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The structure factor is a useful observable for probing charge density correlations in real materials, and its
long-wavelength behavior encapsulated by “quantum weight” has recently gained prominence in the study of
quantum geometry and topological phases of matter. Here, we employ the full static structure factor S(q) to
explore the phase diagram of twisted transition metal dichalcogenides (TMDs), specifically tMoTe,, at filling
factors v = 1/3,2/3 under varying displacement fields. Our results reveal a topological phase transition between
a fractional Chern insulator (FCI) and a generalized Wigner crystal. This transition is marked by the appearance
of Bragg peaks at charge-density-wave vectors, and simultaneously, a large decrease of S(q) at small q which
lowers the interaction energy. We further calculate the quantum weight of various FCI states, verifying the
universal topological bound for interacting systems. Our findings provide insights into the phase diagram of
twisted TMDs and establish a general framework for characterizing topological phases through structure factor

analysis.
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Introduction. The structure factor is a fundamental quan-
tity for probing the crystal structure and charge/spin density
fluctuations in real materials, which can be measured by x-ray
diffraction, electron loss spectroscopy, and neutron scattering.
In particular, the static (or equal-time) structure factor S(q)
is a ground-state property defined as the Fourier transform
of a spatial density correlation. In periodic solids, Bragg
peaks in the structure factor identify crystal structures and
charge-density-wave orders [1]. In quantum liquids, the static
structure factor encodes useful information about the ground
state and excitation spectrum [2]. For example, the structure
factor of helium exhibits a characteristic peak at the wave
vector set by the inverse particle distance, which is closely
related to the roton excitation [3].

Recently, the behavior of the structure factor S(q) at small
q, which characterizes long-wavelength density correlations,
has received growing attention. For gapped many-body sys-
tems, S(q — 0) is generally quadratic in q and the quadratic
coefficient K defines a fundamental ground-state property re-
cently termed quantum weight [4,5]. Interestingly, quantum
weight is directly related to optical response [5], charge fluc-
tuation [6-8], and many-body quantum geometry [9]. It also
sets an upper bound on the energy gap and a lower bound on
the static dielectric constant of solids [5,10,11].

Very recently, a universal lower bound for quantum weight
has been established for Chern insulators [12], K > |C],
where C is the many-body Chern number. This inequality is
derived from the fundamental principles of physics and there-
fore applies generally to two-dimensional electron systems

“Contact author: tzaklama@mit.edu
fContact author: liangfu @mit.edu

2469-9950/2025/112(4)/L041115(7)

L041115-1

with either integral or fractional quantized Hall conductiv-
ity oy = Ce?/h, with or without magnetic field. The bound
on quantum weight is saturated in (integer and fractional)
quantum Hall states that occur in a two-dimensional electron
gas under strong magnetic fields [1], whereas the opposite
behavior K > |C| = 1 is found for the magnetic topological
insulator MnBi, Te4 [13].

For noninteracting band insulators, the quantum weight K
is directly related to the spread of Wannier functions in real
space [14]. Narrow-gap semiconductors have more extended
Wannier functions and therefore larger K. For a Chern band,
the bound K > |C| dictates that the corresponding Wannier
functions must have a minimum spread that is given by C
times the lattice constant. More generally, the quantum weight
of interacting two-dimensional systems is directly related
to many-body quantum geometry, which is defined by the
ground-state wave function over twisted boundary conditions
[9,15]. While the geometry of Chern bands has been inten-
sively studied in recent years [ 16-23], little is known about the
many-body quantum geometry of fractional Chern insulators
(FCIs).

In this Letter, we use band-projected exact diagonalization
(ED) to calculate the full structure factor of twisted homo-
bilayer transition metal dichalcogenides (TMDs) at various
fractional fillings and displacement fields. Small-twist-angle
bilayer TMDs host flat Chern bands [24,25], which can enable
robust ferromagnetism and a fractional quantum anomalous
Hall effect at fractional band fillings [26,27]. Recent experi-
ments on twisted bilayer MoTe, have revealed a sequence of
FCIs at zero magnetic field [28-30], which bears a remark-
able similarity to the Jain sequence fractional quantum Hall
states in the lowest Landau level [31—41]. Unlike the latter,
however, theory predicts that tMoTe, also hosts generalized
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FIG. 1. Schematics and single-particle picture. (a) Schematic of
the emergent moiré superlattice in real space and (b) the single-
particle Chern number as a function of the displacement field and
twist angle. There is a clear trend that as the displacement field gets
larger, one must go to a larger twist angle to expect topology. (c),
(d) The continuum band structure for & = 2.8° and D = 0, 40 meV,
respectively.

Wigner crystals (GWCs) [31,42-44], anomalous Hall metals
[37], and quantum anomalous Hall crystals [45,46], leading to
a fascinating phase diagram.

Based on the structure factor, we identify and distinguish
FCIs and GWCs at v =1/3 and 2/3 fillings under small
and large displacement fields, respectively. The displacement-
field-induced topological phase transition between the FCI
and GWC states at v = 2/3 is marked by an abrupt decrease
of quantum weight below the topological bound, which occurs
in tandem with the emergence of charge-density-wave (CDW)
Bragg peaks in order to lower the interaction energy. Our work
further reveals a magic angle where the topological bound for
FClIs is nearly saturated and demonstrates the persistence of
v = 2/3 FCI to larger twist angles where the quantum weight
significantly exceeds the bound.

Moiré band structure and band topology. Our study is
based on the interacting continuum model for holes in twisted
TMD homobilayers schematically represented in Fig. 1(a).
The single-particle Hamiltonian for spin-1/2 holes is given
by [24]

W (—iV—ky)? ~
BeVoe) 4y (r) 1(r)
,H¢ = m ¥ R2(—iV—k_)? ~ s (1)
£'(r) —— +V_(r)
while 7—[ | is its time-reversal conjugate. Here, «i =
3aM (— , 1 7) is introduced by rotational misalignment, with

ay the m01re period and m* the effective mass. Vi(r) =
—2V ¥, 1 3.5€08(g + ¢+) F 2 denotes the moiré potential
on each layer, where D is the layer potential bias introduced
by the displacement field, and ¢(r) = w(l + ¢ /8T 4 ¢7&T)
denotes the interlayer tunneling. The moiré reciprocal lat-
tice vectors are g; = %ZM [cos(@), sin(@)] for i =

., 6, with ¢, = —¢p_ = ¢. We take the explicit forms of
the parameters for tMoTe, from Ref. [31].

The displacement field tunes the dispersion, wave function,
and topology of moiré bands [24,25]. A large displacement
field polarizes charges to one layer, and thereby drives the
moiré bands from topological (C = 1) to trivial (C = 0), as
shown in Fig. 1(b). Figures 1(c) and 1(d) show the moiré
band structure and the Chern number of the lowest band for
two representative displacement fields D = 0 and 40 meV.
This work will focus on the effect of displacement field on
the ground state of twisted homobilayer TMDs at fractional
fillings.

Band-projected exact diagonalization. The full continuum
model Hamiltonian including the electron-electron interaction
is given by

H=H,+V,
1
V=22 / drdr Y (E0 (W (8 =)o () (),
| @)

where Ho =) _ Nfdrlﬂ?-t wg Here we use a long-

range Coulomb interaction V(r) = £ By diagonalizing the
one-body Hamiltonian H, we obtain the band dispersion and
Bloch wave function. Then, H can be rewritten in Bloch band
basis as follows,

f{ = Z Eo,n(k)cj;,n,kca,n,k
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where cT .k creates a hole in a Bloch state at spin/valley o,

band n, “and crystal momentum k, which has a correspond-
ing single-particle energy €, ,(k). The Coulomb interaction
matrix elements take on the Bloch basis representation
Vk"i,klkz (kjo; Ko [V ko kao').

To solve many-body ground states at fractional fillings v <
1 with exact diagonalization, we truncate the full Hilbert space
to the subspace spanned by the lowest band, i.e., we only
keep terms with ny = n, = n3 = nqy = 1 in Eq. (3). This band
projection neglects band mixing with higher bands, which is
accurate when the ratio of the characteristic Coulomb energy
% to the moiré band gap is sufficiently small. While band
mixing is quantitatively important for tMoTe,, band-projected
ED captures the essential physics of FCIs [38,39].

Further, we assume that the system at the range of fill-
ings considered hereafter is fully spin polarized, as found
by previous numerical studies [27,31,38]. Our ED calculation
uses the charge-U (1) and spatial translational symmetries to
diagonalize within the common eigenspace of N, and center-
of-mass (c.m.) crystal momentum. The ED atv = 1/3,2/3 is
performed on a 27-unit cell cluster with Cs symmetry using
periodic boundary conditions, as done in previous studies of
this system [37,39].

Structure factor and quantum weight. The structure factor
is defined as the Fourier transform of the static density-density
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correlation function,

1 .
X(® 1) = (p(r)p(r)) = = 3 1 IS@), ()

q

where general fermionic

S(q@) = x{p@p(-q) for
momentum-space density operators p(q) =), flj Sx+q
in the plane-wave basis, (---) denotes the expectation value
over the many-body ground state, and system area A = @
for cluster size N. We take S(q) over a single ground state
rather than averaging over degenerate many-body ground
states.

The structure factor defined above is the standard one,
which applies to all electronic systems. In contrast, a dif-
ferent structure factor has been considered in the literature
on quantum Hall states [47] and recently twisted TMDs
[34,37,42,48,49], which is defined by the projected density
operator in the Chern band instead of the bare density op-
erator p. It is important to note that the projected structure
factor differs from the standard one, even when band mix-
ing is negligible. The difference between the two structure
factors is evident from their contrasting behaviors at large
q. At q — oo, the projected structure factor vanishes, while
the standard one approaches 1. In this work, we study the
standard structure factor of twisted TMDs, which has not been
calculated before.

As a ground-state property, S(q) can be computed with a
variety of numerical methods including exact diagonalization,
making it a powerful tool for probing strongly correlated and
highly entangled systems. Recently, it was recognized that the
long-wavelength behavior of the (standard) structure factor
S(q) is an important quantity of quantum many-body systems.
For systems with an energy gap, S(q — 0) takes the general
form

S(@) = N gs o 5)
21

where the summation over spatial indices @ and g is implied.
In an interacting system, the quantum weight can also be
formulated in terms of the quantum geometric tensor for the
many-body ground state under twisted boundary conditions
[4]. Interestingly, the trace of K has a universal lower bound
determined by the many-body Chern number C (or equiva-
lently, the quantized Hall conductivity) [12]:

K =K + Ky > |Cl. ©)

This bound is saturated in Landau levels of two-dimensional
electron gas due to the Galilean invariance. For FCIs such as
twisted TMDs at fractional fillings, it remains unknown how
close the bound is to the actual quantum weight.

To calculate the structure factor in band-projected ED, we
first transform the fermion operators fi indexed by spin o,
layer X, and plane-wave momentum k’ to the fermion opera-
tors ¢,k in band basis indexed by o, band index n, crystal
momentum K, and reciprocal lattice vector G as

foxkic =Y tonc.x K)o nk, )
n

where u#, ,.c.x are the Bloch wave functions obtained from
solving the single-particle Hamiltonian. Then, the full static
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FIG. 2. FCI-to-GWC transition driven by displacement field. (a),
(c) Many-body spectra on a 27-site cluster at v =2/3, 6§ = 2.8°,
€ =10, and D = 0,40 meV, respectively. There is a clear near-
threefold degeneracy at y for D = 0 meV that moves to y, «, «’ for
D =40 meV. (b), (d) y to « and y to M linecut of S(q) with the
corresponding parameters of (a), (c). The insets in sub-panel (b) and
(d) shows the full S(q) one momentum shell outside of the Brillouin
zone and the points according to their corresponding linecuts.

structure factor can be expressed solely in terms of the bands
in which the many-body ground state resides, making numer-
ical calculation far more tractable. The explicit calculation
of the structure factor, along with its analytically simplified
analog, is provided in the Supplemental Material [50].

Results. We now study the phase diagram of tMoTe, as
the displacement field is turned on. Focusing firston v = 2/3
where the FCI state is most robust, we present in Fig. 2 the
many-body spectra (MBS) (the energy spectrum partitioned
by momentum sector) and ground-state structure factor for
D =0 and D =40 meV, where the lowest moiré band is
separated from remote bands and has C = 1 and C = 0, re-
spectively. Calculations were done at a twist angle 6 = 2.8°
on an N = 27 cluster with a dielectric constant € = 10.

For D = 0, we find three nearly degenerate ground states
in the same momentum sector, consistent with the previously
identified FCI phase on this cluster geometry [31]. In con-
trast, for D = 40 meV, we find three degenerate ground states
at distinct many-body momenta y, k, k', which is consistent
with a +/3 x +/3 GWC [43].

The emergence of GWC that spontaneously breaks lattice
translation symmetry can be diagnosed by the structure factor.
Indeed, for D = 40 meV, S(q) shows a prominent peak at the
expected wave vector. Moreover, the peak height is found to
increase with system size, which demonstrates the presence of
long-range charge-density-wave order, as shown in Figs. 3(c)
and 3(d). The existence of v/3 x +/3 GWC is expected at large
D, when charges reside on the MX moiré sites on one layer
and form a honeycomb superstructure with a tripled unit cell
to minimize the Coulomb repulsion, similar to the case of
TMD heterobilayers [51]. In contrast, the structure factor of
the FCI state at D = 0 is liquidlike and qualitatively similar to
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FIG. 3. S(q) and quantum weight at various displacement fields
forv =2/3,0 =2.8°,and € = 10. (a) S(q) of the y to « linecut S(q)
vertically displaced to show dependence on the displacement field.
Bragg peaks emerge at « for D = 30, 40 meV and scale accordingly.
(b) Quantum weight and S(q) value of the «, k' Bragg peak vs the
displacement field. (c), (d) S(q) at increasing commensurate system
size at D = 0, 40 meV, respectively. Bragg peaks emerge and scale
as the system size in the GWC phase as expected.

that of the v = 2/3 fractional quantum Hall state in the lowest
Landau level.

We further analyze the structure factor S(q) at small q and
extract the quantum weight K by a quadratic fitting shown
in Figs. 2(b) and 2(d) (see Supplemental Material for details
[50]). We find K = 0.821 at D = 0, which indeed satisfies the
universal topological bound of FCIs with C = 2/3. In con-
trast, at D = 40 meV, K = 0.426 falls below 2/3, which rules
out the possibility of a C = 2/3 FCI and instead is consistent
with a topologically trivial state C = 0. Our structure factor
analysis shows that quantum weight can provide a useful
method to distinguish topological and trivial states using a
single ground state.

We extend this analysis further to identify the phase transi-
tion from FCI to GWC as the displacement field D increases.
Figure 3(a) shows S(q) along the direction y — « at increasing
D. From D = 0 to 20 meV, S(q) as a function of q increases
smoothly from O to 1, characteristic of a quantum liquid. At
D =30 meV, a CDW Bragg peak arises abruptly and its mag-
nitude increases further with D. Moreover, Fig. 3(b) shows
that immediately when the Bragg peak develops, the K falls
below 2/3. Our findings provide strong evidence for a direct
transition between FCI and GWC, which appears to be first
order as evidenced by the discontinuity in quantum weight.

Experiments on tMoTe, have indeed observed at v = 2/3
a transition from FCI to a trivial insulating state (oy, = 0)
under increasing displacement field [30]. The latter is con-
sistent with the GWC, whose +/3 x +/3 charge order may
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FIG. 4. S(q) and quantum weight at various displacement fields
for v=1/3, 6 =2.0°, and € = 10. (a) S(q) of the y to « linecut
similar to Fig. 2. (b) Quantum weight and S(q) value of the «, «’
Bragg peak vs the displacement field. (c), (d) S(q) at increasing
commensurate system size at D = 0, 10 meV, respectively. Bragg
peaks emerge and scale as the system size in the GWC phase as
expected.

be detected by scanning tunneling microscopy, or identified
through different exciton energy shifts at inequivalent moiré
sites in the tripled unit cell of the GWC.

We also study tMoTe, at v = 1/3. Previous numerical
studies at D = 0 [31] have predicted that the 1/3 state is a
trivial +/3 x +/3 GWC at most of the twist angles, except
in the neighborhood of a magic angle where the underlying
Chern band is most lowest Landau level-like, giving rise to
a C = 1/3 FCI. In this case, our calculations find a similar
FCI-to-GWC transition under increasing displacement field,
as shown in Fig. 4. Compared to v = 2/3, the FCI-to-GWC
transition occurs at a smaller displacement field for v = 1/3.

It is worth noting that across the D-induced transition from
FCI to GWC at v = 2/3 or 1/3, the presence of Bragg peaks
in the structure factor at the CDW wave vector is accom-
panied by a reduction of S(q) at small q, i.e., a decrease
of quantum weight. This is not a coincidence and can be
heuristically understood from energetic considerations as fol-
lows: The transition to the GWC is expected to lower the
interaction energy, which is directly related to the structure
factor, Ejy = Zq V(q)(]%S(q) — 1)/2A, where the Coulomb

interaction V(q) = 2me?/e|q| is positive at all q, N, is the
number of electrons in the system, and A is the system area.
On the other hand, the development of Bragg peaks in the
GWC, however, indicates that S(q) increases at the CDW
wave vector. Therefore, the reduction of interaction energy
can only be possible due to the decrease of S(q) at other
wave vectors, including small q. We confirm the reduction
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FIG. 5. Tllustration of the universal topological bound being re-
spected at fractional fillings. Extracted quantum weight is plotted
vs twist angle at v = 1/3,2/3, 1 (orange, blue, black, respectively).
The universal topological bound for each filling is plotted as a solid
horizontal line in the appropriate color, and the phase of the system
at each angle is denoted by the style of the point. The diamonds
correspond to points within the FCI phase, and the solid circles corre-
spond to points within the GWC phase [31]. The dashed black line is
the noninteracting case, previously shown to respect the topological
bound in this system at integer filling [12]. All data are calculated
at ¢ =5 and D = 0 on a 27-site cluster (error bars reflect the fit
uncertainty due to finite-size effects).

of Ejn across the FCI-to-GWC transition in the Supplemental
Material [50].

Finally, we calculate the structure factor and extract the
quantum weight at D = 0 as a function of twist angle for
fillings v = 1/3 and 2/3 in Fig. 5. For v = 1/3, the system
transitions from an FCI to a GWC at 0 ~ 2.4°, as indicated by
the emergence of Bragg peaks, in agreement with the previous
study [31]. As in the case of the displacement-field-induced
FCI-GWC transition, we again see a fall in quantum weight
below the topological bound across the phase boundary, sig-
naling a topological phase transition. We find the mechanism
for this shift is identical for the 6-induced FCI-GWC tran-
sition: The emergence of Bragg peaks increases S(q) at the
CDW wave vector, driving S(q) down for small q, forcing the
quantum weight below the topological lower bound.

It is interesting to note that near the FCI-GWC phase
boundary, the quantum weight nearly saturates the topological
bound at a magic angle, which is around 2.4° for v = 1/3 and
is less than 1.5° for v = 2/3. This is broadly consistent with
the theoretical picture that the moiré band wave function at
the magic angle closely resembles the lowest Landau level
[25,35], and therefore the corresponding FCI states closely
resemble the fractional quantum Hall states, whose quantum
weight saturates the topological lower bound.

Perhaps more remarkable is that the v = 2/3 FCI persists
to larger angles where the quantum weight far exceeds the
topological bound. At 6 = 3.75°, K = 0.934 is almost 3/2
times the topological bound signifying a considerable dif-
ference between this FCI state and the fractional quantum
Hall state. It will be interesting to construct a variational

wave function for such nonstandard FCI states featuring large
quantum weight.

Discussion. In this Letter, we mapped out the phase di-
agram for tMoTe, at v =1/3 and 2/3 as a function of
displacement field based primarily on the structure factor
calculated by band-projected ED. We use S(q) to distinguish
liquid and crystal states, and uncover a displacement-field-
induced topological phase transition using the quantum
weight K. Our numerical results confirm the topologi-
cal bound K > |C| found by Oinishi and Fu for FCIs
and identify the magic angle where this bound is nearly
saturated.

We note that band-projected ED is quantitatively accurate
when the band gap is large compared to the interaction energy.
However, near the critical field where the band gap closes and
band topology changes C = 1 — 0, band mixing may affect
the many-body ground states at fractional filling. Nonetheless,
our band-projected ED provides variational ground-state en-
ergies and wave functions, which serve as a useful starting
point and benchmark for further investigation with advanced
numerical methods.

Our work has shown that the static structure factor encodes
information about topological and correlated states in twisted
TMDs. Further, our method is of broad and widespread ap-
plication as it not only provides experimentalists with an
additional tool to diagnose topology in real systems, but
also theorists with a numerical means of measuring topol-
ogy strictly from the ground-state wave function. Novel
numerical methods such as neural network variational Monte
Carlo that do not calculate excited states have particular use
for our method. In practice, measuring S(q) directly with
conventional x-ray scattering techniques is an experimen-
tal challenge due to the ultrathin nature of 2D layers. In
this regard, it is worth noting that the small-g behavior of
S(q) encapsulated by the quantum weight can be directly
determined from terahertz optical conductivity using the sum
rule [5],

w

®  Reoyy
K =2k f dor 8% ®)
0

where the frequency integration should encompass the
energy range of the continuum model for low-energy
moiré bands.
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