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In this paper, we describe student understanding of the “force concept” (basic concepts of Newtonian
mechanics) by representing it as a vector-valued quantity, which we refer to as the “score-state vector,” in a
(30-dimensional) Force Concept Inventory (FCI) score space. We use a large ensemble of FCI results
collected throughout Japan to explore the global statistical structure of the vector. We used principal
component analysis to project the score-state vector into a three-dimensional subspace and found that the
student score states follow a non-normal distribution. The distribution exhibits two snakes and is also
skewed like a screw. This implies that the correlation of the second order (such as the commonly used
correlation coefficients) is insufficient to describe the global structure of student score states. We find the
distribution to be roughly divided into two subdistributions corresponding to novice respondents and
intermediate (transient) and expert respondents. This indicates that “novice” and/or “expert” are not
additional qualities given to the ensemble of samples but are understood as a label distinguishing the
characteristic areas of the entire distribution. In addition, we observe, as a result of the non-normal
distribution, the deviation of the second-order correlation of the score-state vector from that of an artificial
interitem-uncorrelated ensemble of samples. The observed deviations realize many previously obtained
results and present us with many other new results. Although ours is only a first step, it is a necessary
process toward constructing a more accurate model of the student’s reasoning about Newtonian mechanics.
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I. INTRODUCTION

The Force Concept Inventory (FCI) is a widely admin-
istered assessment to probe student understanding of the
basic concepts of Newtonian mechanics as well as common
misconceptions regarding the topic [1,2]. Hestenes et al.
claimed from their FCI data that getting the concept of
force is essential for understanding Newtonian mechanics.
Their claim indicates that getting the concept of force is

correlated with getting the other basic concepts in
Newtonian mechanics [1,2].
Much physics education research has been conducted

utilizing pre-post administration of the FCI to compare the
effectiveness of various instructional styles. In a seminal
report, Hake reported a remarkable difference in student
learning between classes utilizing active engagement strat-
egies and traditional lectures [3].
In addition to comparing learning gains, education

researchers have used the FCI to study patterns in student
responses. These studies have played a role in arguments
about how to model the cognitive structure of student ideas.
In particular, lack of coherence between responses has
been used to argue that many students do not have self-
consistent and robust “misconceptions” or “naïve concep-
tions”; rather their reasoning is better characterized by
context-sensitive assemblies of smaller knowledge pieces,
referred to as “phenomenological primitives” [4,5],
“facets” [6], or “schemas” [7,8].
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This distinction is important as it informs instruction
[9–18]. For more details, we refer readers to Redish’s
book [10] and the references within.
An effective discussion regarding students’ reasoning, as

measured on the FCI, depends upon an accurate interpre-
tation of the FCI results. Usual studies study correlations
of responses on the FCI by looking at the second-order
correlation coefficients (such as correlation coefficients
between two-item scores). This is appropriate when the
distribution is normal but insufficient when the distribution
is not normal. As we will discuss in this paper, the
distribution of FCI responses is not normal, and so we
focus our efforts on creating an improved description of the
distribution.
One common option for analyzing interitem correlation

is factor analysis (FA), a powerful method for discovering
hidden factors that affect student response patterns [19–23].
Confirmatory factor analysis (CFA), in particular, is power-
ful in analyzing the factor and factor relationship [23].
However, the governing equation in FA is linear and

contains stochastic variables; hence, it is not suitable for
describing the nonlinear dependence of the variable quan-
tities on the student ability (also conceptualized to be the
nonlinear response to the student growth) nor to determine
the “factor score” (the gains of factors individual student
obtains) exactly. Although some methods have been devel-
oped to “estimate” the factor score [24], we are unaware of
any study that has applied these methods to FCI results.
Item response theory (IRT) describes the nonlinear

response by introducing a nonlinear item characteristic
function of two distinguished groups of variables: the
characteristic variable describing each student (typically
proficiency or trait) and those describing each item (such as
difficulty and discrimination) [25–27]. The two groups of
variables are treated to be independent.
The nominal response model is an expanded version of

IRT that describes not only the likelihood of obtaining the
correct response on each item but also the likelihood of
the respondent selecting each of the other (four) incorrect
responses of each item [28,29].
IRT can calculate the proficiency of each student.

Multitrait (multivariable or multidimensional) IRT is an
extension of IRT that models the likelihood of providing
the correct answer to an item when multiple forms of
student proficiency are expected to be relevant [30–33].
Since IRT treats students’ proficiency and item param-

eters as independent groups of variables, a given student’s
proficiency is taken to be constant across items; as such,
IRT does not correctly consider the interitem correlation of
the individual student’s responses.
Hence, despite the great advantage of IRT of taking

nonlinear responses reasonably into account, it is not well
suited for analyzing correlations between student item
responses. Researchers using multitrait IRT have fit the
theory to real score data, leading to a variety of interesting

results [30–33]; nevertheless, the exact meaning of the
obtained correlation is not clear.
In assuming a (for example, logistic) function in model-

ing data, information about the original data is reasonably
taken into account but is not perfect in utilizing IRT.
Morris et al. presented an alternative: the item response

curve (IRC), which maintains the original information.
Specifically, they described the dependence of item success
rates on students’ abilities by pooling all student responses
to each item and creating a corresponding item response
curve (IRC) [34,35]. As a proxy for proficiency, they used
the simple (arithmetically summed) total score.
While IRC is only a representation of the raw data, it is

also a global statistical representation of an ensemble of the
students’ states.
As we show in this paper, the distribution of the students’

score states consisting of 30 item scores of FCI is non-
normal (non-Gaussian). The distribution is snaked and
skewed. This means that the correlation coefficients usually
used are not enough to describe the entire structure of the
interitem correlation.
Previous work utilizing IRC has demonstrated global

characteristics of the students’ responses to the FCI and
also the FMCE that are independent of the nationality and
learning history [36–39]. As such, we expect that the non-
normal distribution we found is not idiosyncratic to
Japanese learners but rather a global phenomenon. This
is the driving motivation for revisiting the student’s state of
understanding of Newtonian mechanics. To this end, we
return to the representative scheme based upon principal
component analysis (PCA) [40–42].
This paper consists of four sections.
In Sec. II, we present data comprised of 13 768 sets of FCI

responses (each response comprised in turn of 30 items)
collected widely from across Japan. These data are coded
as correct or incorrect on each item and assembled into a
30-dimensional vector, which we refer to, in this paper, as a
“score-state vector” or “score state” for each student.
We project the score-state vectors into a low-dimensional

vector space spanned by the main principal axes of the
correlation matrix to reduce the dimensionality without
losing the non-normal structural information of the inter-
item correlation. We find that three dimensions are effective
for the first stage of this study.
In the three-dimensional vector space, we observe three

item groups corresponding to the five item groups adopted
in confirmatory factor analysis (CFA) by Eaton and
Willoughby [23].
In Sec. III, we describe the entirety of the distribution of

the score-state vectors in the three-dimensional space and
observe directly that the entire distribution is not normal.
We try to overcome the difficulty of describing the

characteristics of the non-normal distribution in two ways.
The first way is via a primitive but powerful approach

of using our eyes to directly identify the characteristic
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structures of the score-state vectors. In doing so, we find
that the distribution snakes twice like a snake and is skewed
like a screw.
The second way of describing the higher-order correla-

tions is by observing the deviations of the second-order
correlation from that of an ideal inter-item-uncorrelated
ensemble of samples. This latter method is also adopted
in Sec. II.
The final section, Sec. IV, is devoted to the concluding

remarks and discussion.

II. CORRELATION MATRIX AND THE
PRINCIPAL AXES

A. Data preparation and the principal
component analysis

The data we used for the analysis presented in this paper
comprise N ¼ 13 768 FCI respondents from high schools
(6720) and universities (7048) throughout Japan. These
data were collected in 2014–2016 in a PER project led
by Roy Lang and supported by the Grants-in-aid for the
Scientific Research 26282032 of the Japan Society for the
Promotion of Science (JSPS). The university students were
in introductory courses. The high schools and universities
span a wide range in terms of prestige and such represent
the population of Japanese learners of introductory physics.
Most of these data were collected prior to instruction.
We intentionally pool these data from diverse learners
together to discover the general characteristics of the large
sample space.
Prior work investigating the general characteristics of

this dataset has found that the IRCs of Japanese high school
students and university students are similar; moreover,
these IRCs are also similar to those of learners in the
United States [36–38].
Provided the total-score distribution extends over the

entire range of the score, different ensembles of samples
with varying distributions of total score also exhibit similar
IRC characteristics. This is because IRC describes a local
quantity that does not depend on the intensity of the
distribution at the local position. The same is reported of
the IRC characteristics of the Force and Motion Conceptual
Evaluation (FMCE) [39].
The distribution contains information including both

commonalities and individualities between respondents.
Different distributions exhibit different characteristics
(such as score distribution) depending on the local intensity
of the distribution.
However, we find the shared IRC characteristics between

populations to be remarkable, and we seek to understand
this commonality better. The distribution of the total score
of the entire ensemble of samples (named ESJ in this paper)
is shown in Fig. 1.
At a glance, we can see that the typical total-score

distribution is not normal (not Gaussian).

The average rate of answering correctly and the
standard deviation of each item’s score (taking the value
of 1 (correct) or 0 (incorrect) for each student) are shown
in Table I. The average total-score rate of ESJ is
about 14=30.
Although we want to investigate the student response to

items, we start by investigating the correct (or incorrect)
answer in this paper.
We define here a 30-dimensional (row) vector s0n named

as (entire) score-state vector of examinee nðn ¼ 1 − NÞ as,

s0n ¼
�
s01;n; s

0
2;n; s

0
3;n; ;…; s030;n

�
; (1)

where the kth component (code) of which (denoted as s0k;n)
takes the value of the item score of 1 (correct) or 0
(incorrect) depending on the nth examinee. Obviously,
the kth component, s0k;n, of s

0
n is the kth item score of the

examinee n.

FIG. 1. Number distribution of raw total scores of ESJ of
N ¼ 13 768 examinees.

TABLE I. Score rate (average rate of answering correctly) and
the standard deviation σ of 30 items (questions).

Item no. Score rate σ Item no. Score rate σ

1 0.6292 0.4830 16 0.5308 0.4991
2 0.5285 0.4992 17 0.2788 0.4484
3 0.7471 0.4347 18 0.3880 0.4873
4 0.3109 0.4629 19 0.5763 0.4942
5 0.3032 0.4596 20 0.5063 0.5000
6 0.6843 0.4648 21 0.3784 0.4850
7 0.5556 0.4969 22 0.4747 0.4994
8 0.5960 0.4907 23 0.3872 0.4871
9 0.4869 0.4998 24 0.6291 0.4831
10 0.7154 0.4513 25 0.3552 0.4786
11 0.3600 0.4800 26 0.2288 0.4201
12 0.7194 0.4493 27 0.5612 0.4963
13 0.3347 0.4719 28 0.5559 0.4969
14 0.3954 0.4889 29 0.6469 0.4780
15 0.3067 0.4611 30 0.2948 0.4560
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It is important to note that the score-state vector s0n
is a vector-valued quantity having full information of the
30-item scores of examinee n.
The score-state vector s0n is then normalized to make the

normalized score-state vector sn.
That is, each kth component of s0n (that is s0k;n) is

normalized by the kth component of the mean vector
hs0ni and by the kth component of the corresponding
standard deviation vector σ0 (that is σ0k) to make the
normalized score-state vector sn of examinee n.
This normalization is made to discard nonessential

factors that may be induced in the process of item
(question) making. We call the kth component of sn (that
is sk;n) normalized kth item score of examinee n.
Note that the normalized score-state vector sn has full

information of the correct-incorrect answers of 30 items of
the examinee n.
We can say sn represents the score state or, more simply,

the “state” of the nth examinee.
Of course, 30 dimensions are too many to discuss the

structure of the examinees’ states. This is the reason why
we utilize PCA. We want to reduce the dimensions of the
state of the examinee without losing the essential part of
the entire structure of the correlation in the distribution.
This point is considered later carefully in this section.
By accumulating the normalized score-state vectors

(hereafter, we omit the term “normalized” throughout
this paper and refer them only as score-state vectors,
etc.) of N examinees, we make an N-row ×30-column
data matrix D [40], where the n, k element sk;n is the kth
code of the score-state vector sn.
As score-state vectors snðn ¼ 1 − NÞ have full informa-

tion on the correct-incorrect answers of FCI, the same is
true for the data matrix D.
The distribution of the N students’ score states in the

30-dimensional score space is identical to the data matrix
D. Thus, the distribution of the N students’ score states is
also the most fundamental quantity having full information
of the students’ correct-incorrect responses to FCI.
By using the data matrix, we first numerically calculate

a real and symmetric correlation matrix C of 30 × 30
dimension, where the k, k’ element is the (Pearson’s)
correlation coefficient of correct answers between k and
k’ items.

ck;k0 ¼
P

N
n¼1ðs0k;n − hs0k;niÞðs0k0;n − hs0k0;niÞ

Nσkσk0

¼ 1

N

XN

n¼1

ðsk;n · sk0;nÞ; ðk; k0 ¼ 1 − 30Þ: (2)

Note that the correlation coefficient defined in Eq. (2) is
the correlation of the second order in the sense that it is the
correlation between two quantities (of two items).

As one of the purposes of this paper is to see the
deviation of the observable quantities from those of inter-
item-uncorrelated reference systems, we also make, as
reference systems, two artificial ensembles of N random
samples, named R0 and R1, in the 30-dimensional item
score space.
All of the components of the data matrixDR0 are random

values that take the value of 1 or 0 with a “mean” mv fixed
to the value of about 14=30 independent of the items, for
all of the N artificial examinees. A large number of the set
of artificially made N students’ samples constitutes the
ensemble of the numerical distributions R0.
On the other hand, all of the components of the data

matrix DR1 are random values taking the value of 1 or 0
with a “mean” mv independent of items, but the value of
mv distributes depending on each artificial examinee to
make the mv distribution corresponding to the total-score
distribution as that of ESJ shown in Fig. 1.
In this case, the artificially generated large number of

distributions, R1, has the same (artificial) total-score
distribution as that of ESJ, though there is no interitem
correlation for individual artificial students.
The ensemble R0 has been used for finding the number

of hidden factors in real systems in a process referred to as
parallel analysis [43].
However, we introduce the ensemble R1 in this paper to

compare the set of our real samples ESJ with the ideal (for
individuals) inter-item-uncorrelated set of samples having
the same total-score distribution as that of ESJ. This is a
new version of the parallel analysis.
While correlation coefficients between items or between

factors have been discussed in many ways [19–23], we
think it is important to observe the deviation of the
correlation from that of the inter-item-uncorrelated (for
individuals) correlation of R1 having the same total-score
distribution as that of ESJ.
Note that R1 differs from R0 in that the interitem

correlation coefficients (i.e., the off-diagonal elements of
the correlation matrix CR1) do not vanish. This is due to the
non-Gaussian total-score distribution shown in Fig. 1. The
broad total-score distribution causes uniform positive
interitem correlation coefficients even in the (for individ-
uals) inter-item-uncorrelated case.
A numerical sample of CR1 is shown in Fig. 1 in

Supplemental Material with the characteristics listed in
Table I in Supplemental Material [44].
The off-diagonal elements of the correlation matrix CR0

of R0 are distributed around 0.000� σR0 and those of
CR1 of R1 are distributed around 0.183� σR1, where
σR0 ≃ σR1 ¼ 0.008 are the standard deviations of the
randomly fluctuated off-diagonal elements (interitem cor-
relation coefficients) of CR0 and CR1, respectively.
The correlation matrix C (corresponding to the real data)

is shown in Fig. 2 with the item numbers arranged in a way
to ease reference for discussion below.
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In Fig. 2, noteworthy deviations of the correlation
coefficients from the mean value of those of the inter-
item-uncorrelated set of samples R1 are colored.
Warm colors represent positive deviations by more than

double the standard deviation of 0.008 from the mean of
CR1 (0.183). Cool colors with lateral stripes represent
negative deviations by more than double the standard
deviation from the mean of CR1.
Thus, the correlation coefficients of C with warm colors

represent the statistical coherence between responses of
items for individual students. Those with cool colors with
lateral stripes represent statistical confusion or conflict
between the responses of items for individual students.
Note that there is a negative deviation of the interitem

correlations between Q15 and the items in the EW12 item
group, consistent with prior literature [45]. Item Q29 has a
negative deviation against all other items, though we do not
mention more about it in this paper.
We next numerically diagonalize the correlation matrix

C and get the eigenvalues λi (i ¼ 1 − 30) and the eigen-
vectors (column vectors) vi (i ¼ 1 − 30).

Cvi ¼ λi vi; ði ¼ 1 − 30Þ: (3)

The eigenvalues are shown in Fig. 3 with the reference
eigenvalues of CR1.
The eigenvectors viði ¼ 1 − 30Þ are the most fundamen-

tal (orthogonal and normalized) set of bases describing the

FIG. 2. Correlation matrix C. The order of item (Q) number has been arranged. The warm colors are put on the correlation coefficients
that deviate from the mean value 0.183 of the inter-item-uncorrelated (for individuals) correlation matrix CR1 positively by more
than double the standard deviation 0.008 of CR1. The cool colors with lateral stripes are put on them, which deviate from the mean of
0.183 negatively by more than double of 0.008.

FIG. 3. Eigenvalues of the correlation matrix C in decreasing
order, with the referential values of the inter-item-uncorrelated
correlation matrix CR1.
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30-dimensional vector space. In what follows, we refer to
them as “principal axes.”
The ith principal-axis component of any vector is the

projection of the vector to the ith principal axis, and we call
it the ith principal component (i PC) of the vector. The
principal component (PC) is useful to represent the score-
state vector sn.
Projection is only a process of representing a vector and

does not modify or deform the original information of the
vector. When we project the score-state vector to the 30
principal axes, nothing has changed at all. Even when we
project it to some restricted number of principal axes, that
is, to the subspace spanned by the corresponding principal
axes, it does not modify or deform the information
contained within the vector, though some (mainly random)
information disappears.
A key concept of PCA is that the variance of the

distribution along a principal axis measures the information
of the distribution along the axis.
As the variances of the distribution are the eigenvalues

themselves corresponding to the principal axes, we can
understand that when we have the eigenvalues, such as
those seen in Fig. 3, the main systematic information must
exist in the subspace spanned by some principal axes
having distinguished eigenvalues.
The three main eigenvectors ofC with the corresponding

distinguished eigenvalues are listed in decreasing order of
the eigenvalues in Table II.
The eigenvalues of CR1 in Fig. 3 have a striking feature

that only a single eigenvalue is prominent, reflecting the
fact that the total score is the only characteristic value. All
other eigenvalues less than 1 describe the information from
random fluctuation of the item scores.
The eigenvalue λi of C which is bigger than that of CR1

(see Fig. 3) has a positive amount of information on the
“interitem correlation” along the ith principal axis.
With these points in mind, we see that the distribution of

ESJ along the first principal axis corresponds to the total
score, while the first three principal axes combined contain
information on the interitem correlation.
Although additional information is contained within the

remaining axes, as a first step, we restrict our analysis in
this paper to the three main principal axes.
The degree of freedom for describing the factor structure

has meaning in FA. The factor spaces of different dimen-
sions describe different worlds. Five or six factors are
frequently discussed [20–23], but a bifactor structure is also
suggested [32].
In PCA, however, the number of principal axes is not

essential. Even when we consider axes beyond the first
three, all of the results obtained in analyzing the three-
dimensional space are unaffected.

In the following Secs. II B and II C, we provide addi-
tional justification from our data for our choice to focus on
the first three primary axes.

B. Three item groups

To confirm the validity of the three-dimensional PC
space and also to understand the interitem correlation more
visually, we start by considering the ith factor-loading (FL)
vector fi ¼

ffiffiffiffi
λi

p
vi (i ¼ 1 − 30). The kth code (component)

of that vector describes the correlation coefficient between
the kth component of score-state vectors sn (n ¼ 1 − N)
(that is, the kth item scores of N students) and the ith PCs
of score-state vectors sn (n ¼ 1 − N) [46]. See Eq. (5) in
the next subsection.
The FL-FL plots between f1, f2, and f3 are shown

in Fig. 4.

TABLE II. Three main eigenvectors (Eig.s) of the correlation
matrix C. The corresponding eigenvalues are, λ1 ¼ 7.282,
λ2 ¼ 1.578, and λ3 ¼ 1.297.

Eig. 1 Eig. 2 Eig. 3

1 0.1681 0.1091 −0.2249
2 0.1255 −0.0363 −0.2364
3 0.1242 0.1926 −0.0704
4 0.1672 −0.1234 −0.3385
5 0.2019 −0.3091 0.1151
6 0.1274 0.1490 −0.0541
7 0.1574 0.0628 −0.0366
8 0.1902 0.1406 0.0227
9 0.1889 0.1130 0.1275
10 0.1953 0.2131 −0.2024
11 0.2048 −0.1332 0.0511
12 0.1539 0.1538 −0.0878
13 0.2579 −0.2122 0.0709
14 0.2035 0.1053 0.1201
15 0.1229 −0.1526 −0.4400
16 0.2074 −0.1130 −0.1667
17 0.1893 −0.2949 0.0297
18 0.2093 −0.2887 0.0746
19 0.1768 0.2419 −0.0013
20 0.1938 0.1914 −0.0096
21 0.1376 0.1691 0.2782
22 0.1843 0.1299 0.2228
23 0.1939 0.2102 0.2372
24 0.1812 0.2577 −0.0034
25 0.2204 −0.2425 0.1162
26 0.2261 −0.1593 0.1620
27 0.1547 0.2174 0.1003
28 0.1941 0.0413 −0.3258
29 0.0456 0.0673 −0.2774
30 0.2324 −0.2049 0.1575
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The FL-FL plots describe an interrelation between items.

X30

i¼1

ðfk;i − fk0;iÞ2

¼
X30

i¼1

ðfk;iÞ2 þ
X30

i¼1

ðfk0;iÞ2 − 2
X30

i¼1

ðfk;ifk0;iÞ

¼ 2ð1 − ck;k0 Þ; (4)

where, fk;i is the kth cord of the ith FL vector fi.
The first term of the second equation is the correlation

coefficient ck;k, the second term of it is ck0;k0 , and the third
term of it is (−2) times of ck;k0 . The relation between FL
vectors and the correlation coefficients is in the spectral
decomposition of the correlation matrix C given in Eq. (5)
in the next subsection.
Equation (4) indicates that when the correlation between

any item pair is strong, the distance between them is close
in the FL space. From Eq. (4) and the large amount of
systematic information on the interitem correlation in the
three-dimensional PC space, we use the projection of
the items to the three-dimensional FL space to interpret
the relation between items.
In Fig. 4, we plot three item groups corresponding to

those adopted by Eaton and Willoughby in their confirma-
tory factor analysis (CFA) [23]. Eaton and Willoughby
adopted five item groups (named EW1 − EW5 in this
paper), with the exceptional four items (named EWe in
this paper), in their CFA analysis. The item list of their five
item groups is shown in Table III.
In our FL-FL plot of ESJ in Fig. 4, we plot

three item groups EW12≡ EW1þ EW2, EW3, and
EW45≡ EW4þ EW5.

When we extend the dimensions of the PC space to 5 by
adding the 4th and 5th principal axes (using f4 and f5),
EW45 splits into EW4 and EW5, but we could not confirm
the split of EW12 into EW1 and EW2.
This fact tells us that the results of PCA are very close to

those of CFA in the case of FCI, though not identical. The
results are particularly aligned when the stochastic char-
acter in their structural equation model is insignificant
in FA.
EW12 item group consists of seven items on Newton’s

first law and seven items on Newton’s second law. The
14 items have a good proportion in the 30 FCI items,
corresponding to the fact that the body of the introductory
physics class may be the study of Newton’s first and second
laws, including the equation of motion.
EW3 item group consists of four items on Newton’s third

law (action-reaction law).
EW45 item group consists of eight items asking, in

various kinds of situations, what kind of force is acting on.
The force is formally defined in the second law, but

Hestenes et al. discerned the important position of under-
standing the concept of force in Newtonian mechanics and
made the eight items concentrated on asking about the
concept of force in various situations.

FIG. 4. Factor-loading (FL)—factor-loading (FL) plots of the 26 items. (a) Second factor-loading (2 FL) vs first factor-loading (1 FL)
plot. (b) Third factor-loading (3 FL) vs second factor-loading (2 FL) plot. The blue squares, orange circles, and silver diamonds
represent, respectively, the items of EW12, EW3, and EW45 item groups.

TABLE III. Five item groups and the exception adopted by
Eaton and Willoughby [23].

Group Item no. Characterization

EW1 6, 7, 8, 10, 20, 23, 24 First law with kinematics
EW2 9, 12, 14, 19, 21, 22, 27 Second law with kinematics
EW3 4, 15, 16, 28 Third law
EW4 5, 11, 13, 18, 30 Force identification
EW5 17, 25, 26 Force identification (mixed)
EWe 1, 2, 3, 29 (Exception)
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We have shown the deviation of the correlation matrix C
from CR1 in Fig. 2 by changing the order of the item
numbers to one suitable for representing these item groups.
We find remarkable intra- and intercorrelation in and

between the item groups EW12, EW3, and EW45, upon
which we now elaborate.

IIB.1. The EW45 item group shows a comparatively
high positive deviation in the intragroup correlation,
exhibiting good coherence in the individual’s under-
standing of the eight items of EW45 group on the
concept of force.

IIB.2. There is also a positive deviation of the correlation
between EW45 item group and both of EW12 and
EW3 groups, suggesting a coherence between the
individual’s understanding of the items of EW45 on
the concept of force and that of the other items of
EW12 and EW3 covering the first, second, and third
laws. Considering IIB.1 and Table II, the statement
IIB.2 is consistent with the claims of Hestenes et al.
that the concept of force is central to Newtonian
mechanics [1,2].

IIB.3. The deviation of the correlation between the EW3
group (Newton’s third law) and the EW12 group
(Newton’s first and second laws) is more nuanced.

Specifically, items 15 and 4, in EW3, show a negative
deviation of the correlation with the items of EW12, while
items 16 and 28 exhibit a positive deviation.
The positive deviation with item 16 represents the con-

flation that many students make between Newton’s third law
and Newton’s second law when forces are balanced.
These confusions have been discussed extensively

by Law and Wilson [45]. We refer to these confusions
as the N2-NF (net force of Newton’ssecond law) and N3
(Newton’s third law) confusions and will return to them
again in statement IIC.b2 of the next subsection and in
statement IIIC.b3 of the next section.

C. PC expansion of the correlation matrix

To explore the internal structure of the correlation matrix
C in the three-dimensional PC space and to confirm the
validity of the three-dimensional PC space, we make a PC
expansion of the correlation matrix C. The correlation
matrix C is spectrally decomposed into 30 terms as a
function of the eigenvalues and eigenvectors as [41],

C ¼
X30

i¼1

viλiðviÞt

¼ v1λ1ðv1Þt þ v2λ2ðv2Þt þ v3λ3ðv3Þt þ � � �

¼
X30

i¼1

fiðfiÞt ⇒
X30

i¼1

Ci; (5)

where ðviÞt is the transposed (row) vector of vi.

The first term C1 represents the first contribution to
the correlation coefficients from the distribution of
anðn ¼ 1 − NÞ along the first principal axis. The second
term C2 represents the second contribution from the
distribution along the second principal axis, and the third
term C3 represents the third contribution from the distri-
bution along the third principal axis.
The numerical results of the three terms are shown in

Fig. 8 in the Appendix. Like in Fig. 2, clear deviations
of the correlation coefficients are colored based on the
corresponding numerical data of the PC expansion of
the inter-item-uncorrelated matrix CR1. We can see the
following.

IIC.a. In C1 of Appendix Fig. 8(a), we find the same
characteristic structure as in C, but the deviations are
larger in magnitude. This means that the character-
istics [(IIB.1–3) of the last subsection] of C are
dominated by the first term C1 coming from the
information of the distribution of snðn ¼ 1 − NÞ
along the first PC axis. This is consistent with the
biggest variance (λ1 ¼ 7.282) of the distribution along
the first PC axis, showing the biggest contribution to
C from along the first PC axis.

IIC.b1. In C2 of Appendix Fig. 8(b), in which the first
correction term of the correlation coefficients is
represented, we can find quite different features.

The correlation coefficients between the EW12 item
group and EW45 group show clear negative deviation. The
deviation is far greater in magnitude than the numerical
fluctuation that R1 induces.
In other words, although ESJ as a whole demonstrates

coherence between EW45 and EW12, there are a
noteworthy minority of students contributing to the
negative deviation of the correlation coefficients between
the two-item groups, representing confusion or conflict
between them.

IIC.b2. A similar trend is in the correlation coefficients
between the EW12 group and EW3 group in C2,
which may be related to the N2-NF and N3 confusion
pointed out by Law and Wilson [45].

Statements IIC.b1 and IIC.b2 together show that the
distribution is quite different in the direction of the second
principal axis: some negative deviations of the correlation
coefficients are observed between the item groups along the
second principal axis, while positive deviations are along
the first principal axis.

IIC.c1. In C3 of Appendix Fig. 8(c), in which the second
correction term is represented, we see that, although
the correlation coefficients are mostly small in mag-
nitude, there is nevertheless a clear trend: the corre-
lation coefficients between EW3 group and EW45
group show negative deviation. This implies that some
students may experience confusion or conflict regard-
ing the concepts of the two item groups.
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IIC.c2. The correlation coefficients between EW3 group
and EW12 group have a similar trend in C3, but some
elements show weak positive deviation depending on
the items of EW12 group.

Thus, we see that the distribution is quite different also in
the direction of the third principal axis, with some new
negative deviations and some positive deviations between
the item groups appearing.

IIC.d. It is remarkable that the sum of the main three
terms, C123 ≡C1 þC2 þC3, shown in the Appendix
[Fig. 8(d)], closely resembles C. This fact suggests
that the adopted three-dimensional PC space is effec-
tive enough for describing the correlation coefficients
between the examinees’ interitem responses.

The statement IIC.d argues that the three-dimensional
PC space is effective for representing the main structure of
the interitem correlation. At the same time, the statements
IIC.a–c imply that the distribution of score-state vectors in
the three-dimensional PC space has more internal infor-
mation than that from the simple interitem correlation
coefficients of the correlation matrix C.
It is reasonable to suppose that the higher-order terms of

the PC expansion mainly describe what is called “random
fluctuation” of the distribution, and so we look only to the
three-dimensional PC space in the next section to explore
information beyond what is evident from examining the
correlation matrix C alone.

III. NON-NORMAL DISTRIBUTION OF THE
SCORE-STATE VECTORS IN PC SPACE

A. Representation of score-state vectors
in PC space

From the spectral decomposition of the correlation
matrix C in the last section, we understand that the intra-
and inter-correlations in and between the three item groups
have a characteristic structure depending on the direction of
the distribution of score-state vectors.
However, the deviation of the interitem correlation

coefficients from those of artificial inter-item-uncorrelated
samples R1 reveals only partial information about the entire
correlation structure of the score-state vectors of ESJ.
To observe the entire correlation structure in more detail

without losing information, we have to observe the dis-
tribution in the three-dimensional PC space directly.
To represent the distribution itself, we calculate the three

principal-axis components (principal components or PCs
in short) of the score-state vectors. The projection of the
score-state vector sn to the ith principal axis (the ith PC, or i
PC in short) is denoted sin.
The first principal axis shows the direction along which

the distribution of score-state vectors snðn ¼ 1 − NÞ is the
widest (the variance is λ1) and the first eigenvector v1 of C
is the only one in which all elements are of the same
(positive) sign. This indicates that the first PC of the

score-state vector sn [denoted s1n and abstractly denoted s1

(1 PC)] is a suitably weighted sum of the item scores of the
nth examinee.
That is, s1 suitably measures the total score and, by

extension, proficiency in Newtonian mechanics.
The correlation between s1 (which ranges from −5.199

to 6.019) and arithmetically summed total (normalized)
score s (which ranges from −30.33 to 32.72) is 0.996.
The correlation coefficient between s1 and arithmetically
summed total raw score s0 also has the same value of 0.996.
Figure 5 shows the relation between s and s1.
A good correspondence between the arithmetically

summed raw score s0 and the proficiency in IRT has been
confirmed by Wang and Bao [27]. This encourages us to
use the term proficiency for s1 in this paper.
Each of the elements of the first eigenvector v1

represents the weight (in other words, contribution) of
each item to the proficiency. From v1 (Eig. 1) in Table II,
we can see that the EW45 item group on the concept of
force contributes comparatively strongly to proficiency,
suggesting that force is a central concept for under-
standing Newtonian mechanics, as pointed out by
Hestenes et al. [1,2].

B. Non-normal distribution of the score states

In Fig. 6, the entire distribution of score-state vectors
of ESJ is plotted in the space of (a) the second principal axis
(vertical axis) vs the first principal axis (horizontal axis)
and (b) the third principal axis vs the first principal
axis. It is impressive and striking that the distribution is
not symmetric in both subspaces.

FIG. 5. Arithmetically summed total score (s) vs the first
principal-axis-component (s1) of score-state vector.
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More precisely, in Fig. 6(a), the data are densely
aggregated in the left (negative) side of proficiency s1,
with a positive slope starting from the null score state

ðs1; s2Þ ¼ ð−5.119; 1.720Þ. The distribution then snakes
downward at around s1 ¼ −0.5 and widely distributes on
the positive side of proficiency s1. The overall feature of the

FIG. 6. Distribution of the N ¼ 13 768 score-state vectors plotted (a) in the two-dimensional PC space spanned by the second PC (s2)
axis (vertical axis) vs the first PC (s1) axis (horizontal axis), and (b) in the two-dimensional PC space spanned by the third PC (s3) axis vs
the first PC (s1) axis. In (a), the null score-state vector is ðs1; s2Þ ¼ ð−5.119;−1.720Þ, and the perfect score-state vector is
ðs1; s2Þ ¼ ð6.019;−0.835Þ. In (b), the null score-state vector is ðs1; s3Þ ¼ ð−5.119; 1.201Þ, and the perfect score-state vector is
ðs1; s3Þ ¼ ð6.019;−0.063Þ.
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right side distribution gradually converges downward
toward the perfect score state ðs1; s2Þ ¼ ð6.019;−0.835Þ.
In Fig. 6(b), the feature of the distribution is more

characteristic as if it were a snaked fat caterpillar with a fat
tail, a fat body, and a small head from left to right that
snakes twice toward the final goal of the right extreme of
proficiency.
The dense region of data is in the negative area of

proficiency, but this time with a negative slope. The fat
tail part starting from the null score state ðs1; s3Þ ¼
ð−5.119; 1.201Þ directs downward to sink to the negative
area of s3 space at around the origin of s1.
The distribution then snakes to make an upward body of

the fat caterpillar and overshoots up to the positive area of
s3 space at around a value of s1 ¼ 4.5.
The small head part of the distribution then snakes again

downward to correct the overshooting of the fat body
toward the perfect score state ðs1; s3Þ ¼ ð6.019;−0.063Þ.
As a result, in Fig. 6, both the null score state

ðs1; s2; s3Þ ¼ ð−5.199;−1.720; 1.201Þ with the lowest s1

value of −5.119 and the perfect score state ðs1; s2; s3Þ ¼
ð6.019;−0.835;−0.063Þ with the highest s1 value of 6.019
lie off the first principal axis.
In contrast, the corresponding distribution of artificial

score state of R1 (see Fig. 2 in Supplemental Material [44])
exhibits an ellipticlike symmetric global structure, with
both the highest and lowest proficiency score state lying on
the first principal axis [44].
These facts arise from the fact that the distribution of

score state of ESJ is not normal, while the artificial
distribution of the inter-item-uncorrelated samples of R1
is normal except along the first PC axis.
The normal (Gaussian) distribution is the one that is

described by the exponential-type distribution function
∝ exp½−fðq1; q2;…; qsÞ� in which the exponent
fðq1; q2;…; qsÞ has a quadratic form of physical quantities
q1; q2;…, and qs.
For example in the case of one dimension (with one

physical quantity), the exponent is fðqÞ ¼ q2=ð2σ2qÞ, and
the distribution function is characterized by only one
quantity σq; the standard deviation of the distribution that
is the square root of the variance σ2q (which is the second-
order correlation of the distribution) As a result, all
statistically averaged quantities are suitable functions of
only one characteristic value of the standard deviation (and
of the mean when the distribution is not centered).
In the general case of s-dimension, because of the

exponent’s quadratic form, the distribution’s only charac-
teristics are the standard deviations along the distribution’s
principal axes, which determine the covariant matrix
describing the correlation of the second order. As a result,
all statistically averaged quantities are suitable functions of
the correlations of the second order. That is, higher-order
correlations of more than the second order are described by

the correlation of the second order (and of the first order,
describing the mean when the distribution is not centered).
This is the basis of the great advantage of the covariance
analysis in the case of a normal distribution.
In cases where the distribution is non-normal (like the

ESJ), however, we also need to consider correlations of
orders higher than the second order because correlations of
the lower orders are insufficient to describe them.
This fact gives us a warning to many previous analyses

concerning correlation coefficients (covariances in
general) mentioned in Sec. II A: they consider the
correlation of the second order and thus only provide a
perfect description of the entire correlation structure
when the distribution is normal. When the distribution
is not normal, mean(s) and covariance(s)—though still
important—are insufficient to describe the correlation
structure in the distribution.
The parallel analysis of the correlation matrices (shown

in Figs. 2, 8, and 9 in this paper) compared with the
reference of R1 (the inter-item-uncorrelated systems with
normal distribution except along the first PC axis) consid-
ered only the correlation of the second order and so
provided only partial information regarding the non-normal
distribution. That is, we looked only at the correlation
coefficients between two-item scores.
We need to describe higher-order correlations of more

than the second order to describe the entire correlation
structure.
There are many ways in statistics to describe the higher-

order correlations of more than the second order.
The most natural extension from our case is the corre-

lation of three-item scores, four-item scores, five-item
scores, and so on. In that case, we need to calculate a
huge number of probabilities of finding three-item clusters,
four-item clusters, five-item clusters, and so on.
However, doing this step-by-step process is too lengthy

and time-consuming to feasibly describe the comprehen-
sive structure of the correlation in a transparent way.
Instead, we want to choose in this paper a primitive but

strong way of using our eyesight to recognize the phase
structure of highly correlated systems. Our eyes can
efficiently recognize phase structures that are difficult
for analytical approaches and numerical calculations to
recognize.
Our aim at the present stage is to try to understand the

global feature of the students’ nonlinear response caused by
the non-normal distribution of the score-state vectors.
Like in the study of Morris et al., [34,35], we represent in

this paper the entire structure of the distribution in the three-
dimensional PC space without artificially simplifying or
modifying the original data.
We examine the general features of the snaked non-

normal distribution without predicting what function best
characterizes the distribution.
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C. Novice area and transient and expert area
on the first principal axis

In Figs. 6(a) and 6(b), we see a clear snaked structure in
the distribution around the origin of the proficiency. And
so, as a first step, we divide the distribution into two parts,
a left half and a right half.
To consider where to divide the snaked structure, we

calculate a local mean of the second PC of the score-state
vector s2 as a function of s1 [see Fig. 7(a)]. The local mean
of s2, hs2ðs1Þi, is calculated for the local student samples
having the values of s1 in a narrow bin suitably prepared on
the s1 axis and plotted at the local mean of the s1 in the bin.
This plot contains two extreme points: the null score-state
vector and the perfect score-state vector.
The local means of s2 calculated in all bins and at the

extreme points on the s1 axis are combined to draw the
local mean hs2i as a function of s1 on the first principal
axis. In Fig. 7(b), the same is made for the local mean hs3i
as a function of s1.
We refer to these plots as the “spine” of the distribution.

In the case of data that follows an inter-item-uncorrelated
distribution, we would see a spine in Figs. 7(a) and 7(b) that
follows the horizontal lines. With ESJ, however, we see that
this is not the case.
If s2 and s3 do not correlate with s1, both figures

Figs. 7(a) and 7(b) should follow horizontal lines with y
axis values much smaller than the standard deviations
σ2−R1 ¼ 0.893 and σ3−R1 ¼ 0.898, respectively, of R1. We
reconfirm from Figs. 7(a) and 7(b) that both the second PC
of score-state vector (s2) and the third PC of score-state
vector (s3) have snaked structures as the examinees’
proficiency increases along the s1 axis.

We can see a main snaked structure of the spine in the
middle of the s1 axis in both Figs. 7(a) and 7(b) and also see
another diplike snaked structure at almost the top of the s1

axis in Fig. 7(b).
From Fig. 7(a), the starting point of the middle snake of

the spine appears to be around the value of s1 ¼ −1. From
Fig. 7(b), the ending point of the middle snake of the spine
appears to be around the value of s1 ¼ 1.
The narrow area between the two points in the s1 axis

suggests a transient area between the two areas on both
sides that may be called the novice area and the expert area,
respectively. However, it is not easy to describe numerically
the narrow distribution of the transient area separately.
As a first step, we divide the distribution into two,

distinguishing the novice area at the s1 value of −0.5. The
value −0.5, corresponding to the raw total-score rate
between 13=30 and 14=30, is a qualitative threshold
obtained from visual inspection and sufficient to yield this
paper’s qualitative results.
In the analysis that follows, we divide our data into two

subensembles, ESJ1=2 (novice students with an s1 value less
than −0.5) and ESJ2=2 (transient and advanced (expert)
students with an s1 value greater than −0.5).
The division of the total distribution into two

subdistributions—novice and transient and expert—
presents us with a new perspective that we can always
decompose the total ensemble of samples into two sub-
ensembles when the entire ensemble extends sufficiently
over the entire range of the s1 axis.
It is important to mention that novice and/or expert is not

an additional independent quality given to the ensemble of
samples but is rather a label distinguishing the partial areas
(that is, the partial characteristic structures) of the unified
global distribution in the PC space. The characteristic
structure of the distribution plays an essential role in the
study of this paper.
In addition to the main snake structure in both s2 and s3

in the distribution, we observe another snake structure in s3,
a statistical local maximum, in the upper expert area.
We will discuss this again in statement IIIC.b3 of this
subsection below.
For each subensemble, we calculate the eigenvalues and

eigenvectors of the corresponding correlation matrices. The
three main eigenvectors of the correlation matrix of ESJ2=2
(which we labelC2=2) and those of ESJ1=2 (C1=2) are shown
in Tables IV and V, respectively.
These two sets of the three main eigenvectors are

different.
In Table VI, we compare each of the two sets of

eigenvectors with those of the entire ensemble of samples
ESJ by making the inner products between them.
We can check whether two eigenvectors of principal axes

are close or not by checking the angle between the two
eigenvectors. The angle is obtained from the inner product

FIG. 7. (a) Local average of the second PC of score-state vector,
hs2i, as a function of s1. (b) Local average of the third PC
of score-state vector, hs3i, as a function of s1. In both figures,
the null score-state vector and the perfect score-state vector
are plotted to see the two extreme values of hs2i and hs3i,
respectively.
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of them. The smaller the angle, the closer the two
eigenvectors are.
The three main eigenvectors of C2=2 of the transient

and expert students are similar to those of C in Table II.
However, the three main eigenvectors of C1=2 of novices
differ significantly from those of C.
The first eigenvector of C1=2 aligns best with the second

eigenvector of C of the entire ensemble of samples ESJ.
Similarly, the second eigenvector of C1=2 aligns best with
the third eigenvector of C of ESJ, and the third eigenvector
of the novice aligns best with the fourth eigenvector of ESJ.
While the three main principal axes of the transient and

expert subensemble are similar to those of the three-
dimensional ESJ ensemble, the eigenvectors of the novice
subensemble are skewed like a screw.
The skewed structure of the subdistribution of novice

suggests a special and delicate position of the novice states
that cannot be explained by looking only at the weakness of
the correlation coefficients.
The different structure of the distribution between novice

area and transient and expert area has already been

observed in Figs. 6(a), 6(b), 7(a), and 7(b), in the three-
dimensional score-state vector space of the entire ensemble
of systems.
As Hestenes et al. pointed out [2], the analytical result of

FA is ensemble-dependent; that is, the result depends on
what ensemble of samples we are dealing with.
More strictly, FA calculates the quantity, which depends

on the intensity of the local distribution of the score states.

TABLE IV. Three main eigenvectors (Eig.s) of the correlation
matrix C2=2 describing the transient and expert part. The corre-
sponding eigenvalues are, λ1¼3.934, λ2 ¼ 1.939, and λ3 ¼ 1.358.

Eig. 1 Eig. 2 Eig. 3

1 0.1054 0.0171 −0.2856
2 0.1351 −0.0779 −0.2451
3 0.0555 0.1228 −0.0314
4 0.1343 −0.1790 −0.4420
5 0.2743 −0.2346 0.2263
6 0.1210 0.1301 −0.0768
7 0.1438 0.0297 −0.0641
8 0.1484 0.1730 0.0662
9 0.1798 0.1653 0.0458
10 0.1058 0.1025 0.0230
11 0.1827 −0.1278 0.2957
12 0.0999 0.0734 0.0198
13 0.3154 −0.1803 0.1565
14 0.1763 0.1682 0.0040
15 0.0505 −0.2131 −0.4011
16 0.1378 −0.1918 −0.0798
17 0.2355 −0.2078 −0.0608
18 0.2468 −0.2648 0.2936
19 0.1146 0.1856 −0.0392
20 0.1339 0.1705 −0.0658
21 0.1881 0.2696 0.0026
22 0.2017 0.2743 −0.0389
23 0.2027 0.3785 0.0098
24 0.1307 0.2808 −0.0548
25 0.2842 −0.1395 −0.0300
26 0.2928 −0.0451 −0.0660
27 0.1362 0.2050 −0.0414
28 0.1354 −0.0930 −0.4298
29 −0.0268 −0.1111 0.0119
30 0.3037 −0.0997 0.1485

TABLE V. Three main eigenvectors (Eig.s) of the correlation
matrix C1=2 describing the novice part. The corresponding
eigenvalues are, λ1 ¼ 1.9585, λ2 ¼ 1.5833, and λ3 ¼ 1.2832.

Eig. 1 Eig. 2 Eig. 3

1 0.2257 −0.1758 −0.2606
2 0.0748 −0.1686 −0.3933
3 0.2114 −0.0361 0.0069
4 0.0805 −0.3936 0.0102
5 −0.2015 −0.0377 −0.0189
6 0.1438 −0.0221 −0.2797
7 0.0993 0.0282 −0.0192
8 0.1447 0.0272 0.3015
9 0.1135 0.1656 0.4400
10 0.3458 −0.1701 −0.1217
11 −0.0446 −0.0808 0.0767
12 0.1880 −0.0157 −0.0806
13 −0.1481 −0.0892 −0.1648
14 0.1450 0.0378 0.2047
15 0.0117 −0.4755 0.1499
16 0.0241 −0.4208 0.2982
17 −0.1975 −0.2418 0.1586
18 −0.1818 −0.1036 0.0342
19 0.3190 0.1194 0.1230
20 0.2762 0.0660 0.1860
21 0.1339 0.1278 0.1170
22 0.0733 0.0758 −0.0079
23 0.1233 0.1044 −0.0870
24 0.3046 −0.0254 −0.2117
25 −0.1797 −0.1675 0.1119
26 −0.0637 −0.0181 0.0521
27 0.2133 0.1598 0.0414
28 0.2463 −0.3351 −0.0066
29 0.1758 −0.1285 0.1932
30 −0.1788 −0.0332 −0.0986

TABLE VI. Inner products between each of the main three
eigenvectors (Eig.s) of novice (Nov) and transient and expert
(T&E), and the four main eigenvectors (Eig.s) of the entire
ensemble of samples ESJ.

Eig. 1 Eig. 2 Eig. 3 Eig. 4

Eig.1-Nov 0.353 0.863 −0.326 0.035
Eig.2-Nov −0.385 0.428 0.737 0.059
Eig.3-Nov 0.148 −0.047 0.132 0.715
Eig.1-T&E 0.959 −0.171 0.193 −0.068
Eig.2-T&E 0.071 0.891 0.395 −0.101
Eig.3-T&E −0.127 −0.183 0.681 0.364
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When we deal with an ensemble of samples that are
primarily of novice learners, we get a different FA result
from those obtained from an ensemble of samples that are
primarily of expert students.
The above-mentioned characteristic structure of the non-

normal distribution of students’ score states of the FCI is
the origin of a long-term discussion given first by Huffman
and Heller [2,17,19,23]. A linear analysis of FA is a
sophisticated and powerful method of statistical analysis
for an ensemble of samples with normal distribution, but it
is insufficient in the case of non-normal data like what is
produced with the FCI.
Two correlation matrices C1=2 and C2=2 are shown in the

Appendix [Figs. 9(a) and 9(b)], respectively, to describe the
deviation from those of the inter-item-uncorrelated ensem-
ble R1, though the deviation only predicts what happens
within the correlation of the second order in the case of
non-normal distribution.
In both figures, clear deviation of the correlation coef-

ficients is colored based on the numerical data of the
corresponding reference correlation matrices C1=2−R1 and
C2=2−R1 of R1, respectively. The two reference matrices
C1=2−R1 and C2=2−R1 are made from the novice part and the
transient and expert part of the ensemble of the inter-item-
uncorrelated random samples R1, respectively.
The averages of the uniformly distributed off-diagonal

matrix elements and their standard deviations are listed in
Table I in Supplemental Material [44], with those of CR1
themselves.
Appendix Fig. 9(a) shows the correlation matrix C1=2

of the novice subensemble. For novices, the correlations
between items are weak, reflecting weak coherence in the
students’ responses to the items. However, the correlations
have a clear structure, as we specify in the following notes.

IIIC.a1. The EW3 item group has a comparatively good
intragroup correlation despite the weakness of the
values, suggesting that novices are fairly consistent in
responding to questions on the action-reaction law in a
way that demonstrates naive concepts.

IIIC.a2. Correlation coefficients between the EW45 item
group and EW12 are weak but show clear negative
deviation from those of R1, suggesting some con-
fusion or conflict between the individual student’s
understanding of the items of EW45 on the concept of
force and that of the items of EW12.

A similar trend exists between the EW45 item group and
EW3 item group.
Remarkably, these negative deviations are different from

the correlation in Fig. 2. In Fig. 2, there are positive
deviations of the correlation coefficients between EW45
and the others (EW12 and EW3). This suggests a specific
situation of the minds of novice students.

IIIC.a3. The EW3 item group and EW12 item group are
similarly dominated by negative deviations.

From Appendix Fig. 9(b) of C2=2, we can see the
following in the transient and expert area:

IIIC.b1. Like in the entire correlation shown in Fig. 2, the
EW45 item group has a good intragroup correlation,
showing a large coherence in the individual student’s
understanding of the eight items of the EW45 item
group on the concept of force.

IIIC.b2. There is a weak but positive coherence between
the EW45 item group and both the EW12 and EW3
item groups, as shown in Fig. 2.

IIIC.b3. The negative deviation between the EW3 group
and the EW12 group is remarkable and stronger than
that in the entire correlation observed in Fig. 2. This
suggests that the N2-NF and N3 confusion pointed out
by Law and Wilson [45] is the most pronounced in the
transient and expert area. Law and Wilson pointed out
from their FCI data that as students come to under-
stand the connection of net force to acceleration in
Newton’s equation of motion (N2-NF), they begin to
be confused about understanding the action-reaction
law (N3) in the process of comprehending the two
concepts in their minds.

IV. CONCLUDING REMARKS AND DISCUSSION

This paper summarizes and extends four research reports
presented in the annual and semiannual meetings of the
Physical Society and Physics Education Society of Japan
held from 2019 to 2021 [47–50].
In this paper, we have described the entire structure of

students’ states of understanding of the force concept by
tracing students’ correct-incorrect responses to the 30 items
of the FCI without losing the structural information of the
non-normal distribution of the students’ score states.
We first defined a 30-dimensional score-state vector that

consists of a student’s correct-incorrect responses to the
30 FCI items. By projecting the score-state vectors of an
assembly of N ¼ 13 768 Japanese students into a suitable
low-dimensional vector space spanned by the principal
axes of the correlation matrix, we found a characteristic
feature of the non-normal distribution of the score-state
vectors (Figs. 6 and 7).
The distribution has two snakes: a main snake and a

small, diplike snake. The entire distribution is roughly
divided into two subdistributions, which correspond to
novice students and transient and expert students.
The first (second) eigenvector of the correlation matrix

for the novices aligns best with the second (third) eigen-
vector of the entire ensemble of respondents, making a
screwlike rotation.
Former research has shown marked differences in

answering patterns on the FCI between novice and expert
students. For example, factor-loading vectors of FA depend
upon whether the ensemble of samples is novicelike or
expertlike. At the same time, research has also shown
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global features of response patterns—such as IRC
characteristics—that are shared between students in
Japan and in the USA, as well as between high school
students and university students.
We thus suspect that the “snaked” and “skewed” non-

normal structure we found in Figs. 6 and 7 is a fundamental
one that is independent of nationality and learning history.
When the distribution of students’ score states is non-

normal, we must take care in describing the entire structure
of the correlation between item scores and between factors.
The correlation coefficient between two physical quantities
is usually useful but is not sufficient to describe the full
structure of students’ score states, as they form a non-
normal distribution with higher-order correlations of more
than the second order.
Because sophisticated analysis and modeling invariably

involve losing information in extracting the essence of what
is to be modeled, we must first return, as we did so in this
paper, to a more primitive approach of treating the data as
they are. In doing so, we observed the distribution of
students’ states to be snaked and skewed.
In this paper, we took two approaches to describe the

higher-order correlation.
Our first approach was to use our eyes to observe the

entire range of the students’ score-state vectors. This
allowed us to identify that the distribution is non-normal
and that it is composed of two characteristic subdistribu-
tions, distinguishing novice students and expert students in
the PC space. It also allowed us to find the “snaked” and
“skewed” structure of the distribution.
We expect that more characteristics can be found from

the direct observation of the non-normal distribution.
The principal axes were determined on the basis of the

principal components analysis (PCA). We confirmed the
validity of this approach by checking for a rough corre-
spondence between PCA and CFA in the three-dimensional
PC space. We also confirmed that the sum of the three main
terms of the PC expansion of the correlation matrix nearly
comprises the correlation matrix itself.
In addition, we observed that the PC expansion revealed

the internal structure of the correlation that is not observed
directly in the correlation coefficients of the entire sample
systems.
We expect that these internal structures of the correlation

matrix are a key to the further study of the more detailed
structure of the correlation.
Our second approach of describing the higher-order

correlation was to observe the deviation of the second-
order correlation from that of the ideal inter-item-
uncorrelated (for individuals) ensemble of samples R1.
For this purpose, we made a parallel analysis of the

correlation matrices to see how our real samples with non-
normal distribution compare with those of R1.
Specifically, we observed that our interitem correlation

coefficients (correlation matrix) deviate from those of R1.

The main observations are in the statements IIB.1–3,
IIC.a–c, and IIIC.a-b. Broadly speaking, positive deviations
of the interitem correlations (indicating intra- and inter-
item-group correlations) of our data from those of R1
represent coherence; negative deviations represent confu-
sion and conflicts between ideas in the minds of individual
learners.
An important position of the concept of force pointed out

by Hestenes et al. [1,2] is observed in these statements with
Table II. The EW45 item group is of central importance and
is correlated with the other two-item groups, EW12 and
EW3, positively and, in some cases, even negatively. Some
of the negative and positive deviations of the correlations
from those of R1 have been discussed extensively by Law
and Wilson [45].
We anticipate that further study of the positive and

negative deviations of the correlations from those of R1
will give us a deeper understanding of the students’ states of
understanding Newtonian mechanics.
The PCA-based representation of the score-state vector

is a promising means to describe the students’ states. We
can extend the analysis by expanding the dimensions of the
representative space to more than three. Then we can expect
to realize the relation between the correlation structure of
this approach and Hestenes et al.’s six-dimensional axes of
the force concept of Newtonian mechanics, accompanied
by the corresponding misconceptions [1,2], more clearly.
An advantage of the PCA-based approach is that, even

when we extend the dimensions to more than three, all the
results obtained in the three-dimensional PC space in this
paper survive without any change as long as we use the
orthonormal set of the principal axes.
In exploring the PC space, we found that the first principal

axis serves as a proxy for proficiency in understanding the
“force concept” of Newtonian mechanics. This suggests that
we can consider the distribution to represent a statistically
growing process. However, we need to clarify what the
second and third principal axes describe to proceed in this
direction. The factor-loading vectors obtained by Eaton and
Willoughby provide us with a good suggestion [23], but
we need to clarify them in the three-dimensional PC space.
We will discuss this issue in a future paper.
To better understand the in-brain mechanics of student

learning, it is necessary to deepen our understanding of
the snaked and skewed distribution of the students’ score
states.
In separating the ensemble of score states into novice

and intermediate and expert subpopulations, we suspect
that the expert area is relatively easy to model and
aligns well with previous publications in physics edu-
cation research.
However, the novice area and transient area seem much

more complicated and have not been studied enough [51].
In the Appendix, Fig. 9(a) shows that, in the novice area,

there are negative deviations that do not appear in the
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transient and expert area. Furthermore, as is shown in
Table VI, the score-state distribution of the novices is
skewed to the distribution of the transient and expert.
Furthermore, the components of the first eigenvector (the
first principal axis) of the novice subdistribution do not
have the same sign and seem to have some characteristic
structure in them, as seen in Table V.
These suggest that the proficiency of novices, more

correctly described along the first principal axis of the
novice subdistribution, is not simple. The complicated
structure of the distribution in the novice area cannot be
understood by only the low correlation coefficients
between item scores in the novice area.
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APPENDIX: ADDITIONAL CORRELATION
MATRICES

The main three terms (C1, C2, and C3) of the spectral
decomposition of the correlation matrix C of the ensemble
of samples ESJ are shown in Fig. 8. Figures 8(a)–8(c) show
the first, second, and third terms (C1, C2, and C3),
respectively, of the decomposition of C.
The correlation matrices C1=2 of novices and C2=2 of

transient and expert of ESJ are shown in Fig. 9. They are
made by dividing the entire ensemble of score-state vectors
of ESJ into two, depending on whether the first principal
component of the score-state vector is less than −0.5 or
more than −0.5, respectively. The value of −0.5 corre-
sponds to the raw total-score rate of about 14=30.
The corresponding two inter-item-uncorrelated samples

are made by dividing R1 into two, keeping the total-score
distributions of novice and transient and expert, respec-
tively, the same as those of C1=2 and C2=2.
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FIG. 8. (Continued)
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FIG. 8. (a) First term, (b) second term, (c) third term, and (d) sum of the three terms, of the PC expansion of the correlation matrix C.
The order of item (Q) number has been arranged to classify the three item groups EW12, EW3, and EW45, and the other four items of
EWe are omitted except for (d). The warm colors are put on the correlation coefficients that deviate from the mean value of the
corresponding PC expansion of CR1 (C1−R1, C2−R1, or C3−R1) or CR1 itself positively more than [in (a), (b), and (d), more than double
of] the standard deviation of the corresponding PC expansion of CR1 or CR1 itself. The cool colors with lateral stripes are put on them
that deviate from the corresponding mean value mentioned above negatively more than [in (a), (b), and (d), more than double of] the
corresponding standard deviation, respectively.
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FIG. 9. Correlation matrices of (a) novice (C1=2) and (b) transient and expert (C2=2), made by dividing the entire ESJ samples into two,
depending on the total score s1 less than or more than −0.5 (corresponding to the raw total-score rate about 14=30). The item number
(Q) has been ordered to classify the three item groups EW12, EW3, and EW45, and the other four items of EWe are omitted. The warm
collars are put on the correlation coefficients that deviate from the mean value of the corresponding correlation matrix ofCR1 (C1=2−R1 or
C2=2−R1) positively more than double the standard deviation of C1=2−R1 or C2=2−R1, respectively. The cool colors with lateral stripes are
put on them that deviate from the corresponding mean value mentioned above negatively more than double the corresponding standard
deviation, respectively.
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