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Landscapes and nonequilibrium fluctuations of eukaryotic gene regulation
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Understanding the interplay among processes that occur over different timescales is a challenging issue in the
physics of systems regulation. In gene regulation, the timescales for changes in chromatin states can differ from
those for changes in the concentration of product protein, raising questions about how to understand their coupled
dynamics. In this study, we examine the effects of these different timescales on eukaryotic gene regulation
using a stochastic model that describes the landscapes and probability currents of nonequilibrium fluctuations.
This model shows that slow, nonadiabatic transitions of chromatin states significantly impact gene-regulation
dynamics. The simulated circular flow of the probability currents indicates a maximum entropy production when
the rates of chromatin-state transitions are low in the intensely nonadiabatic regime. In the mildly nonadiabatic
regime, this circular flow fosters hysteresis, suggesting that changes in chromatin states precede changes in
transcription activity. Furthermore, calculations using a model of a circuit involving three core genes in mouse
embryonic stem cells illustrate how the timescale difference can tune fluctuations in individual genes. These
findings highlight the rich effects of nonadiabatic chromatin-state transitions on gene regulation in eukaryotic
cells.

DOI: 10.1103/xpm2-md6d

I. INTRODUCTION

The coupling of processes with different rates or different
timescales is ubiquitous in regulation mechanisms of natural
and artificial systems [1–6]. Gene regulation is an example
of such coupling; the gene activity, or the rate at which the
product protein concentration varies, depends on how the
chromatin state is modified at different rates. To understand
the effects of the rate difference between changes in the
protein concentration and the chromatin state, we define the
adiabaticity parameter,

ω = rate of the chromatin-state change

rate of the protein-concentration change
,

= timescale of the protein-concentration change

timescale of the chromatin-state change
. (1)

Using an analogy from condensed-matter physics, we refer to
the system as adiabatic when ω > 1 and nonadiabatic when
ω < 1 [7,8].

The difference between adiabatic and nonadiabatic limits
can be explained concisely using a landscape picture, which
illustrates system dynamics as the movements of the system
over landscapes that represent stationary distributions. In the
nonadiabatic limit of ω � 1, transitions of chromatin between
the active and inactive states are infrequent enough to treat
the two chromatin states separately. For example, when the
chromatin state is kept active (or inactive) with a Poissonian
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process of protein synthesis, the probability distribution P(p)
that cells exhibit the product protein concentration p in each
chromatin state should approach a stationary Gaussian-like
distribution. The landscape defined by U (p) = − log P(p)
then forms a parabola. After the probability distribution be-
comes stationary, there remain nonequilibrium fluctuations
seen in the dynamic system’s trajectories over the landscapes.
In the nonadiabatic limit, these fluctuations are diffusion
over each parabola associated with infrequent jumps between
two parabolas [Fig. 1(a)]. In the adiabatic limit of ω � 1,
however, the chromatin-state transitions are so frequent that
the landscape is effectively averaged between the two states;
the fluctuations are diffusion over this averaged landscape
[Fig. 1(b)]. It is interesting to examine the mildly nonadiabatic
regime of 0.1 � ω � 1, where the rates of transitions and
diffusion are comparable, showing the complex pattern of
dynamic trajectories [Fig. 1(c)]. This complex movement was
referred to as “eddy” [8], which was systematically analyzed
with a perturbation theory [9] and an exactly solvable model
[10]. While the diffusive movements in the cases of ω � 1
and ω � 1 resemble fluctuations in equilibrium, simplistic
analogies to equilibrium are invalid in the regime of 0.1 �
ω � 1; therefore, we expect the nonequilibrium features of
the gene-switching dynamics to be most evident in this eddy
regime.

In Fig. 1, we illustrated the coupled dynamics of the
chromatin-state change and the protein-concentration change
using multiple landscapes corresponding to multiple discrete
states of chromatin. By interpreting the transitions between
these discrete states of chromatin as changes in continu-
ous variables, and by considering an extended landscape
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FIG. 1. Landscapes explaining the gene expression dynamics.
(a) In the nonadiabatic limit of ω � 1, the two chromatin states
are separately described by the active-state landscape (blue) and the
inactive-state landscape (red), and the system dynamics are diffusion
over each landscape and the infrequent jumps between two land-
scapes. (b) In the adiabatic limit of ω � 1, the active and inactive
states are averaged to give rise to the averaged landscape (black).
Dynamics are diffusion over this averaged landscape. (c) In the
mildly nonadiabatic case of 0.1 � ω � 1, the frequency of jumps
and the diffusion rate are comparable, showing an eddy of probability
flow.

that encompasses both chromatin-state changes and protein-
concentration changes, the eddy dynamics can be represented
as probability currents over this extended landscape [11–13].
This extended landscape approach provides a physically intu-
itive description of the eddy dynamics, which we also adopt
in the present study.

In studies of bacterial cells, the concept of an adiabatic
limit has been widely applied [14]. This adiabatic framework
is based on the assumption that the rapid binding/unbinding
of transcription factors (TFs) to/from DNA (≈10 s) [15] deter-
mines the bacterial chromatin state. The timescale for changes
in protein concentration is comparable to the cell cycle pe-
riod (≈103 s) [16], leading to a ratio of ω ≈ 100, which
was thought to validate the adiabatic limit assumption [14].
However, several intriguing nonadiabatic phenomena have
been observed in bacterial systems. For example, comparing
Figs. 1(a) and 1(b) suggests that the number of basins in
the landscape increases as ω decreases. This trend has been
confirmed through experimental manipulations of the binding
lifetime of λ-repressor [17] and tet-repressor [18] on bacterial
DNA. Moreover, nonadiabatic effects on cell-fate decisions
have been emphasized in Bacillus subtilis [19]. In Escherichia
coli cells, single-cell measurements have shown that bursting
transitions between active and inactive transcription occur on
a timescale of 102 to 103 s [20]. These bursting transitions
suggest that not only the rapid TF binding/unbinding but also
the slower structural changes in bacterial chromatin play a role
in chromatin-state transitions. This leads to a mild adiabatic-
ity in the range of 1 � ω � 10, challenging the conventional
assumption of an adiabatic limit. Therefore, it is essential to
carefully examine the concepts of adiabaticity and nonadia-
baticity in bacterial systems.

Nonadiabaticity is evident in eukaryotic cells, where
changes in chromatin states occur due to slow epigenetic
modifications of histones. In particular, histone modifications
such as methylation/demethylation of lysine 9 of histone H3
(H3K9) or lysine 27 of H3 (H3K27) take place over the
course of several cell cycles [21,22], with a typical cell cy-
cle period of about 10 ∼ 20 h. In eukaryotic cells, protein

concentrations often change due to biochemically regu-
lated active degradation that proceeds on a timescale of
2 ∼ 10 h [23,24], leading to a ratio of ω ≈ 0.1. As a result,
eukaryotic genes are typically nonadiabatic [13,17,25–28].
Consequently, in these cells, the eddy dynamics can have a
significant impact on gene switching and subsequent cell-fate
decisions [13,25,26]. To better understand this phenomenon,
a comprehensive analysis using various experimental and the-
oretical approaches is required. In this study, we take a step
toward this goal by investigating the physical principles un-
derlying the eddy dynamics through a model of eukaryotic
gene circuits. We extend the previously developed model for
a single eukaryotic gene [13] to encompass circuits composed
of multiple genes. We apply this model to the problem of fluc-
tuations in gene switching in mouse embryonic stem (mES)
cells. Our findings suggest that the timescale difference in
gene regulation can flexibly manage fluctuations in the gene
circuit.

Eukaryotic chromatin is regulated by various overlapping
mechanisms, involving different types of histone modifica-
tions and the structural organization of chromatin at multiple
spatial scales. We enhance our model by incorporating
multiple degrees of freedom to describe overlapping mech-
anisms. This extension provides insight into the hypothesis of
timescale separation in chromatin regulation and suggests a
method for testing the hypothesis.

II. PHYSICAL MODEL OF EUKARYOTIC
GENE REGULATION

In this section, we present a model of eukaryotic gene reg-
ulation that emphasizes the differences in timescales between
transitions in states of DNA and chromatin and changes in
protein concentration. The states of DNA and chromatin of
the ith gene in the circuit are described using the variables xi

and yi, respectively. Here, xi represents the binding status of
TFs on the gene’s enhancer, while yi represents the chemical
modifications of histones within the chromatin domain that
contains the enhancer and promoter of the ith gene. The pro-
tein concentration is denoted as pi. See Fig. 2 for the model
scheme.

We utilize the adiabatic approximation to derive the TF-
binding state xi, as explained in Sec. II A. Therefore, the
variables we focus on in our integration of the equations of
nonadiabatic dynamics are the histone modification pattern yi

and the protein concentration pi.

A. Variables and parameters in the model

1. Protein synthesis and degradation

The ith gene produces a protein at a rate of gxy, resulting in
the protein concentration pi. The produced protein is degraded
with a timescale of 1/k = 2 ∼ 10 h [23,24]. We consider 1/k
as a typical timescale to change pi.

In the present model, protein production is described as a
stochastic process based on the following considerations: (1)
In eukaryotic cells, mRNA is transcribed with bursting reac-
tions [29–31], but the bursting timescale of 102 ∼ 103 s [31]
is shorter than 1/k. Therefore, we consider transcription to be
a continuous stochastic process within our relevant timescale

044401-2



LANDSCAPES AND NONEQUILIBRIUM FLUCTUATIONS … PHYSICAL REVIEW E 112, 044401 (2025)

FIG. 2. Model of eukaryotic gene regulation. The enhancer of
an example gene, indexed by i, binds a specific transcription factor
(TF) with a concentration denoted as q at a rate h(q) and unbinds it
at a rate f . The likelihood of TFs binding to the gene’s enhancer is
represented by xi(q). The chromatin state yi represents modifications
of histones in nucleosomes within the chromatin domain to which
the gene’s enhancer and promoter belong. The rate ryy′

i of change
from one chromatin state y′

i to another state yi is a function of xi,

denoted as ryy′
i (xi ). The gene produces a protein with a concentration

pi, which degrades with a rate constant k. Processes such as the
formation of the transcription-initiation complex (depicted in gray),
bursting transcription, translation, and transport are combined into
a single process characterized by a rate denoted as gxiyi . The model
can be further extended to include cases where multiple TFs with
concentrations {q} = q1, q2, . . . bind to the enhancer of the gene.

of 1/k as a first approximation. We will consider transcription
bursting explicitly in Sec. V. (2) Processes of mRNA editing,
export, and translation, which are involved in protein produc-
tion, should have shorter timescales than 1/k. (3) We focus on
sufficiently small proteins that can pass through the nuclear
pore without significant delay. Based on points (1), (2), and
(3), we adopt a simplified description of protein production as
a single-step process occurring at the rate gxy. In this notation,
the indices x and y represent the DNA and chromatin states:
x = 1 (or x = 0) when the TF binds to (or unbinds from) the
enhancer of the gene, and y = 1 (or y = −1) when the histone
modification pattern in the chromatin domain containing the
gene is active (or inactive). The rate constants used in our
model, along with other parameters, are summarized in Ta-
ble I.

We define the volume of the region containing the chro-
matin domain of interest as �. Given a typical protein
concentration p̄ as p̄ = g11/(k�) when the TF acts as an
activator and p̄ = g01/(k�) when the TF acts as a repressor,
we anticipate that the protein concentration pi will fall within
the range 0 � pi � p̄. As the typical protein concentration

p̄ significantly influences behaviors of gene circuits, we will
explore a range of values for p̄ in this study.

2. TF binding and unbinding

The binding status of a specific TF on the enhancer of the
ith gene is denoted as xi, which plays a crucial role in deter-
mining the probability of forming the transcription-initiation
complex and the resulting protein-synthesis rate gxiyi . We
write xi = 1 when the TF is bound on the enhancer and xi = 0
when unbound. Then, g1y > g0y when the TF is an activator
and g1y < g0y when the TF is a repressor.

We denote the binding rate of the TF to the enhancer as
h(q), with q being the TF concentration, and the unbinding
rate as f . To examine the dynamic effects of the gene on
circuit performance, we consider a scenario where xi is not
maintained to 1 or 0. This is facilitated by frequent and alter-
nating binding and unbinding events with h ≈ f . As a result,
the timescale for binding, represented by 1/h, is similar to
the timescale for unbinding, 1/ f . This timescale determines
the TF’s binding lifetime on chromatin, which has been esti-
mated to be 1/ f = 1 ∼ 10 s [32,33]. Therefore, the timescales
of binding and unbinding are significantly shorter than the
timescale for changes in protein concentration, 1/k = 2 ∼
10 h [23,24]. The rapid transitions in TF binding and unbind-
ing allow for the use of the adiabatic approximation, leading
to the effective equilibration of xi. We use the average value of
xi in this effective equilibrium as xi = h/( f + h) and regard xi

as a continuous variable of 0 � xi � 1 [14].
In scenarios where the system includes multiple TFs, we

define their concentrations as {q} = q1, q2, . . .. When the jth
TF binds to the enhancer of the ith gene, we denote the
binding rate as hi j = hi j (q j ) and the unbinding rate as f i j . The
binding state of the jth TF on the enhancer of the ith gene is
represented by xi j (q j ). The adiabatic approximation allows us
to express this as xi j (q j ) = hi j/( f i j + hi j (q j )). In this study,
we consider that all the activator TFs bound to the enhancer
of gene i are essential for expressing that gene, resembling
the behavior of an AND gate. Therefore, we define the TF-
binding state of the ith gene as xi = xi({q}) = ∏

j xi j (q j ).
Although the model can be applied to other scenarios, such
as OR, NOR, and others, we use AND gates in the current
study as examples to examine the effects of nonadiabaticity in
gene regulation.

3. Chemical modifications of histones

The variable yi represents whether the chemical modifica-
tion of histones in a chromatin domain to which the ith gene
belongs is of the active (yi = 1) or inactive (yi = −1) type. As
transitions in the histone modification patterns can be slower
than changes in the protein concentration, we explore the
nonadiabatic dynamics of yi explicitly in the current model.

In many eukaryotic genomes, submegabase (Mb) regions
of the chromatin chain are condensed into topologically asso-
ciating domains (TADs) [34], which we refer to as “chromatin
domains” or simply “domains.” These domains serve as func-
tional units and display specific histone modification patterns
that reflect the activity of the genes within them [34]. The
chemical modifications of histones in the domain significantly
affect the degree of chromatin domain condensation; domains
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TABLE I. Parameters in the model of eukaryotic gene regulation.

Parameters explored in a wide range Values References/notes

Adiabaticity ω 10−3 � ω � 102 0.1 � ω ∼ ryy′
i /k � 10 from the

estimation of ryy′
i and k.

Typical concentration p̄ 0 < p̄ < 10 ξ11 = p̄ when the TF is an activator.
ξ01 = p̄ when the TF is a repressor.

Other parameters Values References/notes

Rate constant of protein degradation k 1 1/k is used as the unit of time.
1/k = 2 ∼ 10 h [23,24]

Rate of protein synthesis at the TF
binding state x and the chromatin
state y

gxy gxy = ξxyk� ξxy is given in Table II.

Volume surrounding chromatin � 102 Typical copy number of the protein ≈ p̄�

Ratio of
(binding-rate)/(unbinding-rate)
of TF

h/ f h0 p2/ f (Circuit A)
h0 p2

i / f (Circuit B)
h0 p1 p2/ f , h1 p1 p2

3/ f (Circuit C)

Values of h0/ f and h1/ f are in Table II, which
were chosen to make h ≈ f when pi = p̄.

f ∼ 10−1–100 s−1 [32,33]

ryy′
i ∼ 10−2–10−1 h−1 for collective histone

Transition rate of chromatin state ryy′
i ryy′

i = ωi r̄yy′
Eq. (2) methylation/demethylation [21,22].

from y′ to y around the ith gene r̄yy′ = μyy′ + γ yy′
xi Eq. (3) ryy′

i ∼ 100–101 h−1 for local histone
acetylation/deacetylation [22].

μyy′
and γ yy′

in the model are given in Table II.

with the inactive histone modifications are more condensed
than domains with the active histone modifications [35,36].
The degree of domain condensation determines the acces-
sibility of RNA polymerase and related large-sized factors
to DNA [36,37]. Thus, swiching in the histone modification
pattern yi of the domain i leads to a large difference in the
protein-synthesis rate gxiyi as gxi−1 � gxi1.

The kinetics of chemical modifications of histones were
quantitatively assessed by recruiting regulatory factors to tar-
geted chromatin regions near specific promoters in mouse and
Chinese hamster cells [21,22]. These measurements indicated
that histone modifications occur at individual nucleosomes
within a few hours [21]. Moreover, individual nucleosomes
in eukaryotic cells are replaced on a timescale of hours [38],
which also defines the rate of individual histone modifications.

The timescale of chromatin-state transitions depends on
whether histone acetylation and deacetylation near the pro-
moter determine transcription activity, or if domain-wide
patterns of histone methylation and demethylation dictate
this activity. In the latter scenario, multiple interacting nu-
cleosomes can collectively modify their methylation patterns
through the spreading of methylation within a chromatin do-
main. This collective modification process takes longer time
than modifications at individual nucleosomes [21,39–43].
Regardless of whether local acetylation and deacetylation in-
fluence transcription activity or if domain-wide methylation
and demethylation play a role, these histone modifications
have been shown to lead to all-or-none switching in tran-
scription activity [21,22]. In this study, we emphasize this
switching as a transition in the variable yi, and we refer to
the states represented by yi as the “chromatin states.”

Here, we define the parameters r̄yy′
of the order of k to char-

acterize transitions of chromatin state yi. Then, the transition
rate ryy′

i from one chromatin state y′ to the other y at the ith

gene is defined as

ryy′
i = ωi r̄

yy′
. (2)

Thus, ryy′
i is explicitly scaled by the adiabaticity parameter ωi,

showing ryy′
i = O(ωik).

When the enhancement and disappearance of activating
histone acetylation near the promoter play a crucial role,
the measured timescales 1/ryy′

i were in hours [22]. When
the chromatin state is primarily influenced by the spreading
and disappearance of repressive histone methylation, these
timescales can extend over a few days [21,22]. Considering
these two scenarios together, the adiabaticity of chromatin
state transitions is in the range of 0.1 � ωi � 10. While such
adiabatic (1 � ωi � 10) or eddy-regime (0.1 � ωi � 1) val-
ues of adiabaticity seem reasonable for eukaryotic cells, we
aim to explore a wider range of ωi values in this study. This
includes both strongly adiabatic (ωi � 1) and strongly nona-
diabatic (ωi � 1) cases to better understand the dynamics in
the eddy regime.

Thus, we examine the circuit dynamics by varying the
parameters p̄ and ωi, while other parameters are fixed to
plausible values as experimentally suggested or chosen for
simplicity in our simulations as explained in Tables I and II.

4. Coupling between the histone and TF-binding states

The binding and unbinding rates, represented by h and f ,
determine the TF-binding state xi. In the current model, we
focus on scenarios where h or f does not explicitly depend
on the condensation level of the chromatin domain yi. This
lack of dependence is expected when the size of the TFs is
sufficiently small, as seen in the case of pioneer factors [44].
However, the relationship between yi and xi is significant, as
transitions in yi are influenced by xi as explained below.
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TABLE II. Parameters used in each circuit.

Parameters Circuit A Circuit B Circuit C

Coefficients used in μ0−1 k k k

r̄yy′
i (xi ) = μyy′ + γ yy′

xi

Eq. (3)
μ10 k k 2k

determining the
transition rate

μ01 k k k

from a chromatin state
y′ to the other y

μ−10 k k 2k

γ 0−1 0.6k −0.6k k
γ 10 0.6k −0.6k k
γ 01 −0.6k 0.6k −k
γ −10 −0.6k 0.6k −k

TF binding/unbinding h0/ f 10 10 10
parameter ratio h1/ f – – 200

Normalized
protein-synthesis rate

ξ11 p̄ 0.2 p̄

ξxy = gxy/(k�) ξ01 0.2 p̄ 0.2
at the TF-binding state
x

ξ10 0.2 0 0.5

and the chromatin ξ00 0 0.2 0
state y ξ1−1 0 0 0

ξ0−1 0 0 0

The chromatin chain that interacts with activating TFs
(activators) recruits histone acetylases. These enzymes al-
ter histone modifications to create an active chromatin state.
Conversely, the actions of histone methyltransferases become
dominant on the chromatin chain associated with repressive
TFs (repressors), which convert the chromatin to an inactive
state [45,46]. Thus, the normalized rates r̄yy′

and rates ryy′
i of

chromatin-state transitions depend on the TF-binding status
xi as r̄yy′

(xi ) and ryy′
i (xi ). To simplify this, we apply a first-

order approximation regarding the dependence on xi. Using
coefficients μyy′ � 0 and γ yy′

of the order of k, we write

r̄yy′
(xi ) = μyy′ + γ yy′

xi. (3)

When the TF is an activator, coefficients for activating
transitions are γ 10 ≈ γ 0−1 > 0 and those for inactivating tran-
sitions are γ −10 ≈ γ 01 < 0. When the TF is a repressor, γ yy′

has the opposite sign as γ 10 ≈ γ 0−1 < 0 and γ −10 ≈ γ 01 > 0.
Values of μyy′

and γ yy′
used in the current study are summa-

rized in Table II.
Once those μyy′

and γ yy′
are given, the adiabaticity pa-

rameter ωi determines how the chromatin-state transition rate
ryy′

i (xi ) depends on the TF-binding state xi through Eqs. (2)
and (3). Since the protein concentration pi depends on both
xi and yi via the protein-synthesis rate gxiyi , Eqs. (2) and (3)
explain how pi responds to changes in xi indirectly through the
changes in yi. This indirect response is expected to manifest as
a delayed feedback effect, as observed in the heterochromatin
bistability in yeast cells [47].

B. System dynamics

In a previous publication [13], we derived the Langevin
equations for the dynamics of p and y of a single gene by inter-

preting both p and y to be continuous variables with 0 � p and
−1 � y � 1. These equations were derived by representing
their master equations in a path-integral form and applying the
saddle-point approximation to them. Then, the landscape of
p and y, which we call the extended landscape encompassing
both the protein-concentration change and the chromatin-state
change, was derived to describe their coupled dynamics. Here,
in this study, we use this extended landscape method for
generic circuits consisting of multiple genes, leading to

1

k

d pi

dt
= Gpi − Fpi + ηpi ,

1

ωik

dyi

dt
= Gyi − Fyi + ηyi , (4)

where ωi, which is defined by Eq. (2), is the adiabaticity
parameter that measures the ratio of the rate to change yi over
the rate to change pi at the ith gene. In Eq. (4), Gpi , Gyi , Fpi ,
and Fyi are

Gpi = (
ξ11y2

i+ + 2ξ10yi+yi− + ξ1−1y2
i−

)
xi

+ (
ξ01y2

i+ + 2ξ00yi+yi− + ξ0−1y2
i−

)
(1 − xi ),

Gyi = [
r̄0−1y2

i− + 2r̄10yi+yi−
]/

k,

Fpi = pi,

Fyi = [
2r̄−10yi+yi− + r̄01y2

i+
]/

k, (5)

with yi+ = (1 + yi )/2, yi− = (1 − yi )/2, and ξxy = gxy/(k�),
which is the normalized protein-synthesis rate at the TF-
binding state x and the chromatin state y.

As the saddle-point approximation, i.e., the truncation
of fluctuations at the second order, was used in deriv-
ing Eq. (4), terms ηpi and ηyi in the right-hand side
of Eq. (4) represent Gaussian random noises, satisfy-
ing 〈ηpi (t )〉 = 〈ηyi (t )〉 = 〈ηpi (t )ηy j (t

′)〉 = 0, 〈ηpi (t )ηp j (t
′)〉 =

2Dpiδi jδ(t − t ′), and 〈ηyi (t )ηy j (t
′)〉 = 2Dyiδi jδ(t − t ′) with

Dpi and Dyi being diffusion constants,

Dpi = 1

2�
(Gpi + Fpi ),

Dyi = 1

2ωi
(Gyi + Fyi ). (6)

From Eq. (6), we see that the volume � and the adiabaticity ω

determine the fluctuation amplitude of p and y, respectively.
By numerically integrating Eq. (4), we calculate the sta-

tionary distribution of {p} and {y}, probability currents, and
other quantities. In the following, we regard 1/k as units of
time by adopting k = 1. See Appendix A for details of the
numerical calculation.

We apply this model to circuits of interacting genes. Bio-
chemical analysis has shown that the slow chromatin-state
dynamics bring about prominent feedback effects in eukary-
otic cells [47]. While this experimental analysis is on the
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FIG. 3. Gene circuits examined in this study: (Circuit A) A
self-activating single-gene circuit, (Circuit B) a mutually repressing
two-gene circuit, and (Circuit C) a circuit modeling interactions
among three core genes, Oct4, Sox2, and Nanog, which maintain
pluripotency in mouse embryonic stem (mES) cells. Lines ending
with arrowheads represent activating regulation, and lines ending
with bars represent repressive regulation.

gene circuits involving complex repressive regulations, we use
in the present study more idealized circuits to highlight the
physical principles of the eddy dynamics effects. We examine
Circuits A, B, and C in Fig. 3. Refer to Appendix B and
Table II for the details of each circuit.

In the Appendixes, we evaluate the characteristics of this
model by checking assumptions used in the model. One as-
sumption examined is on the nonlinearity of the TF binding.
As detailed in Appendix B, we highlight the nonlinear effects
of TF binding by assuming that each TF in Circuits A and
B is formed as a dimer of the corresponding product protein.
In Appendix C, we discuss the landscapes generated by the
model under the assumption that each TF is a monomer of
the product protein. The other is the assumption on tran-
sitions in chromatin states. The chromatin-state transitions
between yi = 1 and yi = −1 occur through an intermediate
state, yi = 0 (Fig. 2). This intermediate state was emphasized
by assuming nonzero parameters for ξ10, ξ00, r̄10, and r̄−10

in Eq. (5). In Appendix D, we explain how the landscapes
change when we reduce our focus on the intermediate state by
modifying Eq. (5).

III. LANDSCAPES AND NONEQUILIBRIUM
FLUCTUATIONS

In this section, we investigate the basic features of the
effects of nonadiabaticity by applying the model to Circuits
A and B.

FIG. 4. Landscape, U (p, y), of the self-activating single-gene
circuit, Circuit A, derived from the numerically obtained distribution
of p and y. p̄ = 1.0.

A. Basin distribution in nonadiabatic landscapes

The illustration in Fig. 1 suggests that the basin distribution
of the landscape changes as ω varies. We demonstrate that this
change indeed takes place in the eddy regime of 0.1 � ω � 1.

Figure 4 shows the landscape, U (p, y) = − log P(p, y),
which was obtained from the stationary distribution, P(p, y),
in the self-activating single-gene circuit (Circuit A). In the
large ω case, the landscape has a single basin at the active state
of y ≈ 1. The basin lies parallel to the y axis, showing a large
fluctuation in y but a confined fluctuation in p. As ω decreases,
the landscape develops two basins; one at the active state with
large y and p, and the other at the inactive state with small y
and p. The inactive basin appears at a distant position from the
active basin at the mild nonadiabaticity. In the case of param-
eters used in Fig. 4, the inactive basin appears at ω ≈ 0.5. For
the smaller ω < 0.5, the landscape extends in both directions
of p and y, resulting in large correlated fluctuations in p
and y.

Similarly, in the landscape of a mutually repressing two-
gene circuit (Circuit B), the number of basins increases
as the adiabaticity parameter ω decreases. We numeri-
cally calculated the steady-state distribution P(p1, p2, y1, y2),
and plotted the two-dimensional landscape U (p1, p2) =
− log(

∫∫
dy1dy2P(p1, p2, y1, y2)) (Fig. 5). When the typical

protein concentration p̄ is moderately small (p̄ < 1.5) and
the adiabaticity ω is large, the landscape U (p1, p2) has a
single basin at the diagonal position, p1 = p2, on the p1 − p2

plane, corresponding to the inactive state with small p and
y. As ω decreases, the basin at the diagonal position bifur-
cates into two basins at off-diagonal positions, one at p1 >

p2 and y1 > y2 and the other at p1 < p2 and y1 < y2. With
further decreases in ω, the two off-diagonal basins deepen,
and an additional shallow basin emerges at the diagonal posi-
tion, representing the inactive state. In this scenario, the two
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FIG. 5. Landscape, U (p1, p2), of the mutually repressing two-
gene circuit, Circuit B, derived by projecting the numerically
obtained distribution of p1, p2, y1, and y2 onto the two-dimensional
plane of p1 and p2. p̄ = 1.2. Regions of high U (p1, p2) values are
represented in white.

off-diagonal basins dominate the dynamics, causing the sys-
tem to function as a toggle switch between those two states.
When p̄ is large ( p̄ > 1.5) in Circuit B, the landscape has
two basins at off-diagonal positions even with a large ω, and
reducing ω generates an extra third basin at the diagonal
position of the inactive state. Overall, in both scenarios, the
landscape extends over multiple basins when ω < 1, indicat-
ing increased fluctuations in p1 and p2.

We summarize the characteristics of basins of Circuits A
and B in phase diagrams shown in Figs. 6 and 7, respec-
tively. Each figure also illustrates representative landscapes
for its corresponding phases. In both Figs. 6 and 7, despite the
presence of complex phase-diagram structures at p̄ < 1 due
to significant fluctuations in pi, we notice a consistent trend
of increasing basin numbers as the parameter ω decreases,
regardless of the p̄ value. This rise in basin numbers is ob-
served within the ω range of the eddy regime of 0.1 � ω � 1.
With the increase in basin numbers, the landscape extends
across multiple basins, indicating enhanced fluctuations in the
expression level.

In our current simulations, we have assumed that TFs
in circuits exist as dimers of the corresponding proteins.
However, if we consider TFs to be monomers instead,
the Hill coefficient in the adiabatic expression of xi j (q j )
decreases from 2 to 1. This reduction in nonlinearity

FIG. 6. Phase diagram of the number of basins on the landscape, U (p, y), of the self-activating single-gene circuit (Circuit A). Landscapes
at representative points are also shown; (a) ω = 0.1, p̄ = 2.0, (b) ω = 0.1, p̄ = 0.4, (c) ω = 0.25, p̄ = 0.25, (d) ω = 1.0, p̄ = 0.5, and (e)
ω = 1.5, p̄ = 3.0. The phase diagram was drawn by sampling about 103 points on the ω-p̄ plane and counting the number of basins on the
numerically obtained steady-state distributions. Lines representing the phase boundaries are not smooth due to the finite number of sampled
points.
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FIG. 7. Phase diagram of the number of basins on the landscape, U (p1, p2), of the mutually repressing two-gene circuit (Circuit B).
Landscapes at representative points are also shown; (a) ω = 0.1, p̄ = 1.5, (b) ω = 0.01, p̄ = 0.3, (c) ω = 1.0, p̄ = 0.22, (d) ω = 1.0, p̄ = 0.8,
and (e) ω = 1.0, p̄ = 3.0. The phase diagram was drawn by sampling about 103 points on the ω-p̄ plane and counting the number of basins
on the numerically obtained steady-state distributions. Lines representing the phase boundaries are not smooth due to the finite number of
sampled points.

diminishes the likelihood of generating multiple basins on
the landscape compared to the dimer TF cases. Neverthe-
less, even in the monomer TF scenarios, the lowering of
adiabaticity still broadens the distribution, thereby promot-
ing the tendency to generate multiple basins, as shown in
Appendix C.

B. Hysteresis and time-ordering in the eddy regime

The changes in the landscape in the eddy regime should
alter fluctuations in p and y. We can analyze this effect by
calculating the probability current, 	J = ({Jpi}, {Jyi}), with

Jpi = (Gpi − Fpi )P({p}, {y}) − ∂

∂ pi
[Dpi P({p}, {y})],

Jyi = (Gyi − Fyi )P({p}, {y}) − ∂

∂yi
[Dyi P({p}, {y})]. (7)

The divergence-free circular flow of 	J in a steady state is a
hallmark of broken detailed balance, indicating nonequilib-
rium dissipation that drives the fluctuation [48–50]. Figure 8
shows the probability current in the self-activating single-gene
circuit (Circuit A). When ω � 1, the current is not very no-
ticeable in the steady state, suggesting that the state can be
effectively approximated by an equilibrium. Conversely, in the
nonadiabatic case of ω � 1, the circular flux of the probability

current becomes evident, explicitly breaking the detailed bal-
ance. The circular flux spreads globally over the p − y plane
in the eddy regime of 0.1 � ω � 1, but the area showing the
intense current becomes narrower in the strongly nonadiabatic
case of ω � 0.01. In the previous publication [13], the authors
demonstrated that the most probable pathways—those that
contribute the most weight in the path-integral representation
of the transition probability between the active and inactive
states of a self-activating single-gene circuit—align with the
direction of the circular flux in its extended landscape. Conse-
quently, the pathway generated in one direction differed from
the pathway in the reverse direction, indicating the presence
of hysteresis.

Similarly, when following the direction of the globally
developed circular flux in Fig. 8, we observe that the transition
from the inactive state to the active state and the reverse tran-
sition should follow distinct pathways. Therefore, we expect
that the global circular flux within the range of 0.1 � ω � 1
[Figs. 8 and 9(a)] in the present system indicates that the
transition between the two states exhibits hysteresis. This
expectation is confirmed through the calculation of the cross-
correlation function,

A(t ) = 〈(δy(τ )δp(τ + t ) − δy(τ + t )δp(τ ))〉τ
�y�p

, (8)
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FIG. 8. Probability current 	J (p, y) of the self-activating single-
gene circuit, Circuit A, is plotted as arrows on the p-y plane. The
same parameters used in Fig. 4 were employed.

where 〈· · · 〉τ represents the average over τ , δy(t ) = y(t ) −
〈y(t0)〉t0 , and δp(t ) = p(t ) − 〈p(t0)〉t0 . �y and �p are defined
by �y = 〈δy(τ )2〉1/2

τ and �p = 〈δp(τ )2〉1/2
τ . If there is a ten-

dency for time-ordered changes with variation in y preceding
the p variation, then A(t ) > 0 for t > 0. The calculated results
in Fig. 9(b) indeed show A(t ) > 0 for t > 0, confirming the
tendency that the chromatine state y changes first and the
product-protein concentration p follows in both transitions
from inactive to active and from active to inactive states,
resulting in different pathways with hysteresis. A(t ) shows
a peak at the typical turnover time of the chromatin-state
change, t ≈ 1/ω.

In Fig. 9(c), A(1/ω) is plotted as a function of ω, showing
that the tendency for cross-correlation, or time-ordering, is
most pronounced in the eddy regime of 0.1 � ω � 1. In con-
trast, this tendency weakens in the strongly adiabatic regime
(ω � 1). This observation aligns with the results presented
in Fig. 8, where the circular flux develops significantly in
the eddy regime but diminishes in the strongly adiabatic
regime. In the strongly nonadiabatic regime (ω � 1), the
cross-correlation A(1/ω) is also weaker because the proba-
bility current becomes confined to a localized area, although
the intensity of the current remains high within that area. The
narrower distribution of current shown in Fig. 8 for ω = 0.01
suggests that changes in protein concentration tend to closely
follow changes in chromatin states. This leads to both active-
to-inactive and inactive-to-active pathways approaching a line
that connects two basins. The convergence of these path-
ways should reduce hysteresis, resulting in a smaller value of
A(1/ω).

The amount of nonequilibrium dissipation can be measured
by calculating the entropy production rate,

Ṡ =
∫∫

d pdy

(
Jp(p, y)2

P(p, y)Dp
+ Jy(p, y)2

P(p, y)Dy

)
. (9)

In Fig. 9(d), entropy Ṡ/ω produced during the chromatin-
state turn-over time 1/ω is plotted. Figure 9(d) shows that
entropy production Ṡ/ω remains low in the adiabatic regime
of ω > 1, approaching 0 in the adiabatic limit as ω � 1. This
observation is in line with the finding that the circular flux
disappears in the adiabatic limit. As ω becomes smaller, the
nonequilibrium dissipation indicated by Ṡ/ω begins to rise
in the eddy regime of the range 0.1 � ω � 1. This rise in
nonequilibrium dissipation corresponds to a shift in landscape
structure, where the circular flux leads to time-ordering ten-
dencies and hysteresis.

While the cross-correlation A(1/ω) shows a peak in the
eddy regime of 0.1 � ω � 1, entropy production Ṡ/ω con-
tinues to increase in this regime as ω decreases further. This
rise is attributed to the increasing intensity of the probability
current in the nonadiabatic regime. While A(t ) reflects the
global pattern of circular flux and diminishes as the current
becomes confined to a narrow area (as in the case of ω = 0.01
in Fig. 8), entropy production Ṡ/ω reflects the intensity of that
current and increases as the intensity grows with further de-
creases in ω. Interestingly, Ṡ/ω exhibits a peak in the intensely
nonadiabatic regime of 0.01 � ω � 0.1 and tends to decrease
as ω further decreases, suggesting that the current confined
to a narrow area (narrower than shown in Fig. 8) begins to
contribute less to the overall dissipation.

The time-ordering tendency and hysteresis are also ob-
served in the mutually repressing two-gene circuit (Circuit B).
The cross-correlation, A(t ) of Eq. (8), is plotted in Fig. 9(e)
using δy(t ) = y1(t ) − y2(t ), δp(t ) = p1(t ) − p2(t ), showing
A(t ) > 0 for t > 0. A(1/ω) is plotted in Fig. 9(f), demonstrat-
ing that the cross-correlation is most prominent in the eddy
regime.

Taken together, the examples of single-gene (Circuit A)
and two-gene (Circuit B) circuits illustrate that the landscape
exhibits different structures in the adiabatic and nonadiabatic
limits with the increased number of basins in the nonadiabatic
limit. In the transitional or eddy regime between these limits,
fluctuations grow as the probability current shows a well-
developed circular flow, which is associated with significant
entropy production. This established circular flow results in
hysteresis in gene-switching dynamics, leading to a temporal
ordering of processes, where the slow change in chromatin
state occurs before the fast change in transcription activity.

IV. FLUCTUATIONS IN THE THREE-GENE MODEL

A. Large Nanog fluctuation in mES cells

The three core genes, Oct4, Sox2, and Nanog, activate each
other and regulate many other genes in mES cells, playing
essential roles in maintaining pluripotency [51–53]. Here, we
write the gene’s name in italic and the protein’s name in
roman. These genes remain active when cells are cultivated
in a medium containing 2i factors [54]. Without 2i, cells
still maintain pluripotency when cultivated with Lif, but they
show a significant fluctuation in Nanog concentration from
cell to cell [55–57]. These cells show transitions between high
and low-Nanog cell states during several cell cycles [56]. As
loosing Nanog is a trigger to differentiation [58], the large
Nanog fluctuation is the fluctuation of cells at the doorway to
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FIG. 9. Prominent nonequilibrium features in the eddy regime of 0.1 � ω � 1. (a) The circular flux of the probability current leads to
hysteresis in the switching dynamics. The same plot as a panel for ω = 1 in Fig. 8. (b) The cross-correlation function A(t ) in the self-activating
single-gene circuit, Circuit A, is plotted as a function of t for various values of ω; ω = 1 (orange), ω = 5, 10, 100 (blue), and ω = 0.5, 0.1, 0.01
(red). (c) The value of the cross-correlation A(t = 1/ω) in Circuit A is plotted as a function of ω for various values of p̄. (d) Entropy production
during the typical chromatin-state turnover time, Ṡ/ω, in Circuit A is plotted as a function of ω for various values of p̄. (e) The cross-correlation
function A(t ) in the mutually repressing two-gene circuit, Circuit B, is plotted as a function of t for various values of ω; ω = 1 (orange),
ω = 5, 10, 100 (blue), and ω = 0.5, 0.1, 0.01 (red). (f) The value of the cross-correlation function A(t = 1/ω) in Circuit B is plotted as a
function of ω for various values of p̄.

differentiation. However, in the same population of cells, Oct4
and Sox2 do not fluctuate intensely and instead show narrow
single-peak distributions of their concentrations [56].

Models of the gene network were proposed to explain
the difference in activity fluctuation among the three core
genes [25,56,59,60]. A typical assumption used in the models
was the self-activating interaction of Nanog [59] and the re-
pressing interactions between Nanog and other genes [56,59].
These assumptions allowed the models to explain the switch-
ing fluctuation between active and inactive states in Nanog
and the lack of relevance of other genes to this fluctuation.
However, the self-repression of Nanog was reported [61] and
the mutual repression among these genes seem to play a
minor role [53]; therefore, further careful consideration on
the gene-circuit structure is necessary to analyze the hetero-
geneous fluctuations in these genes. In this study, we use our
model of chromatin-state transitions to analyze this problem
without assuming the mutual repression among these three
genes.

B. Large fluctuations in the three-gene model

We investigated a gene circuit composed of the three core
genes in mES cells (Circuit C). In this circuit, unlike the
previous models [56,59], a direct self-activation of Nanog
is not considered, but the mutual activation of three genes,

Oct4 (i = 1), Sox2 (i = 2), and Nanog (i = 3), through the ob-
served complex formation of TFs [51,53,62–64] is assumed.
This gene circuit behaves similarly to Circuit A, showing
a similar dependence on the adiabaticity parameter ω. We
calculated a two-dimensional landscape U (p1, p3) based on
the projected distribution P(p1, p3), where p1 represents the
concentration of Oct4 and p3 represents the concentration of
Nanog. In Fig. 10, we show U (p1, p3) for various values of
adiabaticity, ω = ω1 = ω2 = ω3. Additionally, Fig. 10 shows
the projection of the cubic landscape U (p1, p2, p3) onto the
two-dimensional plane to demonstrate the basin distribution
in the three-dimensional space, with p2 representing the con-
centration of Sox2.

When ω is large, the landscape has a single basin at the
active state, and when ω is small, it has two basins at the active
and inactive states. At a large value of ω = 10, the active basin
restricts fluctuations to a narrow region, while at a small value
of ω = 0.1, the landscape extends globally over the active
and inactive basins, allowing large fluctuations in p1, p2, and
p3. Since ω controls the fluctuation amplitude, we propose
a mechanism of using the heterogeneous ωi to explain the
experimentally observed heterogeneous fluctuations among
the three core genes.

The adiabaticity ωi, is likely influenced by the timescale
of chromatin structural reorganization. During cell differ-
entiation, the chromatin structure surrounding the three
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FIG. 10. Landscape of the circuit of the three core genes of mES
cells, Circuit C, calculated with various values of the adiabatic-
ity parameter ω = ω1 = ω2 = ω3. The typical concentrations were
set to p̄1 = p̄2 = p̄3 = 2. (Left) The two-dimensional landscape
U (p1, p3) plotted on the plane of p1/p̄1 (normalized Oct4 concen-
tration) and p3/p̄3 (normalized Nanog concentration). (Right) The
three-dimensional landscape U (p1, p2, p3), with p2 being the Sox2
concentration, projected on the two-dimensional plane using the
coordinate (p1/p̄1)	a1 + (p2/p̄2)	a2 + (p3/p̄3)	a3 with 	a1 = (1,

√
2),

	a2 = (1, −√
2), and 	a3 = (1, 0).

core genes—Oct4, Sox2, and Nanog—undergoes significant
changes. In mES cells, the chromatin domains containing
these core genes are part of a micrometer-sized structure
known as the active compartment (A compartment). However,
when differentiation begins, these domains transition to the
inactive compartment (B compartment) [65,66]. It is plausible
that even prior to differentiation, fluctuations involving these
domains in mES cells serve as precursors to compartment
switching. Such large-scale conformational fluctuations are
expected to occur over cell cycle periods. Moreover, these
fluctuations involving the entire domain should correlate with
domain-wide changes in collective histone modifications. We
propose that the transcription activity of Nanog in mES cells
is determined by this domain-wide switching, while the tran-
scription activities of Oct4 and Sox2 are more significantly
influenced by local acetylation and deacetylation around
enhancers and promoters. Consequently, our hypothesis sug-
gests that Nanog exhibits slow transitions in its chromatin
state, leading to an adiabaticity of ω3 = 0.2 ∼ 0.5. In con-

FIG. 11. The landscape of the circuit of the three core genes of
mES cells, Circuit C, calculated with the heterogeneous adiabatic-
ity parameters, ω1 = ω2 = 10 for Oct4 and Sox2 and ω3 = 0.5 for
Nanog. Other parameters are the same as in Fig. 10. (Left) The two-
dimensional landscape U (p1, p3). (Right) The three-dimensional
landscape U (p1, p2, p3). The ways of plotting landscapes are the
same as in Fig. 10.

trast, Oct4 and Sox2 demonstrate rapid transitions, resulting
in greater adiabaticity of ω1 and ω2. While the reasons for this
difference in adiabaticity among the different genes are not
addressed here, we will proceed to discuss the model results to
examine how this assumption shapes the landscapes of protein
distributions.

Figure 11 shows the calculated landscape with heteroge-
neous adiabaticity parameters: ω1 = ω2 = 10 for Oct4 and
Sox2 and ω3 = 0.5 for Nanog. The calculated landscape does
not have a definite inactive basin. However, the distribution
of the Nanog concentration p3 is wide, indicating significant
fluctuation in the Nanog expression, while the expression level
of Oct4 and Sox2 shows narrow single-peak distributions. This
is consistent with the experimentally observed heterogeneous
fluctuations in mES cells. Thus, the timescale difference in
the chromatin-state transitions allows the flexible tuning of
fluctuations of individual genes in the circuit.

In Appendix E, we present landscapes calculated using
different parametrizations than the one used in Fig. 11.
Appendix E shows that it is crucial for the three genes to
exhibit distinct differences in adiabaticity, highlighting the
importance of regulatory mechanisms through variations in
timescales.

V. DEEP EPIGENETIC REGULATION

In Sec. IV, we demonstrated that the adiabatic switching of
the chromatin states of Oct4 and Sox2, along with the nonadi-
abatic switching of the chromatin states of Nanog creates the
landscape that aligns with the experimentally observed hetero-
geneous fluctuations in mES cells. However, the underlying
reason for the differences in adiabaticity among these three
genes is not immediately clear. To address this issue and to
test our model assumptions, it should be helpful to describe
the chromatin states with additional degrees of freedom.

Gene transcription begins when the transcription initi-
ation complex—composed of TFs, mediators, coactivators,
RNA polymerase, and other molecules—assembles around
the enhancer and promoter (EP) region of a gene. The EP
region varies in size from 1 kilobase (kb) to 100 kb, de-
pending on the characteristics of each gene. This region is a
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FIG. 12. Deep epigenetic regulation. The model of deep epi-
genetic regulation describes multilayered regulatory mechanisms
involving changes in three variables: xi, yi, and zi. Here, xi represents
the binding status of TFs, and yi indicates the collective histone
methylation and demethylation across the domain. The variable zi

represents the state of the enhancer-promoter (EP) region: zi = −1
when the EP region near the ith gene is deacetylated and condensed.
zi = 0 when the EP region is acetylated and adopts an extended
structure. zi = 1 when the EP region is extended and forms a tran-
scription initiation complex. The rate of protein synthesis, denoted
as gxz, is affected by both xi and zi. The value of zi can change at
rates szz′

i , which depend on both xi and yi, and the rates of collective

histone-state transitions, ryy′
i , are influenced by both xi and zi.

substructure within a chromatin domain, where the domain
size typically ranges from 100 kb to 1 Mb in mammalian cells
[34]. Observations of transcriptional bursting indicate that the
transcription initiation complex forms and resolves near the
EP over a timescale of 102 to 103 s [29–31]. To capture these
fluctuations, we introduce a variable zi to represent the EP
state for the ith gene. We also use the variable yi, inherited
from the model in the previous section, to describe the col-
lective histone methylation and demethylation throughout the
entire domain.

A schematic representation of this model is shown in
Fig. 12. We define zi = −1 when histones in the EP region
are dacetylated making the EP region condensed, zi = 0 when
they are acetylated and the EP region has an extended struc-
ture, and zi = 1 when the extended EP region is forming a
transcription initiation complex. We consider that the protein-
synthesis rate, g(xi, zi ), depends explicitly on the TF-binding
status xi and the EP state zi, and indirectly on the collective
histone state yi through the dependence of zi on yi. We define
the transition rates szz′

i and ryy′
i at the domain containing the

ith gene; transitions from the EP state z′
i to zi occur at the

rate szz′
i , and transitions from the collective histone-state y′

i

to yi occur at the rate ryy′
i . We define parameters s̄zz′

and
r̄yy′

, which are of order of k, characterizing the transitions.
In the model discussed in Sec. IV, we examined the scenario

where the adiabaticity varies among different genes. In this
section, we consider a model that accounts for variations in
adiabaticity not only among genes but also between different
layers of the chromatin’s degrees of freedom in each gene.
Thus, we introduce two types of adiabaticity parameters, the
EP adiabaticity ωz

i and the collective histone-state adiabaticity
ω

y
i , and write

szz′
i = ωz

i s̄zz′
,

ryy′
i = ω

y
i r̄yy′

. (10)

The parameters ωz
i and ω

y
i measure the ratios of rates of z and

y transitions over the rate of the p fluctuation at the ith gene;
Eq. (10) shows szz′

i = O(ωz
i k) and ryy′

i = O(ωy
i k).

The EP state should be changed by the TF binding and the
collective histone modification. Therefore, the EP-state tran-
sition rate szz′

i and its normalized value are functions of xi and
the collective histone state yi as szz′

i (xi, yi ) and s̄zz′
(xi, yi ). The

binding rate of the histone modifier enzymes should depend
on the TF binding and the EP state [35,67,68]. Therefore, the
collective histone-state transition rate ryy′

i and its normalized
value are functions of the TF state xi and the EP state zi as
ryy′

i (xi, zi ) and r̄yy′
(xi, zi ). When we use the first-order approx-

imation for them, we have

s̄zz′
(xi, yi ) = νzz′ + σ zz′

x xi + σ zz′
y yi+, (11)

r̄yy′
(xi, zi ) = μyy′ + γ yy′

x xi + γ yy′
z zi+, (12)

with zi+ = (1 + zi )/2. Here, νzz′
, σ zz′

x , σ zz′
y , μyy′

, γ
yy′
x , and γ

yy′
z

are the coefficients of the order of k. Thus, we have a mul-
tilayer regulation mechanism through subdomain transitions
of z and domain-wide collective histone-state transitions of y
in chromatin. We refer to this multilayer regulation as deep
epigenetic regulation or deep epigenetics.

Biochemical analyses, including studies on the complex
cross-talks among histone modifier enzymes, have highlighted
the relationships between the EP state, TF binding, and the
collective histone modifications [35,67,68]. Although a com-
prehensive physical model of these relationships has not yet
been established, a possible assumption is that changes in
these states are consistent with one another. This consistency
can be summarized as σ−10

y ≈ σ 01
y < 0, σ 10

y ≈ σ 0−1
y > 0,

γ −10
z ≈ γ 01

z < 0, and γ 10
z ≈ γ 0−1

z > 0. If we were to apply
different signs to these parameters, suggesting an inconsis-
tency, then this could result in negative feedback instead.
Such time-delayed negative feedback might induce oscillatory
behaviors, making it an intriguing area for the further explo-
ration.

In the deep epigenetic regulation model, Eq. (4) with k = 1
is replaced by

d pi

dt
= Gpi − Fpi + ηpi ,

1

ωz
i

dzi

dt
= Gzi − Fzi + ηzi ,

1

ω
y
i

dvi

dt
= Gyi − Fyi + ηyi , (13)
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TABLE III. Parameters in the deep epigenetic regulation model.

Coefficients used in ν0−1 k Coefficients used in μ0−1 k
s̄zz′ = νzz′ + σ zz′

x xi + σ zz′
y yi+

Eq. (11)
ν10 2k r̄yy′ = μyy′ + γ yy′

x xi + γ yy′
z zi+ Eq. (12) μ10 2k

determining the transition rate from ν01 k determining the transition rate from μ01 k
an enhancer-promoter state z′ to the
other z

ν−10 2k a collective histone state y′ to the other y μ−10 2k

σ 0−1
x 0.5k γ 0−1

x 0.2k
σ 10

x 0.5k γ 10
x 0.2k

σ 01
x −0.5k γ 01

x −0.2k
σ−10

x −0.5k γ −10
x −0.2k

σ 0−1
y 0.5k γ 0−1

z 0.8k
σ 10

y 0.5k γ 10
z 0.8k

σ 01
y −0.5k γ 01

z −0.8k
σ−10

y −0.5k γ −10
z −0.8k

TF binding/unbinding parameter h0/ f 10
ratio h1/ f 200

Normalized protein-synthesis rate ξ (1, 1) p̄ ξ (1, 0) 0.2 ξ (1, −1) 0
ξ (x, z) = g(x, z)/(k�) ξ (0, 1) 0.5 ξ (0, 0) 0 ξ (0, −1) 0

with 〈ηzi (t )〉 = 〈ηpi (t )ηz j (t
′)〉 = 〈ηyi (t )ηz j (t

′)〉 = 0, and
〈ηzi (t )ηz j (t

′)〉 = 2Dziδi jδ(t − t ′), and Eq. (6) becomes

Dpi = 1

2�
(Gpi + Fpi ),

Dzi = 1

2ωz
i

(Gzi + Fzi ),

Dyi = 1

2ω
y
i

(Gyi + Fyi ). (14)

In Eq. (13), by writing ξ (x, z) = g(x, z)/(k�), zi+ = (1 +
zi )/2, and zi− = (1 − zi )/2, we have

Gpi = (
ξ (1, 1)z2

i+ + 2ξ (1, 0)zi+zi− + ξ (1,−1)z2
i−

)
xi

+ (
ξ (0, 1)z2

i+ + 2ξ (0, 0)zi+zi− + ξ (0,−1)z2
i−

)
× (1 − xi ),

Gzi = s̄0−1(xi, yi )z
2
i− + 2s̄10(xi, yi )zi+zi−,

Gyi = r̄0−1(xi, zi )y
2
i− + 2r̄10(xi, zi )yi+yi−,

Fpi = pi,

Fzi = 2s̄−10(xi, yi )ziazi− + s̄01(xi, yi )z
2
i+,

Fyi = 2r̄−10(xi, zi )yi+yi− + r̄01(xi, zi )y
2
i+. (15)

We use the parameter values from Table III to numerically
integrate Eqs. (13)–(15). Since the timescale of collective
histone-state modifications spans across cell cycles, we expect
the collective histone-state adiabaticity, ω

y
i , to be low and

nonadiabatic. In contrast, the EP state represents a local region
of the domain, suggesting that the EP adiabaticity, ωz

i , should
generally be high. However, we propose a hypothesis that the
transcription initiation complex of Nanog spans domain-wise,
thereby linking the EP state of Nanog to the collective his-
tone state of the entire domain. This connection results in a
nonadiabatic behavior for Nanog, characterized by a low value
of ωz

3.

In Fig. 13(a), we present the landscape calculated using
the adiabaticity parameters outlined above, with small val-
ues for ω

y
i and heterogeneous values for ωz

i : specifically,
we used ω

y
1 = ω

y
2 = ω

y
3 = 0.1, ωz

1 = ωz
2 = 10, and ωz

3 = 0.5.
This landscape is similar to the one shown in Fig. 11 and
aligns with the experimentally observed heterogeneous fluc-
tuations. It is important to note that the protein-production
rate g(xi, zi ) directly depends on the TF-binding state xi

and the EP state zi in our current model. In contrast, the
collective histone state yi only indirectly influences g(xi, zi )
through the dependence of zi on yi. As a result, the combi-
nation of heterogeneous collective histone state adiabaticity
ω

y
i and homogeneous EP adiabaticity ωz

i produces a land-
scape characterized by homogeneous fluctuations across the
three genes, which is inconsistent with the experimentally ob-
served heterogeneous fluctuations of these genes. Figure 13(b)
shows an example of such a landscape calculated using

FIG. 13. Two-dimensional landscape, U (p1, p3), of the circuit of
the three core genes of mES cells, Circuit C, calculated with the deep
epigenetic regulation model. p̄ = 2 and other parameters are from
Table III. (a) The collective histone-state adiabaticity is ω

y
1 = ω

y
2 =

ω
y
3 = 0.1. The EP adiabaticity is ωz

1 = ωz
2 = 10 for Oct4 and Sox2,

and ωz
3 = 0.5 for Nanog. (b) The collective histone-state adiabaticity

is ω
y
1 = ω

y
2 = 10 for Oct4 and Sox2, and ω

y
3 = 0.5 for Nanog. The

EP adiabaticity is ωz
1 = ωz

2 = ωz
3 = 1.
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FIG. 14. Probability current 	J in the deep epigenetic regulation
model of the circuit of three core genes of mES cells, Circuit C,
projected on the two-dimensional planes. (a) 	J = (Jp1 , Jz1 ) projected
on the plane of the normalized concentration of Oct4, p1/p̄, and
the EP state of Oct4, z1. (b) 	J = (Jp2 , Jz2 ) projected on the plane
of the normalized concentration of Sox2, p2/ p̄, and the EP state of
Sox2, z2. (c) 	J = (Jp3 , Jz3 ) projected on the plane of the normalized
concentration of Nanog, p3/p̄, and the EP state of Nanog, z3. (d)
	J = (Jp1 , Jp3 ) projected on the plane of the normalized concentration
of Oct4, p1/ p̄, and the normalized concentration of Nanog, p3/p̄. The
parameters are the same as in Fig. 13(a).

the adiabaticity parameters, ω
y
1 = ω

y
2 = 10, ω

y
3 = 0.5, and

ωz
1 = ωz

2 = ωz
3 = 1.

The probability currents calculated with this model
suggest a way to check our hypothesis on the timescale
separation in chromatin regulation. Figures 14(a)–14(c) show
the probability currents calculated with the deep epigenetic
regulation model using the parameters of Fig. 13(a). These
currents are projected onto the pi − zi plane for Oct4 [i = 1,
Fig. 14(a)], Sox2 [i = 2, Fig. 14(b)], and Nanog [i = 3,
Fig. 14(c)]. Figures 14(a) and 14(b) illustrate the currents
moving parallel to the zi direction, highlighting the rapid
changes in the EP state of Oct4 and Sox2. In contrast, Nanog
exhibits a circular flow that rotates in a diagonal direction
[Fig. 14(c)], indicating correlated fluctuations between the
EP state and protein synthesis, along with hysteresis in
the fluctuations of Nanog within mES cells. In the full-
dimensional space, the probability current flows in a circular
manner and has no divergence in a steady state. However,
when we project this current onto the two-dimensional plane
representing the concentrations of Oct4 (p1) and Nanog
(p3), we observe divergence occurring from the high-Nanog
state [Fig. 14(d)]. Moreover, this projected current moves
in opposite directions when comparing the high-Nanog
state to the low-Nanog state [Fig. 14(d)]. We anticipate that

experimentally verifying these predicted probability flows by
measuring dynamic fluctuations in mES cells will enhance
our understanding and help us test our hypothesis.

VI. DISCUSSION

We studied models of gene circuits made up of one to
three interacting eukaryotic genes. We described the speed of
changes in the chromatin state using the adiabaticity parame-
ter ω, and investigated the stochastic behaviors of the model
by varying ω using the landscape picture. The landscape has
different basin structures in the adiabatic (ω � 1) and nona-
diabatic (ω � 1) limits, and it shows enhanced circular flow
of the probability current in between the two limits, known as
the eddy regime (0.1 � ω � 1). Entropy production—which
serves as a measure to assess how system deviates from the
equilibrium—has a large value in this eddy regime.

Eukaryotic genes are regulated by a variety of intercon-
nected processes within chromatin. Among these processes,
the deep epigenetic regulation model discussed in Sec. V
focuses on two key aspects: changes in the enhancer-promoter
region, which is a local structure within the chromatin domain,
and the collective histone methylation and demethylation
across the entire domain. This framework opens a way to
compare the calculated results and experimental data related
to these chromatin degrees of freedom. This model can be
expanded to incorporate further coexisting regulatory mech-
anisms in chromatin, such as cross-talks among multiple
histone modifications, DNA methylation, and the formation
and resolution of chromatin domains. With such extension to
include multiple degrees of freedom, we can draw parallels
between deep epigenetic regulation and information process-
ing in artificial neural networks. Each gene receives a set of
TFs as inputs, produces a protein as output, and the inter-
connected and multilayered regulations within its chromatin
domain can be viewed as hidden layers of regulation. We an-
ticipate that these hidden layers enhance regulatory flexibility,
similar to how neural networks improve their performance, as
discussed in the context of the universal approximation the-
orem regarding representation capability [69]. Additionally,
the couplings of variables xi, yi, and zi mentioned in Eq. (15)
are multiplicative, much like the multiplicative gating used in
recurrent neural networks, which has been shown to improve
network efficiency [70]. Exploring these parallels between
chromatin regulation and efficient information processing in
neural networks presents an intriguing direction for future
studies, as these insights could enhance our understanding
of the evolutionary origins of various overlapping regulatory
mechanisms within chromatin domains.

Timescales within cells can be influenced by changes in
the enzymatic activities involved in gene regulation processes.
Such changes may lead to transitions between different cell
types. This concept can be illustrated by model circuits. In
the nonadiabatic regime of ω � 0.1 for Circuit B, for in-
stance, a basin characterized by a high value of p1 or p2

is distinct, as shown in Fig. 5, stabilizing the cells residing
there. However, if the chromatin-state change is accelerated,
shortening the timescale, the system enters to the eddy regime
of 0.1 � ω � 1. In this regime, the basins become shallower,
causing the cells to fluctuate across a wide range of p1 and
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FIG. 15. Probability current 	J = (Jp1 , Jp2 ) of the mutually
repressing two-gene circuit, Circuit B, projected on the two-
dimensional p1-p2 plane. The parameters are the same as in Fig. 5.

p2 (Fig. 5). If the timescale is increased again, bringing the
system back to the nonadiabatic regime, then the basins with
high p1 or p2 become stabilized once more. As a result, the
fluctuating cells may converge into a different basin than the
one they originally occupied, leading to a transition in cell
type. Large fluctuations are expected during this transition, as
seen in various models of gene regulation [71]. The current
model further predicts that there will be increased circular
flow during the transition in the eddy regime. This flow should
be experimentally observed as a correlation between fluctu-
ations in protein concentrations and variations in chromatin
states during the cell-type transition.

The circular flow over the extended landscape indicates
the presence of hysteresis during transitions. This observa-
tion suggests a temporal sequence in which chromatin-state
changes precede changes in expression levels. This time or-
dering was indeed noted during the differentiation process of
mouse embryonic cells [72]. While the traditional biochem-
ical perspective may focus on specific proteins or genes that
regulate this timing, our model proposes that the time ordering
results not from specific regulatory factors in cells, but rather
from the interaction between slow and fast processes in gene
regulation. In this framework, the slow process governs the
system’s state transitions, while the fast process reacts to it.
This concept, where the slow process determines the system’s
fate, is similar to findings from simulations of a multilayer
network model [1]. The mechanism proposed in this study can
be validated if the adiabaticity parameter ω can be controlled
in cells.

Another feature of the circular flux is found in the example
of the mutually repressing two-gene circuit (Circuit B). This
circuit shows a bifurcation of a basin at the diagonal position
to a pair of basins at off-diagonal positions in the eddy regime.
This bifurcation takes place at ω = ωc ≈ 1.2 with parameters

used in Fig. 5. Figure 15 shows the probability current plotted
on the p1 − p2 plane, showing the existence of a pair of
circular fluxes rotating in opposite directions around positions
of a pair of off-diagonal basins. We find that a pair of fluxes
appear even in the case of ω > ωc, showing that circular fluxes
are a precursor, or a warning sign [73], of the bifurcation.
It is intriguing to check this prediction by the RNA-velocity
measurement in cells undergoing the switching fluctuations.

A crucial area for future research is to conduct more direct
comparisons of the simulation with experimental data. By
employing combined high-throughput methodologies such as
Hi-C, ChIP-seq, and RNA-seq, it is becoming possible to infer
the landscapes and probability currents of gene regulation in
cells [74–77]. Building landscapes and analyzing probability
currents from experiments will enable comparisons with the
theoretical methods, paving the way for further exploration
into the biological physics of gene regulation.
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APPENDIX A: NUMERICAL SIMULATIONS

Equations (4) and (13) were numerically solved by the
Euler discretization with a time step of δt = 0.01 for ω < 0.5,
δt = 0.001 for 0.5 � ω < 10, and δt = 0.0001 for 10 � ω.
In the discretized calculation, occasional large noise values in
Eqs. (4) and (13) caused rare jumps, taking the trajectory out
of the physically plausible ranges of 0 � pi, −1 � yi � 1, and
−1 � zi � 1. To address this issue, solid walls were assumed
at the boundaries of these ranges in the numerical calculations.
The area near these boundary walls (5% of the total area) was
excluded in the integration in Eq. (9) to prevent the artifact
contribution of the reflecting probability flow from the walls.

APPENDIX B: CIRCUITS

1. Circuit A: Self-activating single-gene circuit

The simplest circuit is a loop involving a single gene that
produces a TF which activates itself [Fig. 3(a)]. The self-
activation is ubiquitous in cells [79], and this circuit is the
same as analyzed in the previous report [13]. In the present
study, we investigate this circuit in greater depth and compare
the dynamics with entropy production and time asymmetry in
cross-correlation, which measures how far the system is from
equilibrium.

We assume that the protein dimerizes to become a TF,
and this dimerization occurs rapidly enough compared to the
rate k that we can express the TF concentration q as q ∝ p2.
Then, we write h = h0 p2 with a constant h0 > 0. We use the
adiabatic approximation for representing the TF-binding state
x with its equilibrium value x = h0 p2/(h0 p2 + f ). We write
p̄ = ξ11, which is a typical value of p.
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2. Circuit B: Mutually repressing two-gene circuit

We consider a circuit of mutually repressing two genes
[Fig. 3(b)]. Though this mutually repressing circuit is ubiqui-
tous in eukaryotic cells, including the synthetically designed
circuit [80], we here consider a simplified model to focus on
eddy dynamics of this type of circuit by explicitly analyzing
the dynamics of the chromatin-state variables y1 and y2 in
genes 1 and 2, respectively.

To highlight the effects of eddy dynamics of the cir-
cuit, we assume that two genes have the same parameters;
the adiabaticity is measured by the adiabaticity parameter
ω = ω1 = ω2. We consider the case where dimers of protein
produced from genes 1 and 2 become TFs binding on genes
2 and 1, respectively, so that q1 ∝ p2

1 and q2 ∝ p2
2, leading to

h12 = h0 p2
2 and h21 = h0 p2

1. We use the adiabatic approxima-
tion to derive x1 and x2, resulting in x1 = x12 = h0 p2

2/(h0 p2
2 +

f ) and x2 = x21 = h0 p2
1/(h0 p2

1 + f ). We write p̄ = ξ10.

3. Circuit C: Three-gene circuit model of pluripotency

By exploring Circuits A and B, we analyze how the
landscapes and nonequilibrium fluctuations depend on the
adiabaticity ωi of the chromatin-state dynamics. As an exam-
ple biological system to apply these concepts of landscapes
and nonequilibrium fluctuations, we consider the gene circuit
to maintain pluripotency in mES cells composed of mutually
activating three genes, Oct4 (i = 1), Sox2 (i = 2), and Nanog
(i = 3) [52,53] [Fig. 3(c)]. A complex of Oct4 and Sox2
activates all three genes [53,62,63] and a complex of Oct4
and the Nanog-dimer activates Oct4 and Nanog [51,64]. We
represent these regulations as

x1 = x3 = h0 p1 p2

h0 p1 p2 + f0

h1 p1 p2
3

h1 p1 p2
3 + f1

,

x2 = h0 p1 p2

h0 p1 p2 + f0
. (A1)

We use ω = ω1 = ω2 = ω3 at the beginning, but we assume
the heterogeneous ωi later to compare the simulated data with
the experimental results. For simplicity, we assume that the
other parameters do not depend on i. We write p̄ = ξ11.

APPENDIX C: MONOMER TFs

In the model described in the main text, we assumed that
TFs exist as dimers of the corresponding product proteins
for describing Circuits A and B as explained in Appendix B.
Specifically, we set h = h0 p2 in Circuit A, and h12 = h0 p2

2 and
h21 = h0 p2

1 in Circuit B . This dimer assumption emphasizes
the nonlinear effects of TF binding and unbinding. In contrast,
if we adopt a monomer assumption with h = hm p in Circuit
A and h12 = hm p2 and h21 = hm p1 in Circuit B, the nonlinear
effects are diminished, leading to a weaker tendency for the
coexistence of multiple basins. This reduced tendency can be
observed in the landscapes derived from the monomer model
(Figs. 16–18). To facilitate a straightforward comparison be-
tween the dimer and monomer models, we set the parameter
hm to hm = h0 p0. Here, the typical protein concentration p0

is defined as p0 = α p̄ with 0 < α < 1. In this Appendix
(Appendix C), we choose α = 0.4, which gives us hm =

FIG. 16. Landscape, U (p, y), of the self-activating single-gene
circuit (Circuit A) is presented for two different models: one with a
monomer TF where hm = 0.4h0 (top) and another with a dimer TF
where h0/ f = 10 (bottom). The landscapes are compared by varying
the adiabaticity ω. All other parameters remain same among panels
with p̄ = 1. The bottom panels are identical to those in Fig. 4.

0.4h0 p̄. Specifically, when p̄ = 3, we have hm = 1.2h0, and
when p̄ = 1, hm = 0.4h0.

Figure 16 compares the monomer and dimer models for
the self-activating single-gene circuit (Circuit A) by varying
the chromatin adiabaticity ω. In both models, when the circuit
is in the adiabatic regime at ω = 10, a single basin is observed
at the active state of the chromatin, characterized by a high y
value. In the dimer model, when ω ≈ 0.5 in the eddy regime,

FIG. 17. Landscape, U (p1, p2), of the mutually repressing two-
gene circuit (Circuit B) is presented for two different models: one
with monomer TFs where hm = 1.2h0 (top) and another with dimer
TFs where h0/ f = 10 (bottom). The landscapes are compared by
varying the adiabaticity ω. All other parameters remain same among
panels with p̄ = 3.
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FIG. 18. Landscape, U (p1, p2), of the mutually repressing two-
gene circuit (Circuit B) is presented for two different models: one
with monomer TFs where hm = 0.4h0 (top) and another with dimer
TFs where h0/ f = 10 (bottom). The landscapes are compared by
varying the adiabaticity ω. All other parameters remain same among
panels with p̄ = 1.

an additional basin appears at the inactive state with a low y
value. A precursor of this new basin can be seen as a broad-
ened basin in the case of ω = 1. However, in the monomer
model, there is no indication of the emergence of the inactive
basin at ω = 1. At ω = 0.1, both the dimer and monomer
models exhibit two coexisting basins representing inactive and
active states, but the inactive basin in the monomer model
remains shallow.

Figure 17 compares the monomer and dimer models for the
mutually repressing two-gene circuit (Circuit B) at a relatively
high protein production level of p̄ = 3. At this high level of
protein production, the dimer model displays two coexisting
basins even at ω = 1. In contrast, the monomer model exhibits
a single basin in the inactive state, located at the diagonal
position in the landscape. In the nonadiabatic regime, with
ω = 0.01, the dimer model exhibits three basins. Meanwhile,
the basin in the monomer model extends along the axes of
p1 ≈ 0 and p2 ≈ 0, indicating a tendency to reach the two
off-diagonal states. However, the monomer model’s landscape
does not yield multiple disconnected basins.

Figure 18 shows landscapes of the mutually repressing
two-gene circuit (Circuit B) at a lower protein production
level p̄ = 1. The dimer model shows three coexisting basins
at ω = 0.1. In contrast, the monomer model displays only a
single basin. However, in the nonadiabatic regime at ω = 0.01,
both the monomer and dimer models exhibit similar land-
scapes, with three basins in each.

In summary, the diminished nonlinearity in the monomer
model suppresses the tendency for forming distinct multiple
basins. However, in both the monomer and dimer mod-
els, decreasing the adiabaticity of chromatin-state transitions

FIG. 19. Landscape, U (p, y), of the self-activating single-gene
circuit (Circuit A) is presented for two different models: the two-
state model (top) and three-state model (bottom). The landscapes are
compared by varying the adiabaticity ω. All other parameters remain
same among panels with p̄ = 1. The bottom panels are identical to
those in Fig. 4.

broadens the distribution of states, thereby promoting the
emergence of multiple states.

APPENDIX D: TWO-STATE CHROMATIN TRANSITIONS

In the main text, we described the chromatin-state tran-
sitions as transitions between active (yi = 1) and inactive
(yi = −1) states through an intermediate state (yi = 0), as
illustrated in Fig. 2. The significance of this intermediate
state was highlighted by the nonzero parameters ξ10, ξ00, r̄10,
and r̄−10 in Eq. (5). We can reduce this emphasis by setting
ξ10 = ξ00 = r̄10 = r̄−10 = 0. In this case, Eq. (5) simplifies to

Gpi = (
ξ ∗

11y2
i+ + ξ ∗

1−1y2
i−

)
xi + (

ξ ∗
01y2

i+ + ξ ∗
0−1y2

i−
)
(1 − xi ),

Gyi = r̄1−1y2
i−/k,

Fpi = pi, Fyi = r̄−11y2
i+/k, (D1)

We refer to the original model represented by Eq. (5) as
the three-state model, while the model defined by Eq. (D1) is
referred to as the two-state model. We can straightforwardly
compare the two-state and three-state models by setting ξ ∗

11 =
ξ11, ξ ∗

1−1 = ξ1−1, ξ ∗
01 = ξ01, ξ ∗

0−1 = ξ0−1, r̄1−1 = r̄0−1, and
r̄−11 = r̄01. With the emphasis on transitions from the in-
termediate state (yi = 0) in the three-state model, both the
active state (yi = 1) and the inactive state (yi = −1) become
more stabilized, leading to the coexisting multiple basins at
active and inactive states. Reducing the emphasis on the inter-
mediate state in the two-state model decreases the tendency
for coexistence. This reduced tendency can be observed in
the landscapes derived from the two-state model (Figs. 19
and 20).
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FIG. 20. Landscape, U (p1, p2), of the mutually repressing two-
gene circuit (Circuit B) is presented for two different models:
the two-state model (top) and three-state model (bottom). The
landscapes are compared by varying the adabaticity ω. All other
parameters remain same among panels with p̄ = 1.2. The bottom
panels are identical to those in Fig. 5.

In summary, the relatively destabilized active and inactive
states in the two-state model suppresses the formation of
distinct multiple basins. However, both in the two-state and
three-state models, reducing the adiabaticity of the chromatin-
state transitions leads the system toward the emergence of
multiple states.

APPENDIX E: OTHER PARAMETRIZATIONS
FOR CIRCUIT C

The landscape depicted in Fig. 11 in Sec. IV aligns
with the experimental observations, demonstrating significant
fluctuations in Nanog and narrow, single-peak fluctuations
in Oct4. The same figure is reproduced in Fig. 21(a) in the
present Appendix. However, this feature disappears under
specific parameter settings as shown in Figs. 21(b)–21(d).

Figure 21(b) illustrates the landscapes generated by the
lower adiabaticity for Oct4 and Sox2 (with ω1 = ω2 = 1). In
this parameter setting, the adiabaticity of all three genes falls
within the eddy regime. As a result, the landscape presents
a broadened basin, similar to what is depicted in the middle

FIG. 21. Landscapes of the circuit of the three core genes of
mES cells, Circuit C, calculated with various parametrizations. The
two-dimensional landscapes U (p1, p3) are plotted on the plane of
normalized concentrations of Oct4 p1/p̄1 and Nanog p3/p̄3. (a)
The same landscape as in Fig. 11. (b) Landscape calcutated with
the lower adiavaticiy. (c), (d) Landscapes calculated with the less
sensitive dependence of the chromatin-state transition rates on the
TF-binding state with γ 0−1 = γ 10 = 0.6k and γ 01 = γ −10 = −0.6k
in panel (c) and γ 0−1 = γ 10 = 0.3k and γ 01 = γ −10 = −0.3k in
panel (d). γ 0−1 = γ 10 = k and γ 01 = γ −10 = −k in panels (a), (b).
The adiabaticity is ω1 = ω2 = 10 for Oct4 and Sox2 and ω3 = 0.5
for Nanog in panels (a), (c), (d) and ω1 = ω2 = 1 and ω3 = 0.1 in
panel (b). The typical concentrations were set to p̄1 = p̄2 = p̄3 = 2.

panel of Fig. 10. Additionally, with the lower adiabaticity of
Nanog, an inactive state basin emerges, characterized by low
protein concentrations. This inactive basin causes significant
bimodal fluctuations in the concentration of Oct4, which con-
tradicts the experimentally observed single-peak distribution
of Oct4 concentration. Consequently, distinct adiabaticity for
Oct4 and Sox2, along with nonadiabatic eddy behavior for
Nanog, is necessary to explain the experimental observations.

Other examples depicted in Figs. 21(c) and 21(d) present
cases with smaller values of |γ yy′ | in Eq. (3). In these
scenarios, the chromatin-state transition rates show less sen-
sitivity to the TF-binding state. Then, the feedback relations
among TFs determine the landscapt to generate a basin at
the inactive state. This again leads to a wide bimodal distri-
bution in Oct4 concentration, contradicting the experimental
observations.
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