) Kc, which should smoothly connect
with each other at Kc = 0. Blue circles, green triangles, and open red
rectangles are the numerical results for the ground, first excited, and
second excited Efimov states [see Figs. 1(a) and 1(c)], respectively.
Black dashed lines are the universal values of the zero-range Efimov
theory, obtained by solving Eq. (1) with C6 = Cdd = 0 for a highly
excited state.

states show increasing deviation from universality. The first
excited state (green triangle) marginally shows the univer-
sality with ∼10% accuracy, while the ground Efimov state
(blue circle) exhibits substantial deviation. Since cold-atom
experiments typically observe Efimov states in the ground
or first excited states, which have relatively large binding
energies, Fig. 2 suggests that the zero-range universal relation
κ∗a− = const cannot be reliably used to extract a− from κ∗,
as was done in Ref. [47]. Instead, accurate quantitative predic-
tions of a− require three-body calculations with variable a(HL),
as performed in this work, with concrete results presented in
Sec. III D for several relevant cold-atom isotopes.

C. Universality of the three-body parameters between
Mz = 0 and Mz = ±1 states

In this section, we focus on fermions and their three-body
parameters for the two successive Efimov states of Mz = 0
and Mz = ±1. While the absolute value of the three-body
parameter strongly depends on the quantum defect parameter
Kc [47], we investigate here whether the difference between
the three-body parameters of Mz = 0 and Mz = ±1 can ex-
hibit universality. Figures 3(a)–3(f) show the difference in the
three-body binding energy between Mz = 0 and Mz ± 1 states
at the unitary limit 1/a(HL) = 0. The results show a periodic
pattern consistent with the discrete scale invariance of the Efi-
mov states: the numerical results appear consistently with the
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FIG. 3. Energy difference between the fermionic Efimov states
of Mz = 0 and Mz = ±1 at the unitary limit 1/a(HL) = 0 as a func-
tion of the quantum defect parameter Kc. Top row: (a), (b) weak
dipole regime add = 0.1rvdw. Middle row: (c), (d) moderate dipole
regime add = 0.870 54...rvdw corresponding to a realistic value for
167Er-6Li. Bottom row: (e), (f) stronger dipole regime add = 1.5rvdw.
The symbols follow the same convention as in Fig. 2; however, the
identification of the ground (blue), first excited (green), and second
excited (red) states becomes ambiguous near the avoided crossing at
Kc � −3 and Kc � 1, owing to a rearrangement of the energy levels.
The black solid, green dashed, and pink dotted curves are the analyt-
ical results obtained perturbatively in Eqs. (6)–(8), respectively.

discrete scale invariance of (eπ/|s1|)2 = 68.2666 . . . along the
vertical axis. Except near the avoided crossings at Kc � −3
and Kc � 1, the data points with variable Rmin in the range
0.25 < Rmin/rvdw < 0.40 collapse onto universal curves when
reexpressed by Kc using Eq. (5). As the strength of the dipole
interaction increases from the top panels [panels (a) and (b)]
to the bottom panels [panels (e) and (f)], the energy difference
becomes larger, reflecting the lifting of the degeneracy by the
introduction of the dipole interaction. These results suggest
that the difference between the three-body parameters, and
thus the splitting between the three-body loss peaks of Mz = 0
and Mz = ±1, should be insensitive to Rmin, and universally
determined by add, rvdw, and the quantum defect Kc.

To further scrutinize this splitting, we have performed a
perturbative analysis. As demonstrated in Ref. [47], the en-

ergy shifts induced by the dipole interaction follow �E ∝ add

according to the first-order perturbation theory. By applying
it to both Mz = 0 and Mz = ±1 states, we have obtained the
energy splitting at the unitary limit �E = E (Mz=1) − E (Mz=0)

as (see the Appendix)

�E �18π

5
|E0| add

|s�| tanh π |s�|
4

⎡
⎣1 +

(
Kc

tanh π |s�|
4

)2
⎤
⎦

−1

∫ ∞

Rmin

dr

∣∣∣A0
√

rJ s�
2

(
2r2

vdw
r2

)
+ A∗

0

√
rJ− s�

2

(
2r2

vdw
r2

)∣∣∣2

r3
, (6)

where E0 is the energy in the absence of the dipole interac-
tion and A0 is a coefficient of the short-range wave function
universally determined by Kc as Eq. (A4). As shown in the
Appendix, the integral can be evaluated analytically using the
hypergeometric function. Equation (6) suggests that the ratio
�E/|E0| is independent of the Efimov state’s binding energy
and thus of its index n. In other words, �E exhibits the same
discrete scale invariance as E0. This explains why Fig. 3 shows
the discrete scale invariant pattern across successive Efimov
states. The perturbative formula of Eq. (6) (black solid curves)
agrees with the numerical results for weak [panels (a) and (b)]
and realistic dipole strengths [panels (c) and (d)], except near
the avoided crossings. In contrast, the agreement deteriorates
at stronger dipole interactions [panels (e) and (f)] due to the
breakdown of the perturbative approximation.

The independence of �E/|E0| on the Efimov state’s in-
dex suggests a more universal representation of the results.
Figures 4(a)–4(f) (left columns) show the ratio of the bind-
ing wave numbers κ

(Mz=1)
∗ /κ

(Mz=0)
∗ . As can be seen for weak

[panels (a) and (b)] and realistic dipole strengths [panels (c)
and (d)], the ground, first excited, and second excited Efimov
states give comparable values, due to the independence of
�E/|E0| on the Efimov state’s index. The perturbative expres-
sion in Eq. (6) (black solid curves) explains well the overall
behavior of the numerical results, except for the ground Efi-
mov state (blue circles) whose relatively large binding energy
does not allow the low-energy analysis. The curves are mul-
tivalued for a given Kc, reflecting the explicit dependence
of Eq. (6) on Rmin. The equation can be further simplified
by assuming Rmin/rvdw � 1, resulting in an Rmin-independent
expression (see the Appendix for the derivation)

�E

|E0| � 18

5

add

rvdw

√
π�

(
1
4

)2

8
√

2|s�|
∣∣�(

3
4 + i|s�|

2

)∣∣2
sinh π |s�|

2[
1+ 1√

cosh(π |s�|)
cos

{
τ c + arctan

(
tanh

π |s�|
2

)}]
,

(7)

where τ c/2 ≡ arctan(Kc/ tanh (π |s�|/4)). This universal for-
mula (green dashed curve) agrees well with the numerical
results for the first and second excited states in Figs. 4(a)–4(d),
whereas the perturbative analysis breaks down for the ground
Efimov state (blue circles) and in the regime of a stronger
dipole interaction in Figs. 4(e) and 4(f).

As an experimentally relevant observable for cold atoms,
we have also studied the ratio of the three-body parame-
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FIG. 4. Ratio of the three-body parameters as a function of the quantum defect parameter Kc. Left columns: (a)–(f) κ
(Mz=1)
∗ /κ

(Mz=0)
∗ . Right

columns: (g)–(l) a(Mz=0)
− /a(Mz=1)

− . Top row: (a), (b), (g), (h) weak dipole regime add = 0.1rvdw. Middle row: (c), (d), (i), (j) moderate dipole
regime add = 0.870 54...rvdw corresponding to a realistic value for 167Er-6Li. Bottom row: (e), (f), (k), (l) stronger dipole regime add = 1.5rvdw.
The symbols are the same as those in Fig. 3.

ters a(Mz=0)
− /a(Mz=1)

− , i.e., the positions of the three-body loss
peaks, in Figs. 4(g)–4(l). Due to the universality of κ∗a−
demonstrated in Sec. III B, the ratio a(Mz=0)

− /a(Mz=1)
− exhibits

similar behavior to κ
(Mz=1)
∗ /κ

(Mz=0)
∗ ; for the first and second

excited states, the numerical results show reasonable agree-
ment with the perturbative predictions obtained from Eqs. (6)
and (7) supplemented with the universal value κ∗a− = −7.81
obtained in Sec. III B (black dashed line in Fig. 2). The results
of the ground Efimov state (blue circles) deviate from those
of the excited states and from the perturbative curves, reflect-
ing the finite-range effects. While the agreement between the
numerical results and the perturbative curves is slightly worse
for a(Mz=0)

− /a(Mz=1)
− than for κ

(Mz=1)
∗ /κ

(Mz=0)
∗ , it is important to

note that varying Rmin/rvdw from 0.25 to 0.40 corresponds to
a 17-fold change in the depth of the van der Waals interaction.
It is thus reasonable to conclude for the Er-Li system (middle
panels of Fig. 4) that the universality of a(Mz=0)

− /a(Mz=1)
− holds

to a limited extent for the ground Efimov state, and to a satis-
factory degree for the first and second excited states, which are
well captured by the universal formula in Eq. (7). In contrast,
for the Dy-Li system, the dipole interaction is relatively larger
add/rvdw � 1.6, corresponding approximately to the bottom
panels of Fig. 4. The perturbative curves can only predict the
order of magnitude of a(Mz=0)

− /a(Mz=1)
− for the Dy-Li system.

While Eq. (7) characterizes the universal behavior of the
three-body parameters, it requires knowledge of a quantum
defect Kc to make quantitative predictions for a(Mz=0)

− /a(Mz=1)
− .

For the bosons, Kc can be evaluated from the s-wave scat-
tering length between the heavy atoms, but it is challenging
to perform a similar estimate for the fermions [47]. Notably,
this dependence on Kc entirely disappears in the limit of
large mass imbalance M/m → ∞, hence |s�| → ∞. In this
limit, the τ c-dependent oscillatory term in Eq. (7) vanishes as
cosh π |s�| → ∞, resulting in a Kc-independent ratio

�E

|E0| � 18

5

add

rvdw

√
π�

(
1
4

)2

8
√

2|s�|
∣∣�(

3
4 + i|s�|

2

)∣∣2
sinh π |s�|

2

. (8)

For Er-Li system shown in Fig. 4, this universal constant
supplemented with the universal value of κ∗a− = −7.81 (pink
dotted line) agrees reasonably well with the numerical results
despite its simplicity. This is because

√
cosh(π |s�|) = 7.31...

for the Er-Li mass ratio, suggesting that the Kc dependence
introduces at most 15% correction to the universal constant.
Therefore, even without any knowledge on the quantum defect
Kc, we can still make a semiquantitative prediction solely
from the mass ratio and add/rvdw using Eq. (8) and κ∗a− =
const. We note, however, that Eq. (8) cannot be applied to
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Dy-Li because the energy in Mz = ±1 states becomes pos-
itive in the mass-imbalanced limit, Eqs. (A1) and (A13),
representing a breakdown of the first-order perturbation. Nev-
ertheless, as shown in Figs. 4(e), 4(f), 4(k), and 4(l) (and in
Sec. III D for Dy-Li system), the numerical results of the ratio
of three-body parameter in the excited states mostly lie within
a relatively narrow range 0.20–0.35 even in stronger dipole
regime, implying that the universal property for a highly mass-
imbalanced system persists beyond the perturbative regime.

In the above discussions on the universality based on the
quantum defect Kc, the dipole interaction is neglected in the
determination of Kc in Eq. (5). This approximation is justified
because the dipole interaction is negligibly small—at least 50
times weaker than the van der Waals force—at short distance
r � Rmin for the range explored in this work. It can be even
smaller for a realistic value of Rmin (see Sec. III D).

D. Quantitative Prediction for Er-Li and Dy-Li experiments

In this section, we provide quantitative predictions for
the Efimov states in Er-Li and Dy-Li mixtures. Specifically,
we use realistic parameters for the mass ratio, rvdw, and add

[44,71].
We show the three-body parameters of the bosonic Efimov

states Mz = 0 for various Er and Dy isotopes in Table I.
When numerically solving Eq. (1), we choose the value of
Rmin to reproduce the typical background heavy-heavy s-wave
scattering length a(HH) as listed in Table I. More specifically,
we obtain the relation between a(HH) and Rmin by solving the
Schrödinger equation for two heavy atoms interacting via the
dipole and van der Waals interactions (i.e., without VBO), from
which we identify the values of Rmin/rvdw that reproduces
realistic values of a(HH)/rvdw (see Fig. 6 in Ref. [47]). The
uncertainty in κ∗ and a− arises from the ambiguity in Rmin,
since different values of Rmin/rvdw can yield the same a(HH).
To account for this, we have performed numerical calculations
with all possible values of Rmin/rvdw in the range 0.25–0.40,
and determined the error bars from the resulting variation in
the three-body parameters. The small error bars reflect the
universal nature of the Efimov states with respect to short-
range details Rmin (see Sec. III B). For Er-Li, the values of
κ∗rvdw are in reasonable agreement with those reported in
Ref. [47] using the analytical formula based on the renor-
malized van der Waals universality. For 166Er-6Li, 160Dy-6Li,
and 164Dy-6Li, we show two sets of results for each due
to an ambiguity in Rmin; the heavy-heavy scattering length
of this isotope is a(HH)/rvdw � 1, which is near the avoided
crossing with the d-wave-dominant state (see a(HH)/rvdw � 1
of Fig. 5 in Ref. [47]). Since the question of which side of the
resonance the system lies depends sensitively on the nature
of the Feshbach resonance used in the experiments, we have
investigated both possibilities and tabulated them in Table I.

While a− was previously estimated using the zero-
range universal relation κ∗a− = const in Ref. [47], as we
demonstrated in Sec. III B, this is only valid for highly ex-
cited states and breaks down for the ground Efimov state,
which is the most accessible in cold-atom experiments. In the
second rightmost column of Table I, we show a− obtained
without relying on the zero-range universal relation, instead
calculated directly from Eq. (1). While our results agree well

with those in Ref. [47] for highly excited states, significant
deviations appear for the ground Efimov states, underscoring
the importance of the finite scattering length calculation in
this work.

The rightmost column shows κ∗a−. For Er-Li, most values
agree excellently with the zero-range universal values of −4.3
to −4.4, corresponding to each mass ratio. The agreement is
particularly good for shallower bound state, while the ground
Efimov state shows a slight deviation. An exception is the first
excited state of 168Er-6Li, where the proximity to a shallow
d-wave-dominant bound state leads to a significantly different
value.

We note that the uncertainty range in Table I is based on
the variance for the values explored 0.25 � Rmin/rvdw � 0.40,
which is likely to be an overestimate. In Ref. [72], the Rmin

parameter between two 168Er atoms is crudely estimated with
the WKB approximation as Rmin � 0.07rvdw. Since the sen-
sitivity of the results to Rmin decreases at smaller values, the
actual variation may be significantly smaller than suggested
in Table I. The uncertainties due to avoided crossings may be
circumvented if one can engineer the value of the three-body
parameter [73], thereby tuning the Efimov states away from
higher angular momentum states.

While we have used in Table I the background scattering
length reported in Ref. [44] as a plausible value of a(HH), we
can improve our estimates with the knowledge of the value
and magnetic field dependence of a(HH) around the Er-Li and
Dy-Li Feshbach resonances of interest.

For fermionic systems, it is challenging to make a quan-
titative prediction of the three-body parameter in the same
manner by determining Rmin and Kc, owing to a weak de-
pendence of the low-energy scattering parameter on Rmin

in fermions [47,63,74–76]. Nevertheless, using the results
presented in Sec. III C, we can predict the ratio between
the three-body parameters of Mz = 0 and Mz = ±1 states.
Table II shows our estimate of the ratio of the three-body
parameters, obtained by using the Kc-independent formula in
Eq. (8) and the zero-range limit value of κ∗a−. As demon-
strated in Fig. 4, the large mass-imbalance-limit formula in
Eq. (8) holds with 10%–15% accuracy for 167Er-6Li. As κ∗a−
for the ground Efimov state deviates from the zero-range limit
value by �20%, and much less for the excited states, our esti-
mates for Er-Li are expected to be reliable within about 25%
accuracy. In contrast, for Dy-Li, the energy of the Mz = ±1
state becomes positive according to Eq. (A13), indicating that
Dy behaves as nonperturbative dipolar atoms.

We also present in Table II the possible range of the ratio
a(Mz=0)

− /a(Mz=1)
− , evaluated from its variations across the full

range 0.25 � Rmin/rvdw � 0.40 [i.e., based on all the data
points shown in Figs. 4(i) and 4(j)]. a(Mz=0)

− /a(Mz=1)
− for the

higher excited states is found to lie universally within a narrow
range. In contrast, for the ground Efimov state, we can only
evaluate the upper bound, as a(Mz=0)

− /a(Mz=1)
− suddenly de-

creases as Kc is varied [see blue circles in Figs. 4(i) and 4(j)].
Since this is due to a strong finite-range effect for the ground
Efimov state of κ∗ � r−1

vdw and |a−| � rvdw, a(Mz=0)
− /a(Mz=1)

−
should be experimentally observed within the narrow range
tabulated for the higher excited states provided the exper-
iment is conducted for |a| � rvdw. Specifically, we predict
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TABLE I. Three-body parameters for the bosonic Er-Er-Li and Dy-Dy-Li Efimov states. κ∗ = √
M|E | denotes the binding wave number

at unitary limit 1/a(HL) = 0, and a− is the scattering length a(HL) where the Efimov states dissociate into three atoms. For each species, κ∗, a−,
and κ∗a− are shown from the ground state (top) to the third excited state (bottom). For 166Er-6Li, 160Dy-6Li, and 164Dy-6Li, the upper (lower)
set of results are for the upper (lower) side of the resonance in Fig. 5 in Ref. [47]. Our numerical calculations use the van der Waals and
dipole lengths reported in Refs. [44,71] along with the mass scaling. The heavy-heavy scattering length a(HH) is estimated as the background
scattering length abg, whose value is reported in Ref. [44].

Species rvdw[a0] add [a0] a(HH) [a0] κ∗rvdw a−/rvdw κ∗a−

166Er-6Li 75.5 65.5 68 0.40–0.41 −9.6 to −9.9 −3.9 to −4.0

8.7 × 10−2 −49 −4.3

1.9 × 10−2 −2.3 × 102 −4.3

4.0 × 10−3 to 4.1 × 10−3 −1.1 × 103 −4.3

0.51–0.53 −7.1 to −7.3 −3.7

0.11 −38 to −39 −4.2

2.3 × 10−2 to 2.4 × 10−2 −1.8 × 102 to −1.9 × 102 −4.3

5.0 × 10−3 to 5.2 × 10−3 −8.4 × 102 to −8.7 × 102 −4.3

168Er-6Li 75.8 66.3 137 0.50–0.52 −10 −5.0 to −5.3

0.22–0.25 −29 to −32 −7.2

5.6 × 10−2 to 6.1 × 10−2 −78 to −91 −4.8 to– −5.0

1.2 × 10−2 to 1.3 × 10−2 −3.3 × 102 to −3.7 × 102 −4.4 to −4.5

170Er-6Li 76.0 67 221 0.32–0.33 −13 −4.2

7.3 × 10−2 to 7.4 × 10−2 −60 to −62 −4.5

1.6 × 10−2 −2.7 × 102 to −2.8 × 102 −4.4

3.5 × 10−3 to 3.6 × 10−3 −1.2 × 103 to −1.3 × 103 −4.4

160Dy-6Li 77.72 127.6 74.3 0.44–0.45 −8.8 to −8.9 −3.9 to −4.0

0.94 × 10−1 to 1.0 × 10−1 −45 to −46 −4.3 to −4.5

2.0 × 10−2 to 2.1 × 10−2 −2.1 × 102 to −2.2 × 102 −4.3 to −4.4

4.1 × 10−3 to 4.4 × 10−3 −9.7 × 102 to −1.0 × 103 −4.3

0.59–0.63 −5.5 to– −5.9 −3.4

0.12–0.13 −31 to −34 −4.2

2.6 × 10−2 to 2.8 × 10−2 −1.5 × 102 to −1.6 × 102 −4.3

5.4 × 10−3 to 5.8 × 10−3 −7.3 × 102 to −7.9 × 102 −4.3

162Dy-6Li 77.97 129.2 157 0.32–0.33 −12 −3.9

6.8 × 10−2 to 6.9 × 10−2 −61 to −62 −4.2

1.4 × 10−2 to 1.5 × 10−2 −2.9 × 102 to −3.0 × 102 −4.3

3.0 × 10−3 to 3.1 × 10−3 −1.4 × 103 −4.3

164Dy-6Li 78.21 130.7 92 0.41 −9.4 to −9.6 −3.9 to −4.0

8.9 × 10−2 to 9.0 × 10−2 −48 −4.3 to −4.4

1.9 × 10−2 −2.2 × 102 to −2.3 × 102 −4.3

4.0 × 10−3 to 4.1 × 10−3 −1.0 × 103 to −1.1 × 103 −4.3

0.61–0.64 −5.4 to −5.7 −3.4 to −3.5

0.13–0.14 −30 to −32 −4.2

2.8 × 10−2 to 2.9 × 10−2 −1.4 × 102 to −1.5 × 102 −4.3

5.9 × 10−3 to 6.4 × 10−3 −6.8 × 102 to −7.3 × 102 −4.3
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TABLE II. Ratio of the three-body parameters between the Mz =
0 and Mz = ±1 states for the fermionic Er-Er-Li and Dy-Dy-Li
systems. In the second rightmost column, the ratio obtained with
the perturbative expression in Eq. (8) is shown for Er-Li, while it
is not shown due to the breakdown of the perturbation. Range of
a(Mz=0)

− /a(Mz=1)
− evaluated numerically from the entire variation of Kc

is shown in the rightmost column.

Species rvdw[a0] add[a0]
a(Mz=0)

−
a(Mz=1)

−

∣∣∣∣∣
M
m =∞

a(Mz=0)
−

a(Mz=1)
−

167Er-6Li 75.7 65.9 0.46 <0.42

0.41–0.49

0.43–0.52

161Dy-6Li 77.85 128.4 <0.17

0.16–0.24

0.19–0.28

163Dy-6Li 78.09 130 <0.17

0.16–0.23

0.19–0.28

the ratio between the two adjacent three-body loss peaks
of the fermionic Efimov states as 0.41 � a(Mz=0)

− /a(Mz=1)
− �

0.52 for 167Er-6Li, and 0.16 � a(Mz=0)
− /a(Mz=1)

− � 0.28 for
161Dy-6Li and 163Dy-6Li. The predicted range is narrow for
167Er-6Li, as this system lies marginally within the perturba-
tive regime, with Eq. (8) closely approximating the central
value. In contrast, the range is broader for Dy-Li due to the
stronger dipole interaction, which leads to greater variation
with respect to Kc and Rmin (see the middle and bottom rows
of Fig. 4).

The physical mechanism of the splitting of the Mz = 0 and
Mz = ±1 Efimov states is similar to the splitting of p-wave
Feshbach resonances [48–54], which also originates from the
finite angular momentum and the dipole interaction. We note,
however, that the ratio a(Mz=0)

− /a(Mz=1)
− is so large that the

splitting in terms of the magnetic field can be much larger
than that of the p-wave Feshbach resonance doublet. This is
partly because the dipole interaction of Er and Dy is much
larger than the other cold atoms. Another reason is that our
Efimov system does not exhibit a repulsive centrifugal barrier,
and therefore is free from a tunneling mechanism responsible
for a narrow magnetic field width of the p-wave Feshbach
resonance and its doublet [15].

Effects neglected in our theoretiacl model may cause dis-
crepancies between our predictions in Tables I and II and
experimental three-body parameters. First, nonadiabatic cor-
rections beyond the Born-Oppenheimer approximation may
slightly modify the three-body parameter [21,22], along with
the universal discrete scale factor. Second, the finite-range
nature of the heavy-light interaction, assumed as a zero-range
contact interaction in this work, may have a more significant
effect. With the Er-Li van der Waals length being nearly half
that of Er-Er, finite-range corrections may be non-negligible
particularly for κ∗ � 0.5r−1

vdw and |a−| � 10rvdw.

IV. CONCLUSION

We have studied Efimov states in a highly mass-
imbalanced three-body system composed of two identical
heavy atoms and a light atom using the Born-Oppenheimer
approximation. Focusing specifically on the Er-Er-Li and Dy-
Dy-Li cold atoms in the vicinity of a heavy-light broad s-wave
Feshbach resonance, we have demonstrated that the Efimov
spectra are universal over a wide range of the s-wave scatter-
ing length, even when the dipole interaction is as strong as the
van der Waals interactions. In particular, we have shown that
the three-body parameters characterizing the Efimov states
are universal (i.e., insensitive to short-range details) in both
bosonic and fermionic systems.

Based on this universality, we present quantitative predic-
tions for the three-body parameters κ∗ and a− in the Er-Li
and Dy-Li systems. In the bosonic system where the Efimov
states appear only in the Mz = 0 channel, the three-body pa-
rameters can be evaluated from the s-wave scattering length
between the heavy atoms as summarized in Table I. In con-
trast, for the fermionic case where the Efimov states can
appear in both the Mz = 0 and Mz = ±1 states, direct predic-
tion of the absolute values of κ∗ and a− remains challenging
due to the lack of a straightforward connection between the
low-energy scattering parameter and the short-range quan-
tum defect parameter. Nevertheless, we find that the ratio of
the three-body parameters between the Mz = 0 and Mz = ±1
states exhibits appreciable universality. In particular, in the
large mass-imbalance limit, we demonstrate the universality
by deriving the analytical formula describing the universal
ratio. We thus predict a universal doublet structure in the
Efimov spectrum, whose three-body loss features at a(Mz=0)

−
and a(Mz=±1)

− should appear at positions determined by the
universal ratio, as listed in Table II.

Our work contributes to current experimental pursuits to
realize and observe the “rotating” Efimov states of fermions
in Er-Li [40,41] and Dy-Li [43] mixtures. The study of
resonantly interacting three-body systems with a nontrivial
interplay between isotropic and anisotropic interactions is also
relevant for nuclear physics, where the combination of short-
range nuclear forces and anisotropic tensor forces between the
nucleons plays a key role in the nuclear stability and reactions
[9–11,77–79]. Taking advantage of the universality, our work
paves the way for quantum simulations of nuclear few-body
phenomena using dipolar cold-atom mixtures [44,80].
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APPENDIX: CALCULATION OF THE UNIVERSAL
ENERGY SPLITTING WITH THE FIRST-ORDER

PERTURBATION

Using the analytical energy and wave function in a
nondipole system at the unitary limit 1/a(HL) = 0 obtained
in Ref. [47], the three-body binding energy can be evaluated
perturbatively. Up to the first order, the binding energy in the
presence of the dipole interaction is expressed as

E =
{

E0 − 12
5

add
M

〈
1
r3

〉
(Mz = 0),

E0 + 6
5

add
M

〈
1
r3

〉
(Mz = ±1),

(A1)

where 〈
1

r3

〉
=

∫ ∞
Rmin

|u�(r)|2
r3 dr∫ ∞

Rmin
|u�(r)|2dr

, (A2)

where u�(r) is the radial part of the wave function in the
nondipole system. It is not normalized here for convenience,
so the denominator is necessary.

In evaluating the numerator, we note that the integral is
dominated by the short-range region r � rvdw. The wave func-
tion can be approximated by the zero-energy wave function
[47,58,59]

u�(r) � A0
√

rJ s�
2

(x) + A∗
0

√
rJ− s�

2
(x) (r � rvdw), (A3)

where x = 2(rvdw/r)2, and A0 is related with the quantum
defect parameter Kc as

A0 ≡ 1

2
√

2 cosh π |s�|
4

(
1 − i

Kc

tanh π |s�|
4

)
. (A4)

The numerator in Eq. (A2) is then evaluated as

∫ ∞

Rmin

|u�(r)|2
r3

dr � 2

rvdw
|A0|2

∫ ∞

Rmin/rvdw

J s�
2

(
2
ζ 2

)
J− s�

2

(
2
ζ 2

)
ζ 2

dζ + 2

rvdw
Re

⎡
⎣A2

0

∫ ∞

Rmin/rvdw

J s�
2

(
2
ζ 2

)2

ζ 2
dζ

⎤
⎦. (A5)

On the other hand, the denominator of Eq. (A2) is concentrated in the long-range region r � rvdw, which can be approximated
by its long-range asymptotic form of the modified Bessel function K as [47,58,59]

u�(r) � 2
√

2

π
sinh

π |s�|
4

√
cosh

π |s�|
2

√
1 +

(
Kc/ tanh

π |s�|
4

)2√
rK s�

2
(κr) (r � rvdw). (A6)

Here, the prefactor is consistently taken to match the short-range wave function in Eq. (A3). From this, the denominator in
Eq. (A2) is evaluated as

∫ ∞

Rmin

|u�(r)|2dr � 8

π2
sinh2 π |s�|

4
cosh

π |s�|
2

[
1 +

(
Kc/ tanh

π |s�|
4

)2
] ∫ ∞

Rmin

r|Ki|s�|(κr)|2dr

�|s�| tanh π |s�|
4

πκ2

[
1 +

(
Kc/ tanh

π |s�|
4

)2
]
, (A7)

where the final equation is derived using the asymptotic form for κRmin � 1.
The integrals of a product of the Bessel functions in Eq. (A5) are given by a hypergeometric function 2F3 as

∫ ∞

Rmin/rvdw

J s�
2

(
2
ζ 2

)
J− s�

2

(
2
ζ 2

)
ζ 2

dζ = 2F3
(

1
4 , 1

2 ; 5
4 , 1 − i|s�|

2 , 1 + i|s�|
2 ; −4

( rvdw
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)4)
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1 + i|s�|

2

)∣∣2 , (A8)
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2
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ζ 2
dζ = (Rmin/rvdw)−2i|s�|
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( rvdw
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)4)
(Rmin/rvdw)(1 + 2i|s�|)�

(
1 + i|s�|

2

)2 . (A9)

For Rmin � rvdw, Eqs. (A8) and (A9) can be approximated using the asymptotic form of the hypergeometric function as

∫ ∞

Rmin/rvdw

J s�
2

(
2
ζ 2

)
J− s�

2

(
2
ζ 2

)
ζ 2

dζ � �
(

1
4

)2

4
√

2π
∣∣�(

3
4 + i|s�|

2

)∣∣2 , (A10)

∫ ∞
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ζ 2
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4

)2

4
√
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2
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2

cosh π |s�| . (A11)
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From these, together with Eq. (A7), we obtain for Rmin � rvdw〈
1

r3

〉
� 1

rvdw

√
π�

(
1
4

)2

8
√

2|s�|
∣∣�(

3
4 + i|s�|

2

)∣∣2
sinh π |s�|

2

κ2

[
1 + 1√

cosh(π |s�|)
cos

{
τ c + arctan

(
tanh

π |s�|
2

)}]
, (A12)

where τ c/2 ≡ arctan(Kc/ tanh (π |s�|/4)). This equation consists of two terms: a constant term and an oscillation term with
respect to a change in Rmin. The latter term is suppressed in the large mass-imbalanced limit, namely, |s�| � 1, so that Eq. (A12)
can be further simplified as 〈

1

r3

〉
� 1

rvdw

√
π�

(
1
4

)2

8
√

2|s�|
∣∣�(

3
4 + i|s�|

2

)∣∣2
sinh π |s�|

2

κ2. (A13)

Notably, the energy shift in the first-order perturbation is proportional to the unperturbed energy κ2/M, with its coefficient
independent of Kc and Rmin. Therefore, in the limit of Rmin � rvdw and |s�| � 1, the ratio of the binding wave number at the
unitary limit κ

(Mz=0)
∗ /κ

(Mz=1)
∗ is independent of Kc and Rmin, and therefore universal.
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