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Oscillate and renormalize: Fast phonons reshape the Kondo effect in flat-band systems
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We examine the interplay between electron correlations and phonons in an Anderson-Holstein impurity model
with an Einstein phonon. When the phonons are slow compared to charge fluctuations (frequency ω0 � U/2,
the onsite Coulomb scale U/2), we demonstrate analytically that the expected phonon-mediated reduction of
interactions is completely suppressed, even in the strong-coupling regime. This suppression arises from the
oscillator’s inability to respond to rapid charge fluctuations, manifested as a compensation effect between
the polaronic cloud and the excited-state phonons associated with valence fluctuations. We identify a frozen
mixed valence phase, above a threshold dimensionless electron-phonon coupling α∗ when the phonons are slow,
where the static phonon cloud locks the impurity into specific valence configurations, potentially explaining
the puzzling coexistence of mixed valence behavior and insulating properties in materials like rust. Conversely,
when the phonon is fast (ω0 � U/2), the system exhibits conventional polaronic behavior with renormalized
onsite interactions effectively Ueff due to phonon-mediated attraction, with additional satellite features in the
local spectral function due to phonon excitations. Using numerical renormalization group calculations, a fully
dynamic renormalization technique, we confirm these behaviors in both regimes. These findings have important
implications for strongly correlated systems where phonon energy scales may be comparable to the Coulomb
scale, such as in twisted bilayer graphene, necessitating careful consideration of interaction renormalizations in
theoretical models.
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I. INTRODUCTION

Electron-phonon coupling is an important source of
fluctuations, leading to structural, electrical, and magnetic
instabilities in crystals. Chiefly, it is responsible for supercon-
ducting and charge-density wave phase transitions in Fermi
liquids. Traditionally, phonons have been considered too slow
to induce any Coulomb scale renormalization in strongly cor-
related systems, as the bare phonon frequency ω0 is consider-
ably lower than the characteristic charge fluctuation scales of
the electronic fluid, notably the interaction scale U and the hy-
bridization V . Physically, this means that slow phonons do not
have time to respond to the fast charge fluctuations. In the con-
text of the Anderson model, this was studied in Refs. [1–10]
showing that for values of U,V relevant for correlated systems
such as traditional mixed valent and heavy fermion materials
[11–16], including Eu3S4 [17], CeRu2, and CeIr2 [18,19], the
phonon contribution is largely perturbative [3]. However, in
YbBAl4, where electrons become slow degrees of freedom
compared to the phonons near a quantum criticality point,
a polaronic response emerges [20], raising new questions
about the importance of electron-phonon coupling when the
phonons become fast compared to charge fluctuations.

Recent interest in strongly correlated electron materi-
als has turned to flat-band systems, including gate-tunable
moiré graphene and dichalcogenide materials, in which the
electronic bandwidths are considerably smaller than the char-
acteristic phonon frequencies [21–30]. In these materials, the
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phonons are fast degrees of freedom, able to relax in response
to the charge fluctuations of the narrow band. In particular,
experiments [23,24] on twisted bilayer graphene (TBG) show
that the flat band in TBG is strongly coupled to an optical K
phonon at an energy of ω ∼ 150 meV, with strong and pro-
nounced signatures in replica band spectra; these are probed
via μ-ARPES imaging of the band structure of the phonon-
electron interacting system. A lingering question is therefore
how phonons modify the interactions between the flat-band
electrons. The effective interaction scale Ueff will then have
significant implications for the existence of strong correlations
in this system, with experiments showing that aligning the
sample to hexagonal boron nitride (hBN) causes replica bands
to disappear, hinting at the important interplay between flat
bands, phonons, and symmetries in the material.

Motivated by these considerations, here we revisit the ef-
fect of phonons on electronic correlations using an Anderson-
Holstein impurity Hamiltonian H = HA + HH , involving a
mixed valent atom coupled to a single optical phonon,
where

HA =
∑
kσ

εkc†
kσ ckσ + V

∑
σ

(c†
σ fσ + H.c.)

+ U

2
(n f − 1)2 (1)

is the symmetric Anderson model that describes a localized
electron, created by f †

σ with spin component σ = ±1 hy-
bridized with a conduction sea; U is the onsite Coulomb
interaction; c†

σ creates a conduction electron at the origin with
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FIG. 1. Phase diagram for the Anderson-Holstein model as the reduction in the effective interaction U − Ueff = 2αω0. Two limits are
considered: (a) Fast phonon (ω0 � U/2) in which increasing electron-phonon coupling α results in a crossover from spin to charge Kondo
effect. Arrows denote schematically the location of the Kondo lattice moiré chalcogenides MoSe2/WSe2 [21,22] (Kondo effect with reduced
Ueff ) and the charge Kondo system PbTe1−xTlx [31]. (b) f -Electron spectral function with upper and lower side bands at ±|Ueff |/2 and
renormalized Kondo temperature T ∗

K as the width of the central Kondo resonance for both spin and charge Kondo regimes for both spin
and charge Kondo regimes. (c) Slow phonon (ω0 � U/2), showing (d) f -electron spectral function for the spin Kondo regime, with upper and
lower side bands at unrenormalized ±U/2 and Kondo temperature TK as the width of the central Kondo resonance.

spin component σ , and

HH = ω0b†b + g(b + b†)(n f − 1) (2)

describes an Einstein phonon of frequency ω0 with phonon
creation operator b†, coupled linearly to the deviations in local
impurity charge from half filling (n f − 1) via the coupling
constant g. In terms of these quantities, we can define a
dimensionless electron-phonon coupling strength α = g2/ω2

0,
so that g = ω0

√
α. Physically, the impurity charge couples to

the phonon position operator x = (b + b†)/
√

2ω0. This inter-
action displaces the ionic equilibrium positions in opposite
directions depending on whether the impurity is empty or
doubly occupied.

We summarize the effect of the electron-phonon coupling
on the zero temperature phase diagram and the local spectral
function of the impurity electrons in Fig. 1. We begin by
discussing the energy scales and the current understanding.
The case α = 0 describes the conventional repulsive (U > 0)
Anderson model. The noninteracting Anderson model de-
scribes a simple resonance level of width � given by Fermi’s
golden rule, � = πρV 2, where ρ is the density of conduction
electron states. When U becomes substantially larger than �,
charge fluctuations are suppressed, and the spectral function
of the f electron divides into a lower and upper Hubbard peak
at energies ±U/2, plus a central “Kondo resonance” of width
[as shown in Fig. 1(d)] given by the Kondo temperature

TK =
√

U�e− πU
8� . (3)

At temperatures larger than the Kondo effect, the model de-
scribes a decoupled local moment, but at temperatures T <

TK , the local moment is screened by the conduction electrons,
giving rise to the development of Fermi liquid. Above the

Kondo temperature TK , scattering is inelastic and lacks a well-
defined real phase shift δ, while below TK , it becomes elastic
with a phase shift of π/2 signaling the formation of an s-wave
Kondo singlet bound state.

The principle effect of the phonons is to induce an attrac-
tion between the f electrons, reducing the onsite Coulomb
interaction according to the Fröhlich interaction [32]

U → Ueff = U − 2g2

ω0
= U − 2αω0. (4)

Additionally, if the frequency of the phonon dynamics is faster
than that of the valence fluctuations, i.e., ω0 � �, then the
ionic equilibrium positions relax every time an electron hops
in or out of the impurity which causes the bare hybridization
width to exponentially renormalize [1,2],

� → �eff = � exp [−α coth (βω0/2)]
T =0−−→ �e−α. (5)

The renormalizations (4) and (5) lead to a corresponding
renormalization of the Kondo temperature (3)

T ∗
K =

√
|Ueff|�eff e− π |Ueff |

8�eff , (6)

resulting in a corresponding reduction in the Kondo resonance
width in the f -electron spectral function [Fig. 1(b)].

As the strength of the electron-phonon coupling α rises
the interaction (4) between the f electrons ultimately changes
sign, causing a transition from a positive U Anderson model,
described by spin Kondo effect, via a weakly interacting
mixed valent Fermi liquid, where the renormalized hybridiza-
tion width �eff is larger than the effective onsite interaction
Ueff, into a region governed by a negative U [32]. The atomic
limit (V = 0) is described by a ground-state spin doublet
(| f 1 :↑〉, | f 1 :↓〉) for positive Ueff > 0 and a charge doublet of
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FIG. 2. Numerical renormalization group (NRG) results show-
ing the α dependence of the impurity spectral function for the
(a) fast phonon scenario (U = ω0 = 6 and bare hybridization width
�/π = 0.1 with renormalized �eff = e−α�, Ueff = U − 2αω0) dis-
playing renormalized excitation energy Ueff/2 = U/2 − αω0 and
renormalized Kondo resonance and (b) slow phonon scenario (U = 6
and �/π = ω0 = 0.1) where the excitation energy remains at U/2
with an unrenormalized Kondo resonance until the dimensionless
electron-phonon coupling exceeds threshold α∗, where 2α∗ω0/U >

1, causing the the Kondo resonance to disappear.

singly and doubly occupied f states, (| f 0〉, | f 2〉) for Ueff < 0
[32]. For small hybridization V > 0, the resulting fluctuations
within these doublets give rise to spin or charge Kondo effects
as follows:

Ueff > 0: spin Kondo effect |↑〉 � |↓〉
Ueff < 0: charge Kondo effect [32,33], | f 0〉 � | f 2〉.

Although the former results in a magnetically polarizable
Fermi liquid, the second leads to an electrically polarizable
Fermi liquid with a large charge susceptibility. The nega-
tive U region is associated with soft pair fluctuations and
a corresponding charge Kondo effect [31,33] [see schematic
Fig. 1(a) and a summary of detailed numerical renormaliza-
tion group calculations shown in Fig. 2(a)]. The concept of
negative U centers plays an important role in the understand-
ing of vacancies in amorphous silicon [32,34]. Negative U
physics has also been observed in thalium-doped lead tel-
luride PbTe1−xTlx [31], giving rise to a competition between
a charge Kondo effect and superconductivity [35].

An analysis of the corresponding Fermi liquid model
[36,37] shows that the linear specific heat of the impurity C =
γ T contains a charge and a spin component. Normalizing the
specific heat, spin, and charge susceptibilities with respect to
their respective noninteracting (U = 0) values, γ̃ = (γ /γ0),
χ̃s = (χs/χ

0
s ) and χ̃c = (χc/χ

0
c ), the Yamada-Yosida relation

[36,37] states that

2γ̃ = χ̃s + χ̃c, (7)

reflecting the fact that the linear specific heat contains a spin
and charge component. Rewriting this expression in terms
of the spin Wilson ratio Ws = χ̃s/γ̃ and charge Wilson ratio
Wc = χ̃c/γ̃ gives Ws + Wc = 2. In the spin Kondo effect, the
charge susceptibility of the Fermi liquid vanishes, so Ws = 2;
by contrast, in the charge Kondo effect, where the spin suscep-
tibility vanishes, Wc = 2. The nature of the transition between
the spin and charge Kondo limits is of particular interest.

This paper addresses these issues with a combination of
perturbative and state-of-the-art numerical renormalization
group. One of the key points to emerge from our work is
that it is the phonon timescales and not the strength of the
electron-phonon interaction that determines whether phonons
influence the electrons. In our discussion, we assume that U is
large compared to �, so prior to coupling to the phonons, the
electrons are in the spin Kondo regime.

Two limiting cases of the Anderson-Holstein model il-
lustrate this conclusion: fast phonons, where ω0 � U/2, and
slow phonons where ω0 � U/2. In the “fast” phonon limit,
the system evolves from a spin Kondo phase to a weakly
anisotropic charge Kondo regime as a function of increas-
ing electron-phonon coupling α, passing through the point
α = α0, where the effective onsite interaction vanishes, Ueff =
U − 2α0ω0 = 0, and the charge and spin susceptibilities, χ̃s =
χ̃c = γ̃ , are equal, as in a noninteracting Anderson model
[see the schematic in Fig. 1(a) and corresponding numeri-
cal renormalization group results Fig. 2(a) which shows the
renormalized excitation scale and Kondo scale in both the spin
Kondo and charge Kondo regimes].

By contrast, “slow” phonons (ω0 � U/2) cannot respond
to high-frequency valence fluctuations. A rather subtle com-
pensation takes place in the physics so that the static shift
in U seen in the atomic limit is entirely compensated by the
slow phonon relaxation, so that the electrons are blissfully un-
aware of the phonons, experiencing an unrenormalized U . The
low-energy physics is therefore that of a spin Kondo model.
However, above a threshold dimensionless electron-phonon
coupling strength α∗, the ground-state energy of the static
charge configurations drops below the ground-state energy
of the positive U Anderson model, and a transition occurs
from a spin Kondo effect into a frozen mixed valence state
( f 0, f 2) with no Kondo effect [see schematic in Fig. 1(c)
and corresponding numerical renormalization group results
in Fig. 2(b) which confirm the disappearance of the Kondo
resonance above the threshold coupling α∗]. In the slow limit,
where ω0 is small but α is large, tunneling between the valence
configurations f 0 and f 2 is exponentially suppressed by a fac-
tor of e−2α , causing the charge Kondo effect to freeze-out into
static valence configurations reminiscent of iron in rust [38].

In approaching these questions, we draw inspiration from
Hewson and Meyer’s foundational work [6], which com-
bined analytical and numerical renormalization group (NRG)
methods to gain valuable insight into the interplay between
electron-phonon coupling and electronic correlations. While
they focused on systems with magnetic impurities, their sim-
ulations used parameters (ω0 = U/2 ∼ π�) that place their
work in what we identify as the fast phonon regime, where the
high-energy spectral features associated with atomic correla-
tions are renormalized as the phonon coupling is increased.
This was understood using perturbation theory in their work.
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Our study is an extension of their work by developing a more
comprehensive phase diagram, particularly revisiting the slow
phonon case (ω0 � U/2) and demonstrating that high-energy
atomic features remain unaffected, unlike in the fast phonon
case described by Hewson and Meyer. We present a uni-
fied framework encompassing fast and slow phonon regimes
across weak and strong electron-phonon coupling limits. For
the slow phonon case, we explore the previously underap-
preciated negative Ueff = U − 2αω0 region and discuss the
potential relevance of the fast phonon case for two dimen-
sional van der Waals materials.

The distinction between adiabatic (slow phonons) and an-
tiadiabatic (fast phonons) regimes in the Anderson-Holstein
problem has been well established in the literature. This di-
chotomy appears in various contexts, including mixed-valent
heavy fermion compounds [1,2] and phonon-assisted tunnel-
ing [10], which compared the phonon frequency ω0 with a
measure of the electronic movement—the bare hybridization
width � and the bare tunneling rate, respectively. Notably,
Hewson and Newns [3,4] investigated the polaronic reduction
of the virtual bound-state width, demonstrating that this effect
emerges when the relaxation energy αω0 exceeds the conduc-
tion bandwidth, particularly when the phonon frequency ω0

is larger than the bandwidth. While they noted that typical
heavy fermion materials do not reach this parameter range
(thus electronic hopping into and out of a given f level is
not polaronically reduced), they found that intersite valency
migration experiences polaronic reduction. Our work extends
these findings by showing that the effective Anderson model
undergoes renormalization only when the phonon frequency
exceeds the Coulomb scale (ω0 > U/2), which consequently
renormalizes both the Kondo temperature (6) and the virtual
bound-state width.

This paper is structured as follows. Section II introduces
the key energy scales of the Anderson-Holstein impurity
model from the atomic limit, rewriting the Hamiltonian in
a translated basis where the phonon oscillator’s equilibrium
position has shifted due to impurity coupling. In Sec. III, we
develop an analytic approach to the static renormalization of
these scales when phonons are either slow or fast compared
to charge fluctuation timescales—noting that the onsite
interaction is unrenormalized with slow phonons because the
phonons cannot react in time to do anything and renormalized
with fast phonons due to the formation of onsite polarons. In
Sec. IV, we present NRG calculations for dynamic properties
(spectral functions) and thermodynamic properties (impurity
entropy contribution, spin Wilson ratios, and spin/charge
susceptibilities), which confirm our analytical physical
picture. The data that support the findings of this article are
openly available [39]. We conclude with a summary and
outlook in Sec. V.

II. MODEL

We consider the symmetric Anderson-Holstein impurity
model, as discussed in Sec. I,

H = HA + HH , (8)

with an electron-phonon coupling g = √
αω0. For the sym-

metric single impurity Anderson model HA, the noninteracting

scenario describes a resonance level with an inverse lifetime
given by Fermi’s golden rule, � = πρV 2, otherwise known
in the literature as the resonance width. For the atomic limit
(V = 0) of the symmetric single impurity Anderson model HA

with repulsive onsite interaction U , the ground state of the
impurity is a singly occupied state |σ 〉 with spin σ , with an
energetic cost to remove or add an electron,

�EA
± = U

2
> 0. (9)

Since the ground-state manifold is a doubly degenerate and
spinful, it is known as the local moment sector in the literature.

When the local electron-phonon coupling to an optical
Einstein model with constant frequency ω0 is turned on, it is
still useful to consider the atomic limit,

Hatomic = ω0b†b + √
αω0(b + b†)(n f − 1) + U

2
(n f − 1)2.

(10)

Completing the square for the phonons,

Hatomic = ω0(b† + √
α(n f − 1))(b + √

α(n f − 1))

+ (U − 2αω0)

2
(n f − 1)2, (11)

can be understood as a displaced harmonic oscillator coupled
to the impurity,

Hatomic = p̂2

2
+ ω2

0

2
(x̂ − x0)2 + (U − 2αω0)

2
(n f − 1)2,

(12)

where the position and momentum operators of the phonon
oscillator are x̂ = (b + b†)/

√
2ω0 and p̂ = i

√
ω0/2(b† − b),

respectively. The location of the displaced oscillator,

x0[n f ] =
√

2α

ω0
(1 − n f ), (13)

depends on whether the impurity is empty or doubly occu-
pied. The phonon-induced attraction −αω0(n f − 1)2 can be
interpreted as just a shift in the reference energy −ω2

0x2
0/2,

which assumes the phonon oscillator is displaced by x0.
The position operator x of the phonon oscillator can be

redefined to describe the fluctuations around the equilibrium
position x → x̃ + x0. Formally, this is accomplished using the
unitary transformation x̂ → eip̂x0 x̂e−i p̂x0 , where

exp (−i p̂x0) = exp (
√

α(b − b†)(n f − 1)) (14)

is the translation operator. The action of this unitary transla-
tion operator on the atomic Anderson-Holstein model (10) is
to shift the harmonic oscillator ( known in the literature as the
Lang-Firsov transformation, Appendix B),

eip̂x0 Hatomice−i p̂x0 = ω0b̃†b̃ + Ueff

2
(n f − 1)2, (15)

where the effective onsite interaction is Ueff = U − 2αω0, the
shifted phonon operator is

b̃† = b† + √
α(n f − 1), (16)

and the linear electron-phonon coupling term is eliminated.
Here n f is the number operator for the polaron. The original

245149-4



OSCILLATE AND RENORMALIZE: FAST PHONONS … PHYSICAL REVIEW B 111, 245149 (2025)

FIG. 3. Schematic showing the excitation spectrum of the
(a) slow phonon (ω0 � U/2) with a tower of phonon excitations
spaced by ω0, a subtle compensation effect between the most prob-
able phonon excitation energy αω0 keeps the excitation energy to
add or remove an electron to the impurity at the unrenormalized
value U/2 because the phonons are too slow to screen the onsite
interaction; (b) atomic limit of the Anderson-Holstein model, where
the formation of the polaron is implicitly assumed; and the (c) fast
phonon (ω0 � U/2) with additional phonon satellites spaced every
ω0. The dominant excitation energy when adding or removing an
electron from the impurity is Ueff/2, which includes a polaronic
reduction because the phonon cloud can react.

f -creation operator now transforms to

f †
σ → eip̂x0 f †

σ e−i p̂x0 = D f̃ †
σ , (17)

where D = exp (
√

α(b† − b)) = exp (
√

α(b̃† − b̃)). Here f̃ †
σ

creates the polaron, while D undresses the impurity from the
polaron cloud to ensure f †

σ creates the bare impurity electron.
Under this unitary transformation, the charge is unaltered, i.e.,
n f̃ = n f . Henceforth, we will drop the tilde on the f operators,
with the understanding that in the transformed Hamiltonian,
the f † are polaron creation operators.

The displaced phonon ground state is annihilated by the
shifted phonon operator, b̃|0̃〉 = 0. For a singly occupied im-
purity (n f = 1), the phonon ground state is the untranslated
phonon vacuum |0〉. However, the phonon ground states for
the empty and doubly occupied impurity involve opposite
displacements from equilibrium x0 (A3). In the original basis,
the empty and doubly occupied ground states are given by

|0̃+〉 = e−i p̂x0[n f =0]|0〉 = e
√

α(b†−b)|0〉, (n f = 0)

|0̃−〉 = e−i p̂x0[n f =2]|0〉 = e−√
α(b†−b)|0〉, (n f = 2). (18)

Figure 3(b) summarizes the key impurity energy scales
from the atomic model when the displaced phonon b̃ is in
the ground state |0̃〉. Onsite interaction U is renormalized to
an effective value Ueff = U − 2αω0 due to polaron formation.
When an electron is added to or removed from the singly
occupied impurity without a phonon cloud, it creates ñb = b̃†b̃
phonon excitations, the energetic cost to do so is

�EAH
± = Ueff

2
+ ñbω0, (19)

corresponding to the ladder of states in Figs 3(a) and 3(c)
spaced by ω0 � U/2 and ω0 � U/2, respectively.

While energy minimization suggests this process should
involve no phonon excitations (ñb = 0) on top of the polaron
state, the actual physics depends on the phonon frequency ω0

[Figs. 3(a) and 3(c)] and will be discussed in detail in the
following section. The bottom line is, if ω0 is slow compared
to the bare onsite interaction U/2, then the phonon cloud
cannot respond quickly enough to dress the impurity, leaving
the single impurity Anderson model unrenormalized despite
strong electron-phonon coupling. Conversely, if phonons are
fast (ω0 � U/2), then the cloud can effectively respond and
renormalize the model.

Turning on the hybridization V , the full Hamiltonian (8) in
the translated basis H̃ = eip̂x0 He−i p̂x0 is

H̃ = ω0b̃†b̃ + Ueff

2
(n f − 1)2 + V

∑
σ

(c†
σ fσ D† + H.c.). (20)

III. ANALYTIC APPROACH TO STATIC
RENORMALIZATIONS

To analytically explore this phonon frequency dependence,
we examine the atomic Hamiltonian (11) in both slow (ω0 �
U/2) and fast phonon (ω0 � U/2) regimes.

When an electron is removed or added from the impurity,
the resulting phonon clouds are driven out of equilibrium
and are no longer in the ground state. The state created by
removing an electron from the singly occupied ground state is

|−〉 = D†|0̃〉 = exp (−√
α(b† − b))|0̃〉, (21)

while the state created by adding an electron to this state is

|+〉 = D|0̃〉 = exp (+√
α(b† − b))|0̃〉. (22)

To see that these states contain a mixture of excited-state
phonons, consider the the matrix element between |±〉 and
the state |ñb〉, with ñb excited phonons,

〈ñb|±〉 = 〈0̃| b̃n

√
n!

e±√
αb̃†

e∓√
αb̃e− α

2 |0̃〉 = (±√
α)n

√
n!

e− α
2 , (23)

where we have used the Baker-Campbell-Hausdorff identity
eA+B = eAeBe−[A,B]/2 to normal-order the coherent-state op-
erator D = e

√
αb̃†

e−√
αb̃e− α

2 . Notice the interesting even-odd
alternation in the sign of the overlap with the empty state |−〉.

The probability of creating a state with ñb excited phonons
when an electron is added or removed from the singly oc-
cupied impurity state is determined by the squared matrix
element between |ñb〉 and the phonon coherent states |±〉,

Pα (ñb) = |〈ñb|±〉|2 = αñb

ñb!
e−α, (24)

which corresponds to a Poisson distribution centered around
a mean-phonon number 〈ñb〉 = α with standard deviation√

〈δñ2
b〉 = √

α. In the slow phonon limit where α → ∞ this
distribution function becomes a normalized delta-function
centered at ñb = α excited phonons Pα (ñb) ∼ δ(ñb − α). The
energy of the doubly occupied or empty states with ñb = α,

E = Ueff

2
+ ω0〈ñb〉 = U

2
, (25)
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contains the unrenormalized Coulomb interaction U . This is
in essence, a consequence of Ehrenfest’s theorem. The slow
phonon limit represented by large α, small ω is, in essence,
a classical limit, in which the polaron clouds behave as an
off-resonance classical oscillator that does not respond to
valence fluctuations. We can thus derive a phonon compen-
sation theorem: that the compensation between the polaronic
reduction of Ueff = U − 2αω0 and the number of phonons
created by the valence fluctuation becomes perfect in the slow
phonon limit, reflecting the associated inability of the classical
polaron cloud to respond to the fast electrons and renormalize
the fast Anderson dynamics.

We can see this another way by looking at the f -electron
spectral function in the atomic limit. Since we know the en-
ergy to add or remove an electron from the singly occupied
impurity is �EAH

± (19) and we also know that the proba-
bility of exciting ñb phonons during this process (24), we
can immediately write down the impurity Green’s function
in the Lehmann representation for the symmetric Anderson-
Holstein model for the atomic limit when the impurity ground
state is singly occupied,

G(AH )
σ (ω)

=
∞∑

ñb=0

[
|〈 f 2; ñb| f †

σ D|σ ; 0̃〉|2
ω − 1

2Ueff − ñbω0
+ |〈 f 0; ñb| fσ D†|σ ; 0̃〉|2

ω + 1
2Ueff + ñbω0

]

= e−α

2

∞∑
ñb=0

αñb

ñb!

[
1

ω − 1
2Ueff − ñbω0

+ 1

ω + 1
2Ueff + ñbω0

]
,

(26)

where |σ ; 0̃〉 is the singly occupied impurity state where the
translated phonon is unoccupied, | f 0; ñb〉 and | f 2; ñb〉 are the
empty and doubly occupied impurity states where there are
ñb translated phonons occupied, reproducing the result from
Hewson and Meyer [6]. The first term in the square brackets
is associated with adding an electron into the singly occupied
impurity with ñb phonon excitations. In contrast, the second
term in the square brackets is removing an electron from the
singly occupied impurity with ñb phonon excitations.

In the following subsections, we demonstrate that the
phonon response to charge fluctuations is captured by the
peak of the phonon number Poisson distribution (24). Counter
to simple energy minimization arguments, the most probable
state after electron addition or removal may contain ñb �= 0
phonon excitations. When phonons are too slow (ω0 � U/2),
they cannot respond quickly enough to modify electron in-
teraction physics, captured by a subtle compensation in the
excitation energies (19) where the peak in the most probable
phonon energy keeps the excitation energy unrenormalized
[Fig. 3(a)]. Conversely, when phonons are sufficiently fast
(ω0 � U/2), they renormalize the single impurity Anderson
model and generate phonon side peaks [Fig. 3(c)].

A. Dynamics in the slow phonon regime

When phonons are slow relative to both the bare hy-
bridization width � and the interaction scale U/2, creating
an energy hierarchy where ω0 � � � U/2, the phonons can-
not respond quickly enough to the charge fluctuations. The

FIG. 4. Impurity spectral function peaks and envelope function
for the Anderson-Holstein model in the atomic limit, calculated using
the Poisson distribution for the number of excited phonons (nb). This
figure shows the case where phonons are slow compared to the onsite
interaction (ω0 � U/2). The maximum of the distribution occurs at
±U/2, matching the upper/lower Hubbard band positions for the
bare single impurity Anderson model. The key energy scales remain
unaffected by coupling to a slow phonon mode because the phonon
cloud cannot respond in time to the charge fluctuations.

polaron clouds are classical in this limit, and their frequency
is far off-resonance preventing any phonon response. This
effectively freezes out phonon dynamics, leaving the single
impurity Anderson model unaltered.

The excitation energy to add or remove an electron
from the singly occupied impurity with the phonon cloud
is �EAH

± = Ueff/2 + ñbω0, shown as the tower of states
separated by ω0 � U/2 above Ueff/2 [Fig. 3(a)], where
the occupation of ñb follows the Poisson distribution (24).
For slow phonons where ω0 � U/2 and the dimensionless
electron-phonon coupling is strong α � 1, the Poisson dis-
tribution for the probability for phonon excitations Eq. (24) is
sharply peaked at nb ≈ α with excitation energy αω0, contrary
to the naive expectation that no phonons should be excited
based on energetic arguments.

Consequently the excitation energy to add or remove an
electron from the singly occupied impurity in the slow phonon
regime is dominated by the most probable phonon excitation,
�EAH

± = Ueff/2 + αω0 = U/2, illustrated by the blue spectral
peak where the most probable phonon excitation energy αω0

precisely cancels the polaronic reduction −αω0 [Fig. 3(a)].
The spectral part of the impurity Green’s function in the
atomic limit (26) and the functional envelope (Fig. 4), calcu-
lated using the phonon probability distribution (24), confirm
this compensation effect for the slow phonons. The central
peak of the phonon excitation envelope, interpreted as the
upper and lower Hubbard band positions, remains pinned at
the same value ±U/2 as in the bare single impurity Ander-
son model due to this subtle compensation and the impurity
forms a local moment. Physically, this occurs because the
slow phonons lack sufficient time to form the polaron and
effectively screen the onsite interaction.

When the hybridization V between the impurity and con-
duction bath is introduced from the atomic limit, the phonon
peaks (Fig. 4), which are separated by ω0 � � � U/2
(where � is the resonance width from impurity conduction
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FIG. 5. Illustrating the virtual valence fluctuations in the spin Kondo limit. (a) Kondo spin exchange fluctuations, and charge Kondo limit
(b) “Ising” fluctuations which return to the same valence state are not suppressed by the polaron cloud. (c) “Transverse” fluctuations which
skip the valence by two are suppressed by a factor of e−2α = 〈−|+〉 associated with the overlap between the polaron clouds of the f 0 and f 2

configurations.

hybridization), merge to form complete upper and lower Hub-
bard bands centered around ±U/2, identical to the single
impurity Anderson model. Because electrons in the single
impurity Anderson-Holstein model become agnostic to slow
phonons, even with strong electron-phonon coupling, the
low-energy physics remains identical to that of the single
impurity Anderson model without phonons—manifesting as
the Kondo effect where the phonons effectively do nothing.
Virtual fluctuations between the low-energy spin manifold
(| f 1 :↑〉, | f 1 :↓〉) and doubly occupied (| f 2〉) or empty (| f 0〉)
impurity states with excitation energy U/2 lead to Kondo spin
exchange and Kondo screening of the impurity spin by con-
duction electrons. The resulting low-energy effective theory
is a spin Kondo model.

We now verify this physical intuition using perturbation
theory for the full Anderson-Holstein Hamiltonian H (8) in
the shifted phonon basis H̃ = eip̂x0 He−i p̂x0 ,

H̃ = ω0b̃†b̃ + Ueff

2
(n f − 1)2 + V

∑
σ

(c†
σ fσ D† + H.c.), (27)

where the changes in the phonon cloud are incorporated in
a redefinition of the hybridization. Since we assume that
the single impurity Anderson model without phonons is in
the spin Kondo phase (� � U ), we can also incorporate
the virtual fluctuations using the Schrieffer-Wolff transforma-
tion (see Appendix B for details).

The net amplitude for a virtual valence fluctuation involves
addition, followed by removal of an f (or vice versa), as
illustrated in Figs. 5(a) and 5(b), given by

〈0̃|D†|ñb〉〈ñb|D|0̃〉 = αñb

ñb!
e−α, (28)

using the matrix elements calculated in (23). The resulting
amplitude is the sharply peaked Poisson distribution resem-
bling a delta-function peaked at ñb ≈ α excited phonons
discussed earlier (24). When we sum over all ñb we get a
weight 1, and since the excitation energy of the virtual fluc-
tuation is U/2, the Kondo spin exchange processes that return
to the same valence state have a coupling proportional to
JK = 4V 2/U .

By contrast, the amplitude derived from a pair flip from f 0

to f 2, or vice versa, involves two f additions or subtractions

[see Fig. 5(c)] and is then proportional to

〈0̃|D|ñb〉〈ñb|D|0̃〉 = (−α)ñb

ñb!
e−α. (29)

The magnitude of this quantity is also sharply peaked at ñb ≈
α, but summing over the ñb to include all possible transitions,
the result is an exponential suppression e−2α , associated with
the overlap between the polaron clouds of the f 0 and f 2 con-
figurations, of the pair flip amplitude—otherwise known as
the “transverse” fluctuations—with coupling proportional to
JK e−2α because the excitation energy of the virtual fluctuation
is also U/2.

Consequently, while the impurity spin degrees of free-
dom (| f 1 :↑〉 and | f 1 :↓〉) can undergo the Kondo effect
where the phonon bath stays in the empty vacuum state
|0b〉 because they are too slow to react, the impurity charge
degrees of freedom (| f 2〉 and | f 0〉) cannot undergo Kondo
charge exchange due to strong anisotropy in virtual valence
fluctuations. Only “Ising” fluctuations that return the impu-
rity to the same valence state remain unsuppressed, with
“transverse” fluctuations exponentially suppressed. In fact, the
Kondo temperature for the anistropic Kondo model is expo-
nentially suppressed compared to the isotropic Kondo model,
TK,anisotropic ∼ (TK,isotropic)2α [40], and is not accessible within
our numerics. We call this phase where virtual fluctuations
keep the impurity valence unchanged from f 0 or f 2 in the
frozen mixed valence phase. We highlight that the frozen
mixed valence phase is facilitated by a frozen polaron. For
example, when the impurity virtually fluctuates from f 0 to f 1

and back, in the untranslated basis the phonons begin in the
state |+〉 = eipx0[n f =0]|0̃〉 and remain in that polaronic state
during the “Ising” fluctuations because the phonons are too
slow to react.

Their respective ground-state energies determine the com-
petition between the spin Kondo (SK) effect and the frozen
mixed valence (FMV) phase. We predict a threshold dimen-
sionless electron-phonon coupling α∗ defined by

U − 2α∗ω0 = ESK − EFMV. (30)

Beyond this threshold α∗, the physics is governed by the
frozen mixed valence phase where the impurity valence is
stuck in a state of f 0 or f 2. The spin Kondo effect’s ground-
state energy is more negative than the frozen mixed valence
phase due to the strong anisotropy of virtual fluctuations
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for the frozen mixed valence phase [Figs. 5(b) and 5(c)].
Hence we predict α∗ > α0, where α0 = U/(2ω0) is the dimen-
sionless electron-phonon coupling that nullifies the effective
onsite interaction Ueff = U − 2α0ω0 = 0.

B. Dynamics in the fast phonon regime

In the fast regime, where the phonon frequency exceeds
half the bare interaction strength (ω0 � U/2), the system ex-
hibits markedly different behavior from the slow phonon case.
The phonons can respond dynamically to the changes in the
impurity electronic occupation, enabling effective screening
of the onsite Coulomb interaction. One way of understanding
this is by looking at the phonon-mediated electron-electron
interaction when the electron-phonon coupling is perturba-
tive. Taking the phonon frequency to infinity in such a way
as to keep g2/ω0 = αω0 constant, the mediated interaction
becomes instantaneous and attractive,

αω2
0

2

ω0

ω2 − ω2
0

(n f − 1)2 ω0→∞−−−−→ −αω0

2
(n f − 1)2, (31)

which agrees with the polaronic reduction in (11).
When the phonons are fast (ω0 � U/2) and the dimension-

less electron-phonon coupling is small (α � 1), the Poisson
distribution for phonon excitation probability Eq. (24) peaks
at ñb = 0. This results in a renormalized excitation energy for
electron addition or removal from the singly occupied impu-
rity: Ueff/2 = U/2 − αω0, without the compensation seen for
the slow phonon case [Fig. 3(c)]. This renormalization oc-
curs because the polaron’s phonon cloud can respond quickly
enough to charge fluctuations to effectively screen the onsite
interaction. Phonon side peaks with energy �EAH

± = Ueff +
ñbω0 persist even when the impurity-bath hybridization is
introduced, as the phonon frequency substantially exceeds
the hybridization width �. The spectral part of the impurity
Green’s function in the atomic limit (26) and the functional
envelope (Fig. 6), calculated using the phonon probability
distribution (24), confirm this. When the hybridization V be-
tween the impurity and conduction bath is introduced from
the atomic limit, the lowest excitation peak (Fig. 6) broadens
to form upper and lower Hubbard bands centered around
±Ueff/2 with additional separate phonon peaks with separa-
tion ω0 � U/2 � �.

To summarize, the fast phonons can react to the charge
fluctuations, consequently renormalizing the key electronic
energy scales of the single impurity Anderson model. The
bare resonance width � is exponentially renormalized,

� → � exp [−α coth(βω0/2)]
T =0−−→ �e−α, (32)

because the adjustment of the bulky phonon cloud reduces the
effectiveness of the tunneling of the dressed polaron into and
out of the impurity. Simultaneously, the onsite interaction is
also reduced by the polaron attraction,

U → Ueff = U − 2αω0. (33)

Moreover, phonon satellites arising from ñb phonon excita-
tions on top of the polaronic cloud appear in the local spectral
function at distinct energies,

�EAH
± = Ueff + ñbω0. (34)

FIG. 6. Impurity spectral function peaks and envelope function
for the Anderson-Holstein model in the atomic limit, calculated using
the Poisson distribution for the number of excited phonons (ñb).
This figure shows the case where phonons are fast compared to the
onsite interaction (ω0 � U/2). The first peaks flanking zero energy
are the renormalized interaction scale ±Ueff/2 = U/2 − αω0, close
to the peak of the envelope. The key energy scales are renormalized
by coupling to a fast phonon mode because the phonon cloud can
respond in time to charge fluctuations.

Ultimately, the coupling between a single impurity Anderson
model to a fast phonon model renormalizes the single impurity
physics at low energy and intermediate energy scales, adding
additional phonon excitation features, as illustrated in Fig. 6.

In contrast to the slow phonon regime, where a transition
from spin Kondo to frozen mixed valence phases occurs above
a threshold electron-phonon coupling α∗, the fast phonon
regime exhibits different behavior. When the electron-phonon
coupling exceeds α0 < α∗ (where the effective onsite in-
teraction vanishes, Ueff = U − 2α0ω0 = 0), the low-energy
physics transitions from spin Kondo to charge Kondo effect.

We emphasize the fundamental difference between slow
and fast phonon regimes. In the slow phonon regime, the
low-energy spin Kondo effect of the unrenormalized single
impurity Anderson model is simply the conventional Kondo
effect of bare electrons without phonon clouds. Conversely,
in the fast phonon regime, polarons form first, followed by
either spin Kondo or charge Kondo effects for the preformed
polaron.

IV. NUMERICAL RENORMALIZATION GROUP RESULTS

We use the NRG [41–44] to verify our results from the
previous sections. Our NRG calculations are done using the
MuNRG package [45,46], which is based on the QSpace
tensor library [47–49]. The data that support the findings of
this article are openly available [39]. We use a hybridization
function �(ω) which has a box-shaped spectrum of half-width
1 (our unit of energy),

− 1
π

Im �(ω) = �
π
θ (1 − |ω|). (35)

�(ω) is discretized logarithmically with discretization param-
eter �. The discretized impurity model is then mapped to
a Wilson chain whose spectrum is determined via iterative
diagonalization. We exploit Uc(1) × SUs(2) charge and spin
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FIG. 7. Spectral functions for an Anderson Holstein model with
U = 6 and �/π = ω0 = 0.1, for different choices of α. [(a) and (b)]
Impurity spectral function at selected values of Ueff = U − 2αω0, on
a linear and a logarithmic frequency scale, and (c) α dependence of
the impurity spectral function, where the Kondo resonance disap-
pears at a value 2α∗ω0/U > 1.

symmetries to reduce computational cost. Explicit values for
�, the number of kept multiplets, the considered size of the
phonon Hilbert space, and our choice for z averaging are pa-
rameter dependent and are provided in the discussion below.

For our analysis, we compute impurity spectral functions
for fσ and impurity contributions to thermodynamic prop-
erties, specifically the entropy and the spin and charge sus-
ceptibilities, denoted Simp(T ), χs(T ), and χc(T ), respectively.
For the spectral functions, we use the full density matrix
NRG [43,44] together with the equations of motion trick of
Ref. [50]. Thermodynamic properties are computed via the
traditional approach as described, for instance, in Ref. [42].

A. Slow phonon regime: ω0 � U

We first consider a case where ω0 = 0.1 � U = 6 and
�/π = 0.1. We keep ω0, U , and � constant, while gradually
increasing α. Due to the small phonon frequency, our phonon
basis contains 2000 phonon number eigenstates to ensure
converged results. We further use � = 2.5 (which is relatively
large for a single-orbital impurity model) and keep up to 4000
Uc(1) × SUs(2) multiplets, which ensures that our truncation
energy is always >9 in terms of rescaled energy units. We do
not perform z-averaging in the small-ω0 case.

In Figs. 7(a) and 7(b), we show the spectral functions for
α = 0 (Ueff = U ), α = α0/2 = U/ω0 (Ueff = U/2), and α =
α0 = U/2ω0 (Ueff = 0) on a linear and logarithmic frequency
scale, respectively. At α = 0 (no electron-phonon coupling),
the spectral function A(ω) exhibits the expected features
of a single-impurity Anderson model in the Kondo regime:
two side peaks at ω = ±U/2 and a central Kondo reso-
nance of width TK ∝ exp(−πU/8�) and height 1/�π . These
features remain remarkably unchanged as we turn on the

FIG. 8. Thermodynamic properties of an Anderson Holstein
model with U = 6 and ω0 = �/π = 0.1, for different choices of
α. (a) Impurity contribution to the entropy, (b) spin Wilson ratio,
(c) impurity contribution to the charge susceptibility, and (d) impu-
rity contribution to the spin susceptibility. Ueff = U − 2αω0.

electron-phonon coupling to α > 0. Even for a sizable
electron-phonon coupling α = α0 = 30, where Ueff = 0, the
electrons seem to be unaware of the presence of the phonons.
The reason for that, as discussed above, is that the phonon is
too slow to respond to the valence fluctuations which lead to
the Kondo effect. Therefore, there is no significant renormal-
ization of the Kondo resonance or the position of the Hubbard
side peaks, demonstrated here with an explicit numerical
simulation.

Figure 7(c) shows the spectral function as a function of α.
In the entire α < α∗ (Ueff > U ∗

eff ) region, the spectral function
is remarkably α independent. It exhibits a Kondo resonance
of width TK ∝ exp(−πU

8�
) and a side peak positioned at ω =

±U/2, i.e., all electronic energy scales depend only on the
bare parameters U and �. The renormalized interaction Ueff =
U − 2αω0 does not appear as a scale in the spectral function.
The reason is that Ueff sets the energy difference between
states with different phonon condensates, and the phonon
condensate remains fixed after acting with fσ on the ground-
state sector. Since the phonon is then way too slow to adjust
its condensate on electronic timescales, no renormalization
effects occur.

For α > α∗ (Ueff < U ∗
eff ), the doublon and holon states with

shifted phonon condensates are the ground-state sector on the
impurity. The resulting charge doublet is extremely long lived
and does not undergo a charge Kondo effect at any reasonable
temperature or timescale, leading to a sudden disappearance
of the Kondo resonance when crossing from α < α∗ (Ueff >

U ∗
eff ) to α > α∗ (Ueff < U ∗

eff ), see Fig. 7(c). The crossover
value α∗ is slightly larger than α0 (where Ueff = 0) due to
the presence of virtual spin fluctuations in the local moment
sector; see Fig. 9 and its discussion below. These lead to a
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FIG. 9. Low-temperature (T = 10−9) impurity contribution to
the entropy versus α in the slow phonon regime (U = 6, ω0 =
�/π = 0.1). Inset: Close-up of the crossover region at 2α∗ω0/U =
α∗/α0 � 1.0022685. Dots in the inset mark data points.

further dynamical reduction of the ground-state energy of the
former with respect to the doublon/holon sector. Further, the
disappearance of the Kondo resonance appears to be a very
rapid crossover, not a (first-order) quantum phase transition.

In Fig. 8, we show that the phonons also do not con-
siderably influence the thermodynamics when Ueff � 0. The
impurity contribution to the entropy [Fig. 8(a)] is ∼ ln 2 in the
local moment regime (T > TK ) and subsequently reduced to
0 when the moment is screened below TK , except for a large
phonon contribution at T > ω0 = 0.1. The spin Wilson ratio
Ws(T ) is shown in Fig. 8(b). Ws(T ) is enhanced in the local
moment region at T > TK and finally reduced to Ws(T ) = 2
in the Fermi liquid at T < TK , confirming that the impurity
model undergoes a spin Kondo effect. This is also consistent
with the temperature dependence of T χs(T ) [Fig. 8(d)], which
is constant in the local moment region [i.e., χs(T ) ∼ T −1 has
a Curie susceptibility], and T χs(T ) is subsequently reduced
to 0 below TK since the local moment is screened there. The
charge susceptibility in Fig. 8(c), T χc(T ) is strongly sup-
pressed for Ueff � 0, as expected.

The thermodynamics of the Ueff < 0 region, on the other
hand, is consistent with the formation of a charge doublet that
does not undergo screening, even at the lowest temperatures
considered here. The impurity contribution to the entropy
is ∼ ln 2 (except for T > ω0), the charge susceptibility has
a Curie form, T χc(T ) = const, and the spin susceptibility
is strongly suppressed. Interestingly, the spin Wilson ratio
Ws(T ) � 1 at intermediate to low temperatures, indicates
that there are still thermodynamically active spin fluctuations
above the doublon/holon ground state. We note here that
for T < 10−5 and Ueff < 0, our result for Ws(T ) is numer-
ically not reliable because both the spin susceptibility and
the specific heat become very small there. Ws is their ratio
and thus very prone to numerical errors if T χs(T ) and C(T )
are tiny. It is therefore not clear from our numerics whether
Ws(T ) � 1 holds at even lower temperatures than indicated
by our data in the Ueff < 0 region. For the anisotropic Kondo
model when Ueff < 0, we can estimate the Kondo tempera-
ture TK,anisotropic ∼ (TK,isotropic)2α [40]. With TK,isotropic ∼ 10−3

from Fig. 7 and 2αω0/U ∼ 1, we obtain TK,anisotropic ∼ 10−180,
indicating our simulations operate well above the Kondo
temperature in this regime. Thus, our calculations have only
begun flowing from the weak-coupling fixed point and remain
far (approximately 170 energy decades) from approaching the

strong-coupling fixed point. This limitation prevents us from
calculating the contributions of the two leading irrelevant
operators, near the strong-coupling fixed point, to the suscep-
tibility and specific heat, as accomplished by Wilson [41].

In the close vicinity of the crossover region around α∗
(Ueff � 0), the behavior somewhat deviates from the two sce-
narios described above. For instance, we find that the large
phonon-related entropy extends to temperatures considerably
lower than ω0. However, since these deviations only occur in a
very narrow region (and therefore require a lot of fine-tuning),
and since these deviations further do not extend down to
T = 0, their relevance to realistic situations is quite limited
and we therefore refrain from a closer investigation.

To showcase the low-temperature crossover between spin
Kondo and frozen charge doublet, Fig. 9 shows the impu-
rity contribution to the entropy at T = 10−9 versus α. Close
to α = α0 = 30, there is an almost steplike transition from
Simp = 0 for α � α0 to Simp = ln 2 for α � α0. The inset in
Fig. 9 shows a close-up view of the crossover region, where
the entropy continuously but rapidly transitions between the
aforementioned limits. The inset also demonstrates that this
crossover happens around α∗ > α0, due to virtual fluctuations
in the spin doublet sector.

B. Fast phonon regime: ω0 � U/2

A very different picture unfolds when phonons are fast
enough to respond on electronic timescales. To study that with
NRG, we consider the case where U = ω0 = 6, �/π = 0.1,
and tune α. We keep up to 100 phonon eigenmodes in our
phonon basis, use � = 2 for logarithmic discretization, av-
erage over two z-shifted discretizations, and keep up to 2000
Uc(1) × SUs(2) multiplets, which ensures a truncation energy
>12 in terms of rescaled units.

Figures 10(a) and 10(b) shows the impurity spectral
function for different values of Ueff . In stark contrast to the
slow phonon case [Figs. 7(a) and 7(b)], the electron-phonon
coupling now clearly renormalizes the electronic spectral
function: As Ueff = U − 2αω0 is reduced (corresponding to
increasing electron-phonon coupling g = √

αω0), the width
of the central Kondo resonance increases by several orders
of magnitude while the side peaks move toward the central
resonance. At the same time, replica side peaks emerge
at ω � |Ueff |/2 + nω0, with n = 1, 2, . . . . Their spectral
weights decay exponentially with increasing n; see Fig. 6
and its discussion. For that reason, only the first two replicas
are clearly visible in Fig. 10(c), where we show the spectral
function with more fine-grained α dependence and for a
larger frequency range.

The data in Fig. 10(c) demonstrates that A(ω) is governed
by the phonon-renormalized interaction Ueff and hybridization
�eff = �e−α . The width of the central resonance is given by
T ∗

K ∝ exp(−π |Ueff |
8�eff

), and the side peaks are positioned at ω =
±|Ueff |/2. These relations also hold for Ueff < 0 case, where
the impurity model undergoes a charge Kondo effect. Further,
there is a smooth crossover from a spin Kondo (Ueff > 0) to
a charge Kondo (Ueff < 0) effect for fast phonons, as opposed
to slow phonons, where we found an almost steplike crossover
from a spin Kondo effect to an unscreened charge doublet.
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FIG. 10. Spectral functions for an Anderson Holstein model with
U = ω0 = 6 and �/π = 0.1, for different choices of α. [(a) and (b)]
Impurity spectral function at selected values of Ueff = U − 2αω0, on
a linear and a logarithmic frequency scale and (c) α dependence of
the impurity spectral function. �eff = e−α�, Ueff = U − 2αω0.

The renormalization of the bare interaction and hybridiza-
tion strength also influences the thermodynamic properties
accordingly, shown in Fig. 11. The impurity contribution to
the entropy, Fig. 11(a), is ∼ ln 2 for T > T ∗

K due to either
a thermally fluctuating spin (Ueff > 0) or charge (Ueff < 0)

FIG. 11. Thermodynamic properties of an Anderson Holstein
model with U = ω0 = 6 and �/π = 0.1, for different choices
of α. (a) Impurity contribution to the entropy, (b) spin Wilson
ratio, (c) impurity contribution to the charge susceptibility, and
(d) impurity contribution to the spin susceptibility. �eff = e−α�,
Ueff = U − 2αω0.

FIG. 12. Line cut of Fig. 11(a) at 2αω0/U = 1 (Ueff = 0).

doublet. This doublet is screened below T ∗
K , where the impu-

rity entropy is linear-in-T . Due to the large phonon frequency,
there is no phonon contribution to the entropy at the temper-
atures considered here. The fast phonon is, therefore, only
dynamically active in the sense that it strongly renormalizes
the electronic structure but it is not thermodynamically active.
As discussed above, the converse is true for the slow phonon:
it is thermodynamically active but not dynamically.

At U = 2αω0 (Ueff = 0), no spin or isospin local mo-
ment is formed. The impurity contribution to the entropy (see
Fig. 12 for a line cut) decreases from 2 ln 2 to zero as the
temperature is lowered (assuming T � ω0). Notably, there is
no feature at ln 2 that would indicate the formation of a local
moment.

Figure 11(b) shows the Wilson ratio Ws(T ). For Ueff > 0,
Ws(T ) is strongly enhanced in the (magnetic) local moment
region at T > T ∗

K and reduced to Ws(T ) � 2 blow T ∗
K , where

the local moment is screened. At low temperatures T < T ∗
K

and as a function of α, the Wilson ratio crosses over from
Ws � 2 at small α, where Ueff > 0, to Ws � 0 at large α,
where Ueff < 0. This is consistent with a crossover from a spin
Kondo effect to a charge Kondo effect; see also Fig. 13 and
its discussion. The crossover from spin to charge Kondo can
also be observed in the impurity contribution to the charge and
spin susceptibilities, see Figs. 11(c) and 11(d), respectively.
For Ueff > 0 and T > T ∗

K , T χs(T ) ∼ const has a Curie form,
while T χc(T ) is small, and vice versa for Ueff < 0. This
further demonstrates the expected presence of a spin doublet
for Ueff > 0 and of a charge doublet for Ueff < 0 above the
Kondo scale. Below T ∗

K , the doublet gets screened and both
T χs(T ) ∼ T and T χc(T ) ∼ T .

FIG. 13. Crossover behavior of the low-temperature (T � TK )
spin (blue line) and charge (red line) Wilson ratios versus α in the
fast-phonon regime (ω0 = U = 6 and �/π = 0.1).
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Figure 13 demonstrates the crossover from spin to charge
Kondo physics in terms of the α dependence of the low tem-
perature (T � T ∗

K ) spin and charge Wilson ratios. Deep in the
spin Kondo regime where U � 2αω0 (Ueff > 0), the impurity
model undergoes a pure spin Kondo effect. As a result, Ws = 2
while its charge counterpart vanishes, Wc = 0. Well within
the charge Kondo regime where U � 2αω0 (Ueff < 0), on
the other hand, we find a pure charge Kondo effect, resulting
in Ws = 0 and Wc = 2. The two regimes are connected by a
smooth crossover. At α = 0.5, where Ueff = 0, Ws = Wc = 1,
i.e., the spin and charge Wilson ratios are the same as is the
case for a noninteracting resonant level.

V. DISCUSSION AND OUTLOOK

Our study reveals a fundamental dichotomy in impurity
Anderson-Holstein models governed by phonon dynamics.
When phonons are fast relative to charge fluctuations (ω0 �
U/2), they rapidly form a polaronic cloud that screens the im-
purity, renormalizing the onsite interaction Ueff = U − 2αω0.
Spectral satellites form from phonon excitations due to their
ability to respond to charge fluctuations while the screening
mechanism dramatically transforms the low-energy physics:
As the effective interaction transitions from repulsive to at-
tractive, the system crosses over between spin Kondo, mixed
valence, and charge Kondo phases. Conversely, when the
phonons are slow compared to charge fluctuations (ω0 �
U/2), their dynamics become frozen, preventing the forma-
tion of a responsive polaronic cloud to screen the impurity.
When an electron is added or removed, a compensation de-
velops between the occupation energy of the excited-state
phonons and the polaronic energy level, which maintains the
excitation energy at U/2, characteristic of the uncoupled sin-
gle impurity Anderson model. Consequently, despite strong
coupling, slow phonons are inconsequential, leaving the elec-
tronic interactions of the single impurity Anderson model
unchanged. Beyond a threshold electron-phonon coupling
strength in the slow phonon regime, we predict a transition
from the usual spin Kondo effect to a frozen mixed valence
phase where the static phonon cloud around the impurity locks
the system into either f 0 or f 2 valence configurations, with
“Ising” virtual fluctuations which return to the same valence
state. We note that the transition from a local moment to
charge doublet picture becomes extremely sharp when the
phonon frequency ω0 approaches zero while electron-phonon
coupling remains finite. This occurs because the charge and
spin sectors decouple completely, causing the transition to
resemble a first-order transition at zero temperature.

When tuning from the slow phonon regime (Figs. 7 and
8) to the fast phonon regime (Figs. 10 and 11), we expect a
gradual transition at ω0 = U/2 because both phases exhibit
a scattering phase shift of π/2 at temperatures below the
Kondo temperature. This applies even in the frozen mixed
valence phase [negative Ueff phase in Fig. 7(c)], where the
Kondo temperature is incredibly suppressed due to the strong
anisotropy of the Kondo coupling.

While our study has focused on the symmetric Anderson-
Holstein impurity model, further work is needed to extend
it to the asymmetric case, though we believe the qualita-
tive physics would still hold. In the asymmetric case, the

frozen mixed valence phase will develop between impurity
valences that differ by one instead of two (as in the symmet-
ric case). The coexistence of static mixed valence behavior
(Fe2+ and Fe3+) with insulating properties in rust is likely
related to the frozen mixed valence phase of the asymmetric
Anderson-Holstein model. This connection is strengthened
by observations of reduced and structurally disordered metal
sites in rust, consistent with small polaron formation where
charge carriers become trapped through strong electron-lattice
interactions [38]. Future investigations could explore whether
phonon timescales in iron oxides facilitate this frozen polaron
mechanism, potentially explaining the mystery of insulating
behavior in mixed valence rust systems.

The role of the ratio of phonon frequency to onsite U/2
in interaction renormalization is not limited to Anderson-
Holstein models. In a recent determinant quantum Monte
Carlo study [51] to systematically explore the potential of
d-wave superconductivity in the Hubbard-Holstein model,
polaron driven renormalizations of the onsite Hubbard inter-
action, that appeared only in the fast phonon regime, were also
numerically obtained.

Our findings provide a promising perspective for materials
where the phonon scale is comparable to or larger than the
Coulomb scale. A notable example is TBG, where recent
experiments [23,24] have revealed strong electron-phonon
coupling between flat bands and phonons with frequencies
ω0 ∼ 150 meV. Discrepancies between theoretical predic-
tions of the onsite interaction (Utheory ∼ 60–100 meV [52–54])
and experimental observations from scanning tunneling and
quantum twisting microscopy [55] (Uexpt ∼ 23–35 meV
[56,57]) have been highlighted by Lau and Coleman [54]. This
suggests that strongly coupled phonons may operate on faster
timescales than charge fluctuations, potentially leading to po-
laronic screening and renormalization of the onsite U . This
direction is particularly intriguing, as theoretical work has
proposed that one of the fast phonon modes (K-phonon) could
drive superconductivity through a phonon-mediated valley
Hund’s interaction [28,29].

Additionally, the alignment of hBN to TBG may play a
crucial role in the electron-phonon coupling dynamics. When
TBG is misaligned with hBN, optical graphene phonons
oscillate freely at approximately 150 meV, manifesting as
prominent replica bands in spectroscopic measurements [23],
with considerable electron-phonon coupling strength [24].
However, when TBG aligns with hBN, we expect the collec-
tive atomic motion to stiffen the graphene phonons, increasing
the phonon frequency ω0 beyond typical measurement ranges
while affecting the e-ph coupling in a nontrivial way [58]. This
stiffening would shift replica bands to higher energies while
simultaneously reducing the dimensionless phonon coupling
α for fixed coupling strength g = √

αω0—diminishing the
spectral weight of these phonon satellites in hBN aligned sam-
ples. We note that superconductivity also disappears in these
aligned samples, raising the intriguing question of whether
the substrate-induced phonon stiffening directly impacts the
superconducting mechanism in TBG.

Future research could investigate how the low-energy
phases of the Anderson-Holstein model change when the
conduction bath has a linear Dirac spectrum, rather than
parabolic, band structure, as explored in this study. For
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instance, in a linear density of states, it is known that the
single impurity Anderson model exhibits an unstable fixed
point and a modified strong-coupling regime where the local
moment remains partially unscreened [59].

The role of electron-phonon coupling in strange metals
represents another compelling area for study, particularly near
quantum critical points where phonons may transition from
being slow to being fast relative to electronic degrees of
freedom. Building on observations in YbBAl4 [20], where
electrons become slow degrees of freedom near quantum crit-
icality and exhibit polaronic response, we propose extending
our framework to models of heavy fermion quantum crit-
icality [60,61] to better understand strange metal behavior.
The effect of electron-phonon coupling on f -level magnetism
and associated symmetry-breaking [62,63] is a promising fu-
ture application of this work. This approach may reveal how
the phonon timescale crossover impacts the non-Fermi liq-
uid physics and unusual transport properties characteristic of
these systems.
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APPENDIX A: LANG-FIRSOV TRANSFORMATION

Starting from the atomic limit of the impurity Anderson-
Holstein model,

Hatomic = ω0b†b + √
α(b + b†)(n f − 1) + U

2
(n f − 1)2

= ω0(b† + √
α(n f − 1))(b + √

α(n f − 1))

+ (U − 2αω0)

2
(n f − 1)2, (A1)

where b† creates the Einstein phonon with frequency ω0,
n f = ∑

σ f †
σ fσ is the number operator of the impurity elec-

trons, and
√

αω0 is the electron-phonon coupling. The
phonon oscillator position and momentum operators are
x = (b + b†)/

√
2ω0 and p = i

√
(ω0)/2(b† − b) respectively.

We rewrite the Hamiltonian (A1) as a displaced harmonic

oscillator,

Hatomic = p̂2

2
+ ω2

0

2
(x̂ − x0[n f ])2 + (U − 2αω0)

2
(n f − 1)2,

(A2)

where the linear electron-phonon coupling term has been
eliminated and the sign of the displaced equilibrium of the
phonon oscillator

x0[n f ] =
√

2α

ω0
(1 − n f ) (A3)

depends on whether the impurity is empty or doubly occupied.
We can perform the Lang-Firsov transformation which is

a unitary transformation that translates the phonon oscillator
reference position to its new equilibrium position x0 by the
translation operator e−ipx0 which is defined as

e−i p̂x0 = exp [
√

α
(
b − b†

)
(n f − 1)], (A4)

which acts on wave functions to translate the position by x0,
eipx0ψ (x) = ψ (x + x0). Acting the unitary transformation on
Hatomic,

eip̂x0 Hatomice−i p̂x0 = H̃ =
∑
kσ

εkc†
kσ ckσ + ω0(b̃†b̃ + 1/2)

+ Ueff

2
(n f̃ − 1)2 (A5)

eliminates the linear electron-phonon coupling, and renor-
malizes the onsite interaction Ueff = U − 2αω0 due to the
phonon-induced reduction of the onsite interaction, assuming
that the oscillator displaces by x0. The Lang-Firsov trans-
formation displaces the phonon operator such that the new
phonon operator is

eip̂x0 b†e−i p̂x0 = b̃† = b† + √
α (n f − 1). (A6)

The original f -creation operator now transforms to

f †
σ → eip̂x0 f †

σ e−i p̂x0 = D f̃ †
σ , (A7)

where D = exp (
√

α(b† − b)) = exp (
√

α(b̃† − b̃)). The oper-
ator f̃ †

σ creates the polaron, while D undresses the impurity
from the polaron cloud to ensure f †

σ creates the bare impurity
electron. Under this unitary transformation, the charge is unal-
tered, i.e., n f̃ = n f . Henceforth, we will drop the tilde on the
f operators, with the understanding that in the transformed
Hamiltonian, the f † are polaron creation operators. and the
impurity f -electron operator is dressed by the phonon cloud
to form a polaronic operator.

Turning on the hybridization V , the changes in the phonon
cloud structure for the polaron associated with fluctuations
of the impurity valence can be absorbed in a redefinition
of the hybridization. The full translated Anderson-Holstein
Hamiltonian is

H̃ =
∑
kσ

εkc†
kσ ckσ + ω0(b̃†b̃ + 1/2) + Ueff

2
(n f − 1)2

+V
∑

σ

(c†
σ fσ D† + f †

σ cσ D). (A8)
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APPENDIX B: DETAILS OF THE SCHRIEFFER WOLFF
TRANSFORMATION FOR STRONG ELECTRON-PHONON

COUPLING AND DERIVATION OF U∗

This section has two objectives. First, we demonstrate that
the low-energy physics of the symmetric single impurity An-
derson model coupled to slow phonons (ω0 � U/2)—where
phonons are too slow to respond to charge fluctuations and
thus do not affect correlated electron physics, as shown in
Sec. III A—is governed by a conventional Kondo spin impu-
rity Hamiltonian. In this regime, bare electrons form a local
moment that gets screened by the conduction bath. Second,
we establish the existence of a threshold electron-phonon
coupling α∗ above which the low-energy physics below scale
U ∗ transitions from a spin Kondo effect to a polaronic-induced
frozen mixed valence phase.

We begin by considering the transformed Hamiltonian
(A8) at the extreme limit where the electron-phonon dimen-
sionless coupling α0 where the effective onsite interaction
vanishes Ueff = U − 2α0ω0 = 0. It was shown in the main
text (Sec. III A) that the phonons are too slow to respond to
form polarons, and hence the electronic degrees of freedom
of the single impurity Anderson model are agnostic to the
slow phonon. We now show using perturbation theory that
this is indeed true within the Lang-Firsov transformation (
see Appendix A), even in the strong electron-phonon coupling
limit where both U and α0 is taken to infinity (U → ∞,
α0 → ∞) in such a way to keep Ueff = 0. The Hamiltonian
is then

H̃ =
∑
kσ

εkc†
kσ ckσ + ω0(b̃†b̃ + 1/2)

+V
∑

σ

(c†
σ fσ D† + f †

σ cσ D). (B1)

In the atomic limit (V = 0) of this model, where the hybridiza-
tion between the impurity and conduction bath is turned off,
the ground state of the phonon bath is the unoccupied state
|0̃b〉 and the impurity has a quartet degeneracy.

Turning on the hybridization V perturbatively involves dis-
placing the atomic phonon ground state to the coherent states,

|+̃〉 = D|0̃〉, |−̃〉 = D†|0̃〉, (B2)

when an electron tunnels from the impurity into the
conduction bath or vice versa. These phonon coherent
states are high-energy states with average energy α0ω0 =
U/2, where the equality stems from the condition that
Ueff = U − 2α0ω0 = 0.

When the dimensionless electron-phonon coupling is large,
the matrix elements of the coherent-state displacement opera-
tors are exponentially suppressed

〈0̃|D|0̃〉 = 〈0̃|D†|0̃〉 = e− 1
2 α0 ≈ 0. (B3)

We will also ignore exponentially small matrix elements

〈0̃|D|+̃〉 = 〈0̃|D†|−̃〉 = e−2α0 ≈ 0. (B4)

These two matrix elements constitute the mutual orthonormal-
ity condition between the coherent states {|0̃b〉, |−̃〉, |+̃〉}.

To understand the low-energy physics of the impurity spin
and charge sectors, we define the projectors into the low-
energy spin sector,

PSL = (|↑ f 〉〈↑ f | + |↓ f 〉〈↓ f |) ⊗ |0̃〉〈0̃|, (B5)

and the low-energy charge sector,

PCL = (|0 f 〉〈0 f | + |↑ ↓ f 〉〈↑ ↓ f |) ⊗ |0̃〉〈0̃|. (B6)

We also define the projector to the high-energy spin sector as,

PSH = (|↑ f 〉〈↑ f | + |↓ f 〉〈↓ f |) ⊗ (|+̃〉〈+̃| + |−̃〉〈−̃|),
(B7)

and the projector to the high-energy charge sector as,

PCH = (|0 f 〉〈0 f | + |↑ ↓ f 〉〈↑↓ f |) ⊗ (|+̃〉〈+̃| + |−̃〉〈−̃|),
(B8)

where the identity projection onto the conduction bath sector
1c has been suppressed for brevity.

Due to the mutual orthogonality of the coherent states
{|0̃b〉, |−̃〉, |+̃〉}, the low- (high-) energy spin and low- (high-)
energy charge sectors decouple in the strong dimensionless
electron-phonon coupling limit (α0 → ∞). Next, we perform
the Schrieffer-Wolff transformation to the low-energy im-
purity spin and charge sectors to show that the low-energy
physics of the spin sector is governed by a spin Kondo model,
and the low-energy physics of the charge sector is governed
by a polaronic-induced frozen mixed valence phase.

1. Low-energy spin sector

HS =
[

HSL V †
SL,CH

VCH,SL HCH

]
, V S

mix =
[

0 V †
SL,CH

VCH,SL 0

]
. (B9)

V †
SL,CH = PSLV̂ PCH = V

∑
β

(c†
β |β̄ f 〉〈β̄ f | fβ | ↑↓ f 〉〈↑ ↓ f | ⊗ |0̃〉〈0̃|D†|+̃〉〈+̃| + |β f 〉〈β f | f †

β |0 f 〉〈0 f |cβ ⊗ |0̃〉〈0̃|D|−̃〉〈−̃|)

(B10)

VCH,SL = PCHV̂ PSL = V
∑

β

(c†
β |0 f 〉〈0 f | fβ |β f 〉〈β f | ⊗ |−̃〉〈−̃|D†|0̃〉〈0̃| + |↑ ↓ f 〉〈↑↓ f | f †

β |β̄ f 〉〈β̄ f |cβ ⊗ |+̃〉〈+̃|D|0̃〉〈0̃|)

(B11)
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Performing the standard Schrieffer-Wolff to block diagonalize Eq. (B9),

HS
eff = HSL + �HSL,SL′ = eSs HSe−Ss = HSL + 1

2 PSL
[
Ss,V S

mix

]
PSL′ (B12)

we get the second-order perturbative correction to the low-energy Hamiltonian for the charge sector as

�HSL,SL′ = −V †
SL,CHVCH,lSL′

EH
C − EL

S

= −V †
SL,CHVCH,SL′

α0ω0
= 2V †

SL,CHVCH,SL′

U

= −2V 2

U

∑
βγ

(|〈+̃|D|0̃b〉|2c†
β |β̄ f 〉〈β̄ f | fβ |↑↓ f 〉〈↑↓ f | f †

γ |γ̄ f 〉〈γ̄ f |cγ ⊗ |0̃〉〈0̃|

+ |〈−̃|D†|0̃b〉|2|β f 〉〈β f | f †
β |0 f 〉cβc†

γ 〈0 f | fγ |γ f 〉〈γ f | ⊗ |0̃〉〈0̃|)

= −2V 2

U

∑
βγ

(c†
β fβ f †

γ cγ + f †
γ cγ c†

β fβ )Pn f =1 ⊗ |0̃〉〈0̃|. (B13)

In the first line, we have used α0ω0 = U/2. Using the Fierz identity 2δαγ δηβ = δαβδηγ + �σαβ · �σηγ , we can write the low-energy
effective Hamiltonian for the local moment coupled to the bath as a Kondo impurity model,

HS
eff =

∑
kσ

εkc†
kσ ckσ + �HSL,SL′ =

∑
kσ

εkc†
kσ ckσ + 4V 2

U︸︷︷︸
JK

�σ (0) · �S f , (B14)

where we have dropped the residual potential scattering term which vanishes for the particle-hole symmetric case, JK is the
Kondo coupling. This model describes the low-energy physics of the bare repulsive single impurity Anderson.

2. Low-energy charge sector

HC =
[

HCL V †
CL,SH

VSH,CL HSH

]
, V C

mix =
[

0 V †
CL,SH

VSH,CL 0

]
. (B15)

V †
CL,SH = PCLV̂ PSH = V

∑
β

(c†
β |0 f 〉〈0 f | fβ |β f 〉〈β f | ⊗ |0̃〉〈0̃|D†|+̃〉〈+̃| + |↑↓ f 〉〈↑ ↓ f | f †

β |β̄ f 〉〈β̄ f |cβ ⊗ |0̃〉〈0̃|D|−̃〉〈−̃|)

(B16)

VSH,CL = PSHV̂ PCL = V
∑

β

(c†
β |β̄ f 〉〈β̄ f | fβ | ↑↓ f 〉〈↑↓ f | ⊗ |−̃〉〈−̃|D†|0̃〉〈0̃| + |β f 〉〈β f | f †

β |0 f 〉〈0 f |cβ ⊗ |+̃〉〈+̃|D|0̃〉〈0̃|)

(B17)

Performing the standard Schrieffer-Wolff to block diagonalize Eq. (B15),

HC
eff = HCL + �HCL,CL′ = eSc HCe−Sc = HCL + 1

2 PCL
[
Sc,V C

mix

]
PCL′ (B18)

we get the second-order perturbative correction to the low-energy Hamiltonian for the charge sector as,

�HCL,CL′ = −V †
CL,SHVSH,CL′

EH
S − EL

C

= −V †
CL,SHVSH,CL′

α0ω0
= −2V †

CL,SHVSH,CL′

U

= −2V 2

U

∑
βγ

(|〈+̃|D|0̃〉|2c†
β |0 f 〉〈0 f | fβ |β f 〉δβγ 〈γ f | f †

γ |0 f 〉〈0 f |cγ ⊗ |0̃〉〈0̃|

+ |〈−̃|D†|0̃〉|2|↑↓ f 〉〈↑↓ f | f †
β |β̄ f 〉δβγ cβc†

γ 〈γ̄ f | fγ |↑↓ f 〉〈↑ ↓ f | ⊗ |0̃〉〈0̃|)

= −2V 2

U

∑
β

(c†
β fβ f †

β cβPn f =0 + f †
β cβc†

β fβPn f =2) ⊗ |0̃〉〈0̃|. (B19)

Hence the low-energy effective Hamiltonian for the impurity charge sector is

HC
eff =

∑
kσ

εkc†
kσ ckσ + �HCL,CL′ =

∑
kσ

εkc†
kσ ckσ − 2V 2

U

∑
β

(c†
β fβ f †

β cβPn f =0 + f †
β cβc†

β fβPn f =2) ⊗ |0̃〉〈0̃|, (B20)

which has “Ising” fluctuations.
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