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The transition dynamics of two-state systems with time-dependent energy levels, first considered by Landau,
Zener, Majorana, and Stückelberg, is one of the basic models in quantum physics and has been used to describe
various physical systems. We propose here a generalization of the Landau-Zener (LZ) problem characterized
by distinct paths of the instantaneous eigenstates as the system evolves in time while keeping the instantaneous
eigenenergies exactly as in the standard LZ model. We show that these paths play an essential role in the transition
probability P between the two states, and can lead to a substantial reduction of P, being possible even to achieve
P = 0 in an instructive extreme case, and also to large P even in the absence of any anticrossing point. The partial
LZ model can describe valley transition dynamics during charge and spin shuttling in semiconductor quantum
dots.

DOI: 10.1103/y4xf-zjjx

I. INTRODUCTION

The seminal works by Landau [1], Zener [2], Stückelberg
[3], and Majorana [4] revealed that a time-dependent drive in a
quantum two-level system (TLS) leads to a transition between
the states at an avoided crossing point, known as the Landau-
Zener (LZ) transition. Such transitions were investigated in
a wide range of physical systems [5], such as graphene [6],
ultracold molecules [7], quantum dots [8–10], classical res-
onators [11], atomic qubits [12], Josephson junctions [13],
and in quantum phase transitions due to topological defect
formation in crystals [14]. A TLS also defines a qubit, making
it the basis for most quantum technologies, and rendering
the LZ model highly relevant for the time-dependent control
required in quantum computation and quantum information
processing devices.

The most general Hamiltonian for a two-level system can
be written as H = −r · σ, where r = (x, y, z) and σ are the
Pauli matrices. In the LZ model, energy levels are swept past
each other at a constant level speed α and hybridize near
the nominal crossing at t = 0 to produce a fixed energy gap
�0, with x = �0/2, y = 0, and z = αt/2. When the system
evolves from t = −∞ to t = ∞ the Hamiltonian curve is
a straight line, as can be seen in the red (dashed) line in
Figs. 1(b) and 2(a), and the probability of a transition between
the two energy levels is given by the famous LZ formula
PLZ = exp(−2π�2

0/h̄α). Here, the energy gap �0 and level
velocity α � 0, and hence the transition probability PLZ, can
be directly deduced from the instantaneous eigenvalues. In
this paper, we show that different Hamiltonian curves in the
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xz plane can lead to different transition probabilities, even
keeping the instantaneous eigenvalues unchanged.

A concrete physical example where this phenomenology
is realized is the electron shuttling problem. To address the
need for long-distance coupling between remote qubits in
quantum computing platforms, recent and ongoing experi-
mental [17–24] and theoretical [25–28] research has shown
the possibility of transporting (shuttling) single electrons or
holes along with their spin (qubit) degree of freedom across
micrometers on a semiconductor chip. For the widely used
Si/SiGe platform, electron shuttling along the disordered het-
erointerface is accompanied by a spatially varying energy
splitting EVS between the two quasidegenerate lowest valley
states in the Si conduction band [Fig. 1(a)] [16,29]. It is gen-
erally believed that a significant source of spin-qubit shuttling
errors can be attributed to nonadiabatic LZ-type transitions
due to a combination of different spin g factors in the two val-
leys and the nondeterministic valley relaxation. Therefore, it is
crucial to understand the probability of intervalley transitions
during the shuttling process.

The Hamiltonian Hv = −(�∗σ+ + �σ−)/2 for this two-
level valley system is given by x = Re �, y = Im �, and
z = 0, where � is the intervalley coupling matrix element.
It turns out that the fundamental difference between Hv and
the LZ case is not the presence of the complex matrix ele-
ment, since a simple rotation about the x axis can transform
Hv into the LZ form with y = 0. However, Hv is different
because both x and y (and in the rotated case x and z) are time
dependent. As a consequence, the instantaneous eigenstates
trace out distinct Hamiltonian curves around the anticrossing
point, in contrast to the straight line in the LZ case. This can
be observed in Fig. 1(b), where we show the paths around the
anticrossing point in the xy plane. Solving the time-dependent
valley Hamiltonian we obtain the valley transition probability
P shown as the dashed gray line in Fig. 1(b). Assuming that
the system is initially in the ground state, P = 0 indicates that
the system ends up in the ground state with certainty while
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FIG. 1. Partial vs Landau-Zener (LZ) transitions. (a) Energy
splitting landscape as encountered, e.g., in electron shuttling with
valley splitting EVS = 2|�|2 (see Appendixes A and B for more
details) [15,16]. The splitting EVS between two low-lying energy
levels depends on the center position d of a localized electron, where
d = vt during electron shuttling at velocity v. Starting in the lower
level at t = 0, P denotes the excitation probability into the higher
level. (b) Concomitant trajectory of the coupling matrix element �

in the complex plane. While the three highlighted minima of EVS

in (a) look similar, their different character can be witnessed in
(b): LZ-like (red), partial (blue), elliptic (green). For comparison,
a standard LZ trajectory with energy gap �0 is shown (dashed red
line).

P = 1 stands for a guaranteed transition into the valley excited
state. The valley transitions do not occur where one would
expect based on the LZ model, which is a consequence of the
different Hamiltonian curves.

Generalizations of the LZ problem have been considered
previously to describe various distinct systems. The initial
and final times can be chosen finite rather than the asymp-
totic t = ±∞, leading to oscillating probabilities [30]. With
periodic driving, a sequence of transitions can take place
where the Stückelberg phases of these transitions can in-
terfere constructively or destructively, an effect known as a
Landau-Zener-Stückelberg interference [31]. There are sev-
eral examples of nonlinear LZ problems, where the sweep
function z(t ) is no longer linear in t [32]. For the superlin-
ear [z(t ) ∼ tγ with γ > 1] and sublinear (γ < 1) cases, the
transition probability decreases and increases, respectively,
compared to the LZ formula [33]. Various sweep and gap
functions were used, producing, e.g., an oscillating probabil-
ity transition as a function of the parameters of the system
[34–37]. Another widely considered generalization of the LZ

FIG. 2. (a) The paths in the parameter space as the system
evolves in time for different values of α and β, where z and x are the
diagonal and off-diagonal elements, respectively, of the Hamiltonian
(2), which can be written as H = −xσx − zσz. We also define the
angle θ . (b) The projection of the instantaneous eigenvectors in
the Bloch sphere and their path as the system evolves in time for
the cases β � 0 and β > 0. θbs = π/2 − θ is the angle between the
eigenvectors and the z axis in the Bloch sphere.

problem is the multilevel LZ problem [38–41] where a large
number of anticrossing points can be encountered as the sys-
tem evolves in time, leading, e.g., to a distinct adiabaticity
condition compared to the original LZ case. We also men-
tion here the many-body LZ problem, where the adiabatic
regime is not reached even at very slow driving rates [42].
When we generalize the original LZ Hamiltonian, usually the
problem is not exactly solvable. However, if certain condi-
tions are satisfied, an approximate transition probability can
be obtained, e.g., using the Dykhne-Davis-Pechukas (DDP)
formula [43–45], which can be applied to a TLS with general
sweep and gap functions. In a seminal work, Berry obtained
that the transition probability between two quantum states is
multiplied by an additional geometric factor [46]. However,
this factor is equal to 1 for a Hamiltonian curve that lies in
a plane through the origin. To the best of our knowledge, no
previous work considered the influence of the geometry of the
path [x(t ), z(t )] on the transition probability. As we will show
here, it plays a crucial role in the LZ transitions.

II. MODEL

We propose a generalized LZ model that produces the
same instantaneous energy levels as the original LZ model
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but gives rise to transition probabilities that strongly deviate
from the LZ formula. The time-dependent Hamiltonian is
constructed as H (t ) = E+ |ψ+〉 〈ψ+| + E− |ψ−〉 〈ψ−|, where
E± = ±
α/2, with 
α =

√
�2

0 + α2t2, are the LZ eigenval-
ues and |ψ±〉 are new instantaneous eigenvectors which can
deviate from the LZ case. We choose the real-valued

|ψ±〉 = C±(t )(αt ∓ 
α,∓βt + 
β )T , (1)

where 
β =
√

�2
0 + β2t2 and C± is a time-dependent normal-

ization factor. The above definitions lead to

H = −
α

2(
α
β −αβt2)

(
(α
β − β
α )t �2

0

�2
0 (β
α − α
β )t

)
.

(2)

This approach introduces the new parameter β. For β = 0, we
recover the LZ Hamiltonian.

Writing again H (t ) = −r(t ) · σ, we visualize the trajec-
tory r(t ) = [x(t ), 0, z(t )] for different values of α and β in
Fig. 2(a). For 0 < β < α we have a hyperbola with curva-
ture given by β, for the LZ case β = 0 we find a straight
line, and for β = α we have z = 0, which corresponds to a
straight back-and-forth trajectory on the positive x axis. The
case α = 0 relates to a finite trajectory where β determines
the maximum driving velocity. Here, despite the constant en-
ergy levels and consequently the absence of a crossing point,
transitions will be possible, unlike in the LZ problem. The
parameter β also changes how the projections of the instan-
taneous eigenvectors in the Bloch sphere rotate as the system
evolves in time, as can be seen in Figs. 2(b) and 2(c). From
t = −∞ to t = +∞ the eigenvectors rotate and describe a
closed circle in the Bloch sphere for β � 0, which includes
the LZ case, while for β > 0 we find an open path.

III. RESULTS AND DISCUSSION

We numerically solve the time-dependent Schrödinger
equation ih̄∂t�(t ) = H (t )�(t ) assuming that the system is
initially in the ground state, |�(−t0)〉 = |ψ−(−t0)〉 (t0 > 0).
We write the final state at t = t0 as |�(t0)〉 = a|ψ−(t0)〉 +
b|ψ+(t0)〉, where the probability of a transition is given by
P = |b|2.

In Fig. 3(a) we plot the transition probability as a function
of α and β for a fixed energy gap �0. As expected, for β = 0,
P = PLZ is given by the LZ formula. As we increase the value
of β, the transition probability decreases until we reach P = 0
when β = α. This suggests that the curvature of the path in the
parameter space reduces the transition probability. However, if
we keep increasing β, eventually we will have P > PLZ when
β � 2α, as can be seen in Fig. 3(b), where the red line shows
PLZ. For negative values of β we also have P > PLZ, but in this
case, we do not have the hyperbolic path in the xz plane. It is
important to remember that the eigenenergies do not depend
on β. Thus, these different behaviors all occur for the same
energy landscape.

The adiabaticity condition for the LZ problem follows
from the adiabatic theorem [47] and is given by �2

0/h̄α 	 1.
This condition ensures a very small transition probability PLZ

for large gaps and small level velocities. In our model, the
adiabaticity condition is modified to �2

0/h̄|α − β| 	 1 which
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FIG. 3. Transition probability P and superadiabatic (SA) behav-
ior. (a) P as a function of α and β. The LZ case corresponds to
β = 0 (vertical red line). For increasing β > 0, the decrease of P
indicates the SA behavior (SA regime bounded by red and white
lines), until at β = α, the unconditionally adiabatic case P = 0 is
reached. (b) Our model yields SA behavior P < PLZ in the range
0 < β � 2α (blue). Comparison of the transition probability P(β )
for α = 5 in a large range of β obtained from the exact numerical
solution of the time-dependent problem Eq. (2) (blue dotted line),
with various approximations. The LZ solution (red) only agrees with
the exact solution for β = 0 and β ≈ 2α. The DK formula Eq. (4)
(green) constitutes a good approximation for β > 0, while the SL
model (orange) Eq. (5) provides a fair approximation for β < 0.
(c) A comparison of DK (green) and SL (yellow) to the exact model
with β � 0 (dashed blue) and β > 0 (dotted blue) in Hamiltonian
parameter space explains the quality of approximations. Note that
z(t )/x(t ) has been rescaled for β � 0.

explains P < PLZ for 0 < β < 2α and the unconditionally
adiabatic dynamics for β = α. We call 0 < β � 2α the su-
peradiabatic regime (see below for a detailed discussion of
β ≈ 2α). This regime is desired in various physical systems.
For instance, as already mentioned, during spin shuttling in
SiGe quantum dots, superadiabatic dynamics can occur, sup-
pressing intervalley transitions, and, in turn, increasing the
spin coherence, and consequently enhancing the performance
and scalability of silicon spin qubits. Procedures to achieve
adiabaticity through a fast route, known as shortcuts to adi-
abaticity (STA), were widely proposed previously [48]. Our
approach is different. We are describing systems that have an
adiabatic time evolution where none would be expected from a
standard Landau-Zener model, while STA achieves a speedup
by giving up adiabatic evolution (in a controlled way).

Figure 3(a) also shows that the transition probability is
symmetric when we interchange α and β, even though the
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Hamiltonian does not have this symmetry. This also means
that when α = 0, the transition probability is given by the LZ
formula, with β replacing α. In this case, we still have a time-
dependent Hamiltonian, but the eigenenergies are constant in
time. All these results reveal that the path in the xz plane
[Fig. 2(a)] plays a crucial role and should be considered to
correctly predict the transition probability.

Further insight is gained from the change of the angle,

θ (t ) = arctan

(
[α
β (t ) − β
α (t )]t

�2
0

)
, (3)

in the xz plane over time (Fig. 2). Numerically, we find that
the transition probability depends on the instantaneous angu-
lar velocity at the crossing point θ̇ (0) = |α − β|/�0, and on
the range of θ (t ) when the system evolves from t = −∞ to
t = ∞. The extreme values of θ are ± arctan[(α2 − β2)/2αβ]
for β > 0 and ±π/2 for β � 0. Therefore, the increase of
P for negative values of β is due to the increase of θ̇ (0).
Moreover, the unconditionally adiabatic case at β = α is a
consequence of a static θ ≡ 0, which implies θ̇ (0) = 0. We
note that θ̇ (0) is symmetric around α = β, but P is not, as seen
in Fig. 3(b). This is because θ changes by a wider range for
β < α compared to β > α. Thus, we find a higher transition
probability for β < 0, which confirms that the curvature of the
Hamiltonian curve reduces the transition probability. This also
explains that the upper bound of the superadiabatic regime is
not exactly at β = 2α.

We also find that P is symmetric under the interchange
of α and β because θ also has this symmetry. In fact, the
interchange of α and β changes the sign of θ , but it does
not influence P. As a consequence, we can use simpler ap-
proaches to map the transition probabilities of more complex
systems. For example, in the case α = 0 and β > 0, even
though we have an analytical solution, it is given as a linear
combination of distinct confluent Heun functions and their
first derivatives. The asymptotic behavior of this solution can-
not be easily accessed to obtain an analytical formula for
the transition probability. However, since this case has the
same θ as in the case β = 0 and α > 0, which is the original
LZ problem, the transition probability is given by the LZ
formula.

It is important to mention that two distinct two-level sys-
tems with the same θ do not necessarily have the same P.
The LZ problem with drive velocity α1 and energy gap �1

has, e.g., the same θ as the LZ problem with α2 = 2α1 and
�2 = 2�1, but these two systems have different PLZ. This is
because the LZ formula depends on �2

0/α. To have the same
PLZ, when increasing the energy gap by a factor of 2, we
have to increase α by a factor of 4. Therefore, we can say
that two distinct two-level systems have the same transition
probabilities if they have the same θ and �0.

Another way to understand our results is by considering
the angle θbs between the instantaneous eigenvectors and the
z axis when we project them in the Bloch sphere, shown in
Fig. 2(c). It turns out that θbs = π/2 − θ and thus all previous
discussions about the influence of θ on the transition prob-
ability also apply to θbs. We add that the LZ transition is a
consequence of the rotation of the instantaneous eigenvectors

in the Bloch sphere. These transitions take place even without
the presence of an avoided crossing point, which we have
shown in the case α = 0.

While we are not aware of an analytical solution to our
model, one can attempt to use the DDP formula to obtain an
approximate transition probability, since the necessary con-
ditions for this are satisfied. The DDP formula is written
in terms of the zeros of the function E (t ) =

√
z2(t ) + x2(t ),

where t is treated as a complex variable. Even though the
functions z(t ) and x(t ) in our model are different from the
LZ problem, the function E (t ) is the same in both cases.
As a consequence, the DDP approach fails in our model,
since it predicts a transition probability equal to the LZ case.
A possible reason is that the zero tc = i�0/α of E (t ) also
yields H (tc) = 0, which suggests the existence of additional
conditions for the applicability of the DDP formula. Another
failure of the DDP approach in a nonlinear LZ model was
reported recently [32]. These results call into question the
validity of the DDP formula, which is a topic that deserves
to be addressed in future works.

Another possibility to approximate P based on our previ-
ous discussion consists in using a simpler model with the same
(or similar) θ to map our system. We plot tan θ = z(t )/x(t )
in Fig. 3(c) for β > 0 and β � 0. For β > 0, we can find a
model with a similar θ by fitting the curve with the function
a tanh(bt ), where a = (α2 − β2)�0/(2αβ ) is obtained by tak-
ing the limit t → ±∞ in tan θ and b = 2αβ/(α + β ) ensures
that the instantaneous angular velocity at the anticrossing
point is the same in both cases. Therefore, we can approximate
our system for β > 0 using z(t ) = a tanh(bt ) and x = �0.
This model has an analytical solution and was first solved by
Demkov and Kunike (DK) [36,49,50]. The transition proba-
bility is given by

PDK ≈ sinh2(πa/b)

sinh2
(
π

√
a2 + �2

0/b
) . (4)

We plot PDK in Fig. 3(b) (green curve), which shows a
good agreement with the numerical results. We have that
PDK → 1 when β → 0, which means that this approximation
breaks down for very small values of β. We found a reason-
able agreement between PDK and our numerical results when
β/α � 10−4.

The case β � 0 can be approximated by a model with
z(t ) = (α − β )t

√
1 − βt2 and x = �0 [Fig. 3(c)]. This is the

superlinear (SL) LZ model [33] which has no exact solution.
However, the DDP approach yields

PSL ≈ e−π
�2

0
2(α−β ) . (5)

In this case, we find a good agreement with the numerically
exact results for |β| not too large, which can be seen in the
orange curve in Fig. 3(b). The deviation for large |β| is due
to the combination of two approximations. We emphasize
that even though we are using the DK and SL models as
approximations, these models are completely inequivalent to
ours.
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IV. CONSEQUENCES FOR SHUTTLING

Shuttling an electron over a distance of d = 200 nm with
a constant velocity of 1 mm/s in the system shown in
Fig. 1 leads to the valley excitation probability P = 0.67, i.e.,
shuttling fidelity of 1 − P = 33%. Based on the standard LZ
model, one can enhance the fidelity by moving faster in re-
gions with large EVS and slowly when EVS is small. This
allows, e.g., for a higher fidelity of 57% while moving at a
larger average velocity of 0.1 m/s. However, based on our
results, an even better strategy is to limit the angular velocity
θ̇ . We obtained numerically that the system is in the adiabatic
regime when θ̇ has an order of magnitude around 108 rad/s
or lower. Therefore, tuning the shuttling velocity in such way
that θ̇ = 108 rad/s at all times, which means that we are
moving fast (slowly) when θ changes slowly (fast), a very
large shuttling fidelity, exceeding 99.99%, can be reached
while moving at an even larger average velocity of 0.5 m/s,
which constitutes a drastic improvement compared with the
previously mentioned strategies.

V. CONCLUSIONS

We have proposed a generalization of the LZ model that
gives rise to a superadiabatic (SA) regime while maintaining
the same instantaneous eigenenergies as in the LZ case. This
model is relevant, as it can be used to describe, e.g., the valley
transitions during electron spin shuttling in SiGe quantum
dots. The presented approach reveals how the Hamiltonian
curve in the xz plane determines the transition probability P.
We have described the SA regime, where P is significantly
lower than in the LZ case, and the unconditionally adiabatic
case, where P = 0 no matter the driving velocity and en-
ergy gap. This offers a new path towards the engineering of
driven dynamics with reduced excitation probability in the SA
regime. We have also found that LZ transitions are possible
even without the presence of any avoided crossing point in the
energy levels, revealing that transitions are a consequence of
the rotation of the eigenvectors in the Bloch sphere. Future
extensions may include dissipative systems which have been
widely investigated in the context of LZ transitions [51–55].
The effects of unavoidable dissipation in the extended model
and SA regime deserve further investigation. Quantum control
schemes for quantum systems coupled to a thermal bath can
also be applied to our model [56,57], particularly to the SA
regime. Future work may also explore the influence of the
topology of the closed paths of the instantaneous eigenvectors
in the adiabatic regime.
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APPENDIX A: VALLEY SPLITTING
IN A SILICON QUANTUM DOT

Within the effective mass theory, the two low-lying valley
states of a silicon quantum dot in a SiGe/Si/SiGe heterostruc-

ture grown in the ẑ direction can be written as [58]

| ± z〉 = �xyz(r)e±ik0zu±z(r), (A1)

where �xyz(r) is the envelope function, u±z(r) are the periodic
parts of the Bloch wave functions at the two conduction band
minima (valleys) of silicon, k0 = 0.82(2π/a0) is the Bloch
wave number at the two valleys, and a0 = 0.543 nm is the
length of the Si cubic unit cell.

We model the confinement potential due to the SiGe barri-
ers by a sum of delta functions at the location of each Ge atom
[15,16],

U (x, y, z) = λ
∑

i

δ(x − xi )δ(y − yi )δ(z − zi ), (A2)

where λ = 10 meV nm3 is a fixed parameter of the model
and i labels the Ge atoms. We assume that the Ge atoms are
distributed uniformly in the x̂ and ŷ directions and we model
the smooth interface in ẑ direction by a probability distribution
function given by a hyperbolic tangent function.

The intervalley coupling is given by

�(r) = 〈+z|U (x, y, z)| − z〉
= C0

∫
e−2ik0zU (x, y, z)|�x,y,z(r)|2d3x, (A3)

where C0 = −0.2607 results from the periodic parts of the
Bloch wave functions [59,60]. The total valley splitting is then
given by

EVS(r) = 2|�(r)|. (A4)

Due to the random distribution of the Ge atoms at the
SiGe/Si interfaces, the so-called alloy disorder, the interval-
ley coupling, and consequently the valley splitting, depends
on the location of the quantum dot, which gives rise to the
random oscillations of the valley splitting in Fig. 1(a) and
the random path in the complex plane in Fig. 1(b) during
charge/spin shuttling.

The valley splitting landscape EVS(d ) in Fig. 1 was ob-
tained assuming a SiGe/Si/SiGe heterostructure with a Si
well of 10 nm thickness and SiGe barriers with randomly
distributed 30% Ge. Also, a Si/SiGe interface width of 22
monolayers, a quantum dot radius of 21 nm, and an electric
field in the z direction of 20 MV/m were used [15,16].

APPENDIX B: VALLEY SHUTTLING FIDELITY

The Hamiltonian for the two valley states can be written as

H =
(

0 �(r)
�(r)∗ 0

)
. (B1)

Using the polar decomposition � = |�|eiθ , the two valley
eigenstates can be written as

α±(r) = 1√
2

(
eiθ (r)/2

±e−iθ (r)/2

)
. (B2)

These are the instantaneous eigenstates of Eq. (B1) with cor-
responding instantaneous eigenenergies,

E±(r) = ±|�(r)|, (B3)

235439-5



JONAS R. F. LIMA AND GUIDO BURKARD PHYSICAL REVIEW B 111, 235439 (2025)

giving rise to the valley splitting EVS(r) = E+(r) − E−(r) in
Eq. (4). For a quantum dot moving in the x̂ direction at the
(shuttling) velocity v, the Schrödinger equation,

ih̄∂tψ (t ) = H (t )ψ (t ), (B4)

can be rewritten employing a change of variables, r = vx̂t ,
and thus x = vt , as

ih̄v∂xψ (x) = H (x)ψ (x). (B5)

We solve Eq. (B5) numerically considering that ini-
tially the electron is in the valley ground state α− and
write

|ψ (x)〉 = a(x) |α−(x)〉 + b(x) |α+(x)〉 . (B6)

The probability of a valley transition is then given by

P(x) = | 〈α+| (x) |ψ (x)〉 |2 = |b(x)|2. (B7)
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S. Trellenkamp, Ł. Cywiński, H. Bluhm, and L. R. Schreiber,
Spin-EPR-pair separation by conveyor-mode single electron
shuttling in Si/SiGe, Nat. Commun. 15, 1325 (2024).

[24] M. D. Smet, Y. Matsumoto, A.-M. J. Zwerver, L. Tryputen,
S. L. de Snoo, S. V. Amitonov, S. R. Katiraee-Far, A. Sammak,
N. Samkharadze, Ö. Gül, R. N. M. Wasserman, E. Greplová,
M. Rimbach-Russ, G. Scappucci, and L. M. K. Vandersypen,
High-fidelity single-spin shuttling in silicon, Nat. Nanotechnol.
(2025), doi:10.1038/s41565-025-01920-5.

[25] F. Ginzel, A. R. Mills, J. R. Petta, and G. Burkard, Spin shuttling
in a silicon double quantum dot, Phys. Rev. B 102, 195418
(2020).

[26] V. Langrock, J. A. Krzywda, N. Focke, I. Seidler, L. R.
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