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Itinerant ferromagnetism in an SU(3) Fermi-Hubbard model at finite temperatures:
A dynamical mean-field theory study

Juntaro Fujii ,* Kazuki Yamamoto , and Akihisa Koga
Department of Physics, Institute of Science Tokyo, Meguro, Tokyo 152-8551, Japan†

(Received 20 May 2025; revised 20 August 2025; accepted 3 September 2025; published 16 September 2025)

We investigate an SU(3) Fermi-Hubbard model on a hypercubic lattice at finite temperatures, combining
dynamical mean-field theory with continuous-time quantum Monte Carlo simulations. Taking strong correlations
into account carefully, we find a ferromagnetically ordered state, in which one of the three components
becomes dominant, when holes are doped away from one-third filling. Furthermore, we demonstrate that this
ferromagnetically ordered phase undergoes a first-order transition to a paramagnetic state. We clarify the stability
of the ferromagnetically ordered state against interaction strength, hole doping, and temperatures. The relevance
of generalized Nagaoka ferromagnetism is also addressed, by comparing the results on the Bethe lattice.
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I. INTRODUCTION

Experimental advancement with ultracold atoms in optical
lattices has opened a new avenue for studying exotic quantum
many-body phenomena [1]. These systems offer rich possibil-
ities for quantum simulations of strongly correlated systems
[2–8], even when the parameter tuning is difficult in solids.
For example, the interatomic interactions are controlled by
using the Feshbach resonance [9], and the dimensionality [10]
can also be controlled by tuning the trap lasers.

Recently, by utilizing the hyperfine states of nuclear spins
in ultracold fermions such as 6Li [11,12], 87Sr [13,14],
173Yb [15–17], and 40K [18,19], multicomponent Fermi
gases including the SU(N) Fermi-Hubbard model with N > 2
[20] have been realized. Experimentally, a variety of phe-
nomena have been achieved in SU(N) quantum systems
[14,16,21–24], such as the antiferromagnetic spin correlations
of the SU(N) Fermi gas [25,26] and the crossover from metals
to Mott insulators with exotic compressibility [27]. These
studies highlight the novel many-body physics emerging from
multicomponent spins, facilitating theoretical investigations
of rich SU(N) physics [28–40].

On another front, itinerant ferromagnetism is the proto-
typical strongly correlated phenomenon in condensed matter
physics and has attracted great attention [41–60]. An earlier
study by Nagaoka [41,42] rigorously showed that, in a lattice
with closed loops, the ground state of the infinite-U SU(2)
Fermi-Hubbard model with a single hole doping is a fully
polarized ferromagnetic state, which arises from the itinerant
motion of the hole. Furthermore, the effect of interactions
and hole doping on ferromagnetism was numerically investi-
gated [50,52–54,56,57,60,61]. Itinerant ferromagnetism in the
SU(N ) Fermi-Hubbard model with N > 2 has been actively
investigated in recent decades [62–70]. In the ferromagnet-
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ically ordered state in the SU(N) system, flavor imbalance
emerges among the N components. A special case is known
as the polarized state, where one of the flavors is dominant
[62,71]. It has been rigorously shown that the fully polarized
state is realized in the infinite-U limit with a single hole
doping at the 1/N filling [66,68,71], which is regarded as the
SU(N) generalization of Nagaoka’s theorem.

Notably, it has been clarified that the ferromagnetic phase
transition is of first order in the SU(N) systems with N > 2,
in contrast to the second-order transition in the SU(2) case.
This qualitative difference can be understood within sym-
metry arguments based on Landau theory [62]. Moreover,
it has been clarified that the critical interaction strength is
enhanced as N increases [70]. These results demonstrate that
the nature of SU(N) ferromagnetism differs from that of the
conventional SU(2) system. However, describing the ferro-
magnetically ordered state realized in the strong-coupling
regime and evaluating its stability against thermal fluctuations
requires accounting for strong dynamical electron correlations
beyond the simple methods such as static mean-field approx-
imation [62] and the exact diagonalization [70]. Therefore,
it is important to quantitatively examine the stability of the
ferromagnetically ordered state in the SU(N) system by means
of numerical approaches.

In this paper, we investigate itinerant ferromagnetism in
the doped SU(3) Fermi-Hubbard model on a hypercubic lat-
tice using dynamical mean-field theory (DMFT) [72–74],
where the continuous-time quantum Monte Carlo (CT-QMC)
method [75,76] with a nonuniform sampling scheme is used
as an impurity solver. We demonstrate that the ferromag-
netically ordered state, which lies at low temperatures and
under strong correlations, is realized as a result of sponta-
neous symmetry breaking. We find that the transition between
the ferromagnetically ordered and the paramagnetic states is
of first order. Furthermore, we demonstrate that the ferro-
magnetically ordered state is stabilized at lower temperatures
and requires stronger correlations compared to the SU(2)
case.
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The rest of this paper is organized as follows. In Sec. II,
we introduce the SU(3) Fermi-Hubbard model and provide a
DMFT framework with the numerical improvement together
with the introduction of physical quantities. In Sec. III, by
examining magnetization, magnetic susceptibility, and energy,
we clarify that the ferromagnetically ordered state is realized
at low temperatures. Finally, the summary is given in Sec. IV.

II. MODEL AND METHODS

We consider the SU(3) Fermi-Hubbard model on a hyper-
cubic lattice. The Hamiltonian is given by

H = −t
∑

〈i, j〉,σ
c†

i,σ c j,σ + U

2

∑
i,σ �=σ ′

ni,σ ni,σ ′ , (1)

where c†
i,σ (ci,σ ) denotes the creation (annihilation) operator of

the fermion with flavor σ (= 1, 2, 3) at site i, ni,σ = c†
i,σ ci,σ .

Here, t is the hopping amplitude between nearest-neighbor
sites 〈i, j〉 and U is the repulsive on-site interaction. This sys-
tem exhibits SU(3) symmetry as the Hamiltonian commutes
with the flavor operators Sα (α = 1, 2, . . . , 8) [63,71], defined
as

Sα = 1

2

∑
i,σ,σ ′

c†
i,σ (λα )σ,σ ′ci,σ ′ , (2)

where λα denotes the αth Gell-Mann matrix [77]. The SU(3)
Hubbard model has been extensively discussed, and in-
teresting many-body phenomena have been found such as
magnetically ordered states [34,63,78–84] and Mott transi-
tions [38,85–90].

To study the SU(3) Fermi-Hubbard system, we employ
DMFT [72–74], which is one of the most powerful approaches
for treating strongly correlated systems. In this framework, the
original lattice model is mapped to a single impurity model
connected to an effective bath, where dynamical correlations
are precisely accounted for. As DMFT is exact in infinite
dimensions and even in three dimensions, it is expected
to capture essential features of many-body phenomena. In-
deed, DMFT has been widely applied to the multicomponent
system to explain interesting physics such as Mott transi-
tions [91–97], superconductivity [98–105], and magnetism
[34,106–108].

In our study, we focus on magnetic properties below one-
third filling.

The density of doped holes is given by δ = 1 − ∑
σ 〈nσ 〉

and nσ = ∑
i ni,σ /L, where L is the total number of sites and

〈A〉 denotes the expectation value of the operator A. We fix
the doping rate by adjusting the chemical potential μ in the
framework of DMFT.

Since a ferromagnetically ordered state is considered with
a spatially uniform particle distribution, one can choose λ3

and λ8 as the principal axes of the SU(3) weight diagram,
where λ3 = diag(1,−1, 0) and λ8 = diag(1, 1,−2)/

√
3.

In this case, the magnetization is represented in two di-
mensions as m = (m3, m8) with mα = 〈Sα〉/L. Figure 1 shows
the flavor configurations in the m plane. When arg m =
π/6 mod (2π/3), only one flavor exhibits a dominant occu-
pation. Conversely, at arg m = π/2 mod (2π/3), the particle
occupations in two of the three flavors are larger than in

n1
n2
n3

arg m m3

m8

FIG. 1. Triangular region in the m = (m3, m8) plane represents
possible magnetizations for the ferromagnetically ordered state in
the doped system. Red, green, and blue bars represent the particle
number of each flavor 〈n1〉, 〈n2〉, and 〈n3〉, respectively.

the remaining one. In the following, we focus on the region
π/6 � arg m � π/2 without loss of generality. As we take
the principal axes along the diagonal elements of the matrix,
we focus solely on diagonal terms of the Green’s function
and the self-energy. Then, the Dyson equation for the lattice
Green’s function is given by

Gσ (k, iωn)−1 = iωn + μ − εk − 	σ (k, iωn), (3)

where εk is the dispersion relation, μ is the chemical poten-
tial, ωn[= (2n + 1)πT ] is the Matsubara frequency, and T
is the temperature. Gσ (k, iωn) and 	σ (k, iωn) are the lattice
Green’s functions and the self-energy, respectively. In infi-
nite dimensions, the self-energy is momentum-independent,
	σ

loc(iωn) = 	σ (k, iωn). The local Green’s function is given
by

Gσ
loc(iωn) =

∫
ρ(ε)dε

iωn + μ − ε − 	σ
loc(iωn)

, (4)

with

ρ(ε) = 1√
π D

exp

[
−

(
ε

D

)2
]
, (5)

where D is the bandwidth of the noninteracting density of state
ρ. In the effective impurity model, the effective bath is also
flavor independent. Therefore, it is described by

Gσ (iωn)−1 = iωn + μ − �σ (iωn), (6)

where �σ (iωn) is the hybridization function and Gσ (iωn) is
the Green’s function of the effective bath [74]. It should be
noted that the hybridization function is determined by the self-
consistency equations.

By solving the effective impurity model, we obtain
the Green’s function Gσ

imp(iωn) and self-energy 	σ
imp(iωn).

The self-consistent equations are Gσ
imp(iωn) = Gσ

loc(iωn) and
	σ

imp(iωn) = 	σ
loc(iωn). We numerically solve the effective
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FIG. 2. Rescaled magnetization mD/h as a function of the di-
rection of the external field φ in the system with U = 300D and
δ � 0.045 at T = 0.01D (top) and T = 0.02D (bottom). Circles,
squares, and triangles represent the results for h = 0.0005D, 0.002D,
and 0.004D, respectively.

impurity problem, then update the Green’s function and self-
energy, and iterate this self-consistent procedure until the
result converges within numerical accuracy.

In our DMFT calculations, we use the hybridization-
expansion CT-QMC method employing the segment algo-
rithm as an impurity solver [75,76]. This method efficiently
samples Monte Carlo configurations through local updates,
such as inserting or removing segments and anti-segments,
or shifting segment endpoints. However, when U � t , two
major challenges arise. First, the acceptance probability drops
exponentially, making it difficult to compute the Green’s func-
tion efficiently. To address this, we use an additional scheme
that simultaneously updates the configurations of two flavors
within a selected time interval, which significantly improves
sampling efficiency in the strong-coupling regime [109]. Sec-
ond, the Green’s function is difficult to represent accurately
due to the presence of widely separated energy scales that lead
to distinct decay behavior in imaginary time. To overcome
this, we employ intermediate-representation basis functions
[110,111] combined with a nonuniform sampling scheme
[112], which enables accurate and efficient reconstruction
of the Green’s function. Some details are provided in Ap-
pendix A.

To discuss the magnetic instability in the paramagnetic
state, we consider the magnetic susceptibility. To examine the
magnetic response along the SU(3) principal axes, we intro-
duce the two-dimensional external fields h = (h3, h8), and the
corresponding Hamiltonian is given by

Hext = −h · S, (7)

where S = (S3, S8). We note that, in general, the magneti-
zation m is not parallel to the applied field h. In fact, m/h
strongly depends on the direction of the magnetic field, spec-
ified by the angle φ (= arg h), as shown in Fig. 2. However,
as the external field strength decreases, the directional depen-
dence becomes negligible. In the limit h → 0, the response
becomes isotropic, allowing us to define the magnetic suscep-

U=300

103

0.00 0.02 0.04 0.06 0.08 0.10
101

102

T=0.02
T=0.01
T=0.005

0.00 0.05 0.10

0.43

0.44

U=0

FIG. 3. Magnetic susceptibility χD as a function of the hole dop-
ing δ in the system with U = 300D. Triangles, squares, and circles
represent the results for the temperatures T = 0.005D, 0.01D, and
0.02D, respectively.

tibility as

χ = lim
h→0

m

h
. (8)

We confirm this isotropic behavior in a small external field
h when the system is paramagnetic. In this study, we deduce
the magnetic susceptibility by examining the magnetization
under a tiny field with arg m = π/6. In the following, we set
the bandwidth D as the energy unit.

III. NUMERICAL RESULTS

We first examine the magnetic response in the SU(3)
Fermi-Hubbard model. Figure 3 shows the doping depen-
dence of the magnetic susceptibility of the system with the
strong on-site interaction U = 300D.

Susceptibility is, in general, a key quantity for identifying
phase transitions. Although it does not diverge at first-order
transition points, nonmonotonic behavior of the susceptibility
can serve as a precursor to the magnetic phase transition.

We find that the susceptibility exhibits a peak structure
around δ ∼ 0.03, in contrast to the monotonic behavior ob-
served in the noninteracting case, as shown in the inset of
Fig. 3. This nonmonotonic behavior originates from the strong
on-site interaction. In addition, the peak structure becomes
more pronounced as the temperature decreases. This indi-
cates that magnetic fluctuations are enhanced in the SU(3)
system, although the susceptibility is isotropic. We confirm
that this nonmonotonic behavior is absent in the SU(3) Fermi-
Hubbard model on the Bethe lattice (see Appendix B for
details). A similar contrast has been reported in the SU(2)
Fermi-Hubbard model [56], suggesting the emergence of
Nagaoka-type ferromagnetism at low temperatures in the
SU(3) case.

To clarify this, we examine low-temperature properties in
the SU(3) system with δ � 0.045. The results are shown in
Fig. 4(a). We find that the spontaneous symmetry breaking
occurs accompanied by the emergence of magnetization at
low temperatures. In this case, the direction of the magne-
tization is characterized as arg m ∼ π/6, indicating that the
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FIG. 4. (a) Magnetization m (left axis) and inverse susceptibility
1/χD (right axis) as a function of temperature T/D in the system
with U = 300D and δ � 0.045. FM and PM indicate ferromagnet-
ically ordered and paramagnetic states. (b) Solid circles (squares)
represent the chemical potential for the FM (PM) solution.

polarized ferromagnetically ordered state with n1 ∼ 1 − δ and
n2 = n3 ∼ 0 is stabilized. We have confirmed that the di-
rection of magnetization remains robust against changes in
interaction strength and temperature, as long as the symmetry-
broken state is realized. This state is essentially the same
as the generalized Nagaoka ferromagnetically ordered state
[71]. As the temperature increases, the magnetization grad-
ually decreases and suddenly drops to zero at T = Tc2 (δ �
0.045) ∼ 0.0077D, suggesting the first-order phase transi-
tion to the paramagnetic state. In fact, as the temperature
decreases, the paramagnetic state remains stable down to
a certain temperature T = Tc1 (δ � 0.045) ∼ 0.004D, below
which the magnetization reemerges discontinuously. This hys-
teresis clearly indicates the presence of the first-order phase
transition in the SU(3) system. In contrast, it has been re-
ported within DMFT that the SU(2)-symmetric case exhibits
a second-order transition between ferromagnetic and param-
agnetic states [52,56,57]. This difference suggests that the
order of the transition depends on the symmetry of the system,
even in strongly correlated regime, similarly to the prediction
of Landau theory [62]. Also, Fig. 4(b) shows the chemical
potential for the system. We observe clear singularities ac-
companied by jumps at T = Tc1 and Tc2 , which are consistent
with the presence of the first-order phase transition.
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FIG. 5. Magnetization m (left axis) and inverse susceptibility
1/χD (right axis) as a function of the hole doping δ at (a) T =
0.005D and (b) T = 0.0025D for U = 300D.

Next, we clarify the stability of the ferromagnetically
ordered state under hole doping. Figure 5 shows the mag-
netization m and the inverse of the magnetic susceptibility
1/χD at U = 300D. At a higher temperature (T = 0.005), the
paramagnetic solution is always present, while the ferromag-
netically ordered one appears only within the range δ−

c2
< δ <

δ+
c2

. Therefore, when the doping rate varies within the para-
magnetic regime, the ferromagnetically ordered state is not
realized. Once the ferromagnetically ordered state is realized,
the magnetization continuously decreases with changing the
doping rate. Eventually, a first-order phase transition occurs
accompanied by a discontinuous jump in the magnetization.

At a lower temperature (T = 0.0025D), the genuine fer-
romagnetically ordered phase emerges when δ−

c1
< δ < δ+

c1
,

as shown in Fig. 5(b). By increasing the doping rate, the
first-order phase transition accompanied by hysteresis occurs.
In contrast, at a lower doping rate, approaching the transition
point, the physical quantities become highly sensitive to small
changes of the chemical potential. In this regime, the DMFT
calculations are hard to converge due to enhanced particle-
number fluctuations.

Performing similar calculations, we obtain the phase dia-
gram, as shown in Fig. 6. We find that the ferromagnetically
ordered phase is realized at low temperatures and for low den-
sity of holes. This ferromagnetically ordered state is expected
to be adiabatically connected to the Nagaoka limit (T → 0
and δ → 0), although converged solutions are hard to obtain
due to the enhanced particle-number fluctuations.

We now discuss the driving mechanism that stabilizes the
ferromagnetically ordered state in the SU(3) Fermi-Hubbard
model. To this end, we calculate the kinetic energy and in-
teraction energy. The kinetic energy per site is given by
K = −2πT

∑
n,σ Gσ

imp(iωn)�σ (iωn), the interaction energy
per site is given by I = U/2

∑
σ �=σ ′ 〈nσ nσ ′ 〉, and the total
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FIG. 6. Phase diagram for the SU(3) Fermi-Hubbard model with
U = 300D. Solid squares (triangles) represent the phase transition
points δc1 (δc2 ), where the paramagnetic (ferromagnetically ordered)
solution disappears. The phase boundary is shown as a guide to
the eye. A yellow rectangle indicates a region where the converged
results were not obtained.

internal energy per site is thus expressed as E = K + I . For
comparison, we also calculate these energy contributions in
the paramagnetic state, where the condition n1 = n2 = n3 is
imposed. Figure 7 shows the condensation energy �E =
EFM − EPM, and their contributions �K = KFM − KPM and
�I = IFM − IPM, in the system with U = 300D and T =
0.0025D. As n1 ∼ 1 − δ and n2 = n3 ∼ 0 are realized in the
ferromagnetically ordered state, the relation �I ∼ −IPM is
satisfied and it shows only a weak dependence on the doping
rate. We then find that the ferromagnetically ordered state is
energetically favored over the paramagnetic state owing to the
dominant contribution of the kinetic energy. Additionally, in
the small δ case, the energy gain is approximately proportional
to the doping rate, which is consistent with the fact that the
Nagaoka ferromagnetism is stabilized by the kinetic energy
of the doped holes. As δ increases, �E reaches a minimum
around δ ∼ 0.03, which corresponds to the maximum magne-
tization in this parameter region.

FIG. 7. Condensation energy �E/D and its contribution �K/D
and �I/D as a function of the hole doping in the ferromagnetically
ordered state when U = 300D and T = 0.0025D.

FIG. 8. U -T phase diagrams for the SU(2) and SU(3) Fermi-
Hubbard model with δ � 0.045. The green and blue curves
correspond to the temperatures T = Tc1 and T = Tc2 , where the
paramagnetic and ferromagnetically ordered solutions disappear,
respectively.

Finally, we compare our results with those of the SU(2)
Fermi-Hubbard model. Figure 8 shows the U -T phase dia-
grams for the SU(2) and SU(3) Fermi-Hubbard models with
δ � 0.045. In the SU(2) case, the magnetic phase transition
is of second order [50,56,57], and thereby critical behavior
appears at the phase boundary. In contrast, the SU(3) sys-
tem exhibits hysteresis behavior characteristic of a first-order
phase transition. Notably, the SU(3) ferromagnetically or-
dered phase emerges at lower temperatures and requires the
stronger interaction strength, in contrast to the SU(2) case.
This is qualitatively consistent with the results for the single
hole doped Fermi-Hubbard model on the square lattice [70].

In our analysis, we have restricted our discussions to
the ferromagnetic instability, and have not considered other
ordered states such as antiferromagnetically ordered state
[113–115], canted state [116–119], excitonic state [120,121],
etc. This is because even the stability of a simple ordered
state characterized only by diagonal components has not been
investigated in the SU(3) case. It is interesting to clarify how
such ordered states compete or coexist with the ferromagneti-
cally ordered state, which will be discussed elsewhere.

IV. CONCLUSIONS

We have investigated the SU(3) Fermi-Hubbard model on
the hypercubic lattice, using DMFT combined with the CT-
QMC method. By analyzing the magnetization and magnetic
susceptibility—particularly their dependence on temperature
and hole doping—we have demonstrated that a ferromag-
netically ordered state is realized in the strong-coupling and
low-doping regime. Moreover, we have identified hysteresis
behavior as temperature and/or doping are varied, indicating
the presence of a first-order phase transition. Furthermore,
by examining the kinetic and interaction energies, we have
confirmed that the kinetic energy gain plays a dominant role
in stabilizing this ordered state, which is consistent with its
adiabatic connection to the Nagaoka ferromagnetism. Com-
pared to the SU(2) case, the ferromagnetically ordered phase
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emerges at lower temperatures and requires stronger interac-
tion strengths in the SU(3) system.

Multicomponent systems have been realized in ultracold
atoms, and thereby it is worth exploring the ferromagnetism
in systems with larger internal degrees of freedom, such as
N = 3, N = 6, and N = 10, which have been realized using
6Li [11,12], 87Sr [13,14], and 173Yb [15–17], respectively.
In addition, studying the spatial fluctuations that arise in
finite-temperature ferromagnetically ordered states remains
an intriguing subject. As the ferromagnetic phase is stabilized
by the formation of a Nagaoka polaron in the ground state
[59], it is interesting to determine whether a similar quasipar-
ticle picture persists at finite temperatures. We expect that both
spin inhomogeneity and the distribution of hole positions may
play an important role in the stabilization mechanism.
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APPENDIX A: NONUNIFORM SAMPLING
SCHEME IN CT-QMC

We explain the details of the nonuniform modification
used in performing the sampling of Green’s functions in the
segment-based CT-QMC method, where the Green’s function
Gσ (τ ) is obtained as

Gσ (τ ) = 1

β

〈∑
i, j

Oσ
ji sgn

(
τσ

e,i − τσ
s, j

)
δ
(
τ − (

τσ
e,i − τσ

s, j

))〉
MC

.

(A1)

Here, τσ
s,i and τσ

e, j represent the start and end times of each
segment for spin σ , respectively [75,76], Oσ

i, j is defined by
using the hybridization function �σ (τ ) as

Oσ
i, j = �σ

(
τσ

s,i − τσ
e, j

)
, (A2)

and 〈·〉MC denotes the Monte Carlo average. In general, when
we have M sampling points in the interval (0, β ), the delta
function is defined as

δ(τ ) =
{

M
β
, − β

2M � τ � β

2M ,

0, otherwise.
(A3)

However, we find that equally spaced sampling scheme
encounters numerical difficulties in the strongly correlated
regime, where the Green’s function exhibits an exponential
decay near τ � 0, β and takes extremely small positive values
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FIG. 9. Imaginary-time Green’s function Gσ (τ ) as a function
of τ/β for U = 300D, T = 0.005D, and δ � 0.9619 (μ = 1.25D)
in the ferromagnetically ordered phase. The blue and green curves
correspond to the internal states with large and small particle number
density, respectively. The solid cyan line represents the exponential
decay as y = −G2(3)(0) exp(−Uτ ). The horizontal axis is scaled
logarithmically, while the inset presents the same data on a linear
scale for comparison.

around τ � β/2, as shown in Fig. 9. To accurately capture
the exponential decay near τ = 0, we have to reduce the dis-
cretization errors by increasing the number of sampling points
M. On the other hand, to obtain sufficiently precise values
around τ ∼ β/2, where the Green’s function is very small, it
is crucial to increase the sampling counts per point to reduce
the standard error. A simple improvement would be to enlarge
the sampling interval so as to collect more samples at each
point, which in turn leads to a reduction in M. Consequently,
an equally spaced sampling scheme becomes inefficient for
the calculation.

Instead, we use a nonuniform sampling method that
overcomes this issue by allowing fine samplings near the
boundaries and coarse samplings around the center, thereby
achieving an efficient global representation of the Green’s
function. In this work, we choose the following sampling
points:

τi = β sin2

(
π

2

i

M − 1

)
. (A4)

This choice ensures that the sampling remains nearly uniform
in the central region, whereas the sampling interval becomes
finer in the vicinity of the boundaries. We then introduce a set
of points {ξi} that satisfies

τi = ξi + ξi+1

2
, (A5)

which gives the delta function as

δ(τ − τi ) =
{ 1

ξi+1−ξi
, ξi � τ � ξi+1,

0, otherwise.
(A6)
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Furthermore, ξi is analytically calculated as

ξi = β

2

(
1 − cos

[(
i − 1

2

)
π

M−1

]
cos

(
1
2

π
M−1

)
)

. (A7)

This provides an explicit expression for the sampling bound-
aries of the delta function. With the use of this protocol, we
find that the sampling intervals for Gσ (0) and Gσ (β ) are
not included, and these values cannot be directly obtained
from Eq. (A1). Instead, they are determined from the particle
number as

1 − Gσ (0) = Gσ (β ) = −〈nσ 〉, (A8)

which allows the entire Green’s function to be recon-
structed. In our numerical calculations, we set M = 10 000,
which leads to τ1/β = 2.47 × 10−8 ∼ 1/M2 and (τM/2 −
τM/2−1)/β = 1.57 × 10−4 ∼ 1/M.

In addition, the nonuniform sampling protocol defined by
Eq. (A4) provides an advantage in evaluating the hybridiza-
tion function. In the self-consistent DMFT calculation, the
hybridization function tends to acquire a similar functional
structure as the Green’s function [74], and therefore it is cru-
cial to represent it by using the nonuniform sampling scheme
to improve the accuracy. During the CT-QMC simulation, the
value of the hybridization function is evaluated repeatedly.
This requires to determine the corresponding array index from
a given imaginary time τ , which in general necessitates a
binary search. However, from Eq. (A4), we can analytically
obtain

i =
⌊

2(M − 1)

π
sin−1

(√
τ

β

)⌋
, (A9)

where �·� denotes the floor function. This inverse mapping
enables direct index computation without searching for it,
leading to almost the same computational efficiency as that
in the uniform case.

Finally, we note that our nonuniform sampling protocol
and the general procedure of constructing sparse sam-
pling points from compact orthogonal basis functions are
closely related [112]. While the Fourier transformation via
the intermediate-representation (IR) method is efficient, us-
ing uniformly spaced grids in either the imaginary-time or
Matsubara-frequency domain results in ill-conditioned trans-
forms due to the near-linear dependence among the basis
vectors. Reference [112] proposes to improve the condition-
ing by selecting sampling points as the roots of the basis
functions. Interestingly, although our sampling points were
designed to achieve a globally accurate representation of the
Green’s function, they are found to lie close to the roots
of the IR basis functions, which exhibit strong oscillations
near the boundaries and weak oscillations near the center.
Therefore, the proposed sampling points enable a stable and
accurate transformation to the IR basis.

APPENDIX B: MAGNETIC SUSCEPTIBILITY
FOR THE BETHE LATTICE

Here, we briefly discuss the absence of ferromagnetism on
the Bethe lattice, which has an infinite coordination number

300DT \ U 600D

0.02D
0.01D

0.00 0.05 0.10 0.15 0.20 0.25 0.30
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2.5

5.0

7.5

10.0

12.5

15.0

17.5
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0

20

40

Hypercubic

FIG. 10. Magnetic susceptibility χD as a function of the hole
doping δ for the Bethe lattice (inset: for the hypercubic lattice in
infinite dimensions). The plots are for U = 300D at T = 0.01D
(green) and T = 0.02D (blue) on both hypercubic and Bethe lattices,
and U = 600D at T = 0.01D (magenta) and T = 0.02D (cyan) on
the Bethe lattice. The absence of a peak structure indicates that the
ferromagnetically ordered state is unstable on the Bethe lattice.

and DMFT calculations also become exact. The noninteract-
ing density of states (DOS) is given by

ρ(ε) = 2

πD

√
1 −

(
ε

D

)2

, (B1)

which leads to the simple Dyson equation of the effective
impurity model,

Gσ (iωn)−1 = iωn + μ − D2

4
Gσ

loc(iωn). (B2)

By combining this expression with Eq. (6), we obtain the sim-
ple self-consistent equation �σ (τ ) = D2

4 Gσ
loc(τ ), which allows

the DMFT calculation to be carried out entirely in imaginary
time. We remark that Nagaoka’s theorem does not apply to the
Bethe lattice, as it lacks the closed-loop structures required for
the theorem.

Figure 10 shows the magnetic susceptibility χD as a func-
tion of the hole doping δ in the strongly correlated regime at
low temperatures, where the SU(3) ferromagnetism emerges
in the case of the infinite-d hypercubic lattice (see the peak
structure in the inset). Clearly, we find that the magnetic sus-
ceptibility exhibits no peak on the Bethe lattice. As discussed
in the main text, the peak structure in the susceptibility signals
the onset of the ferromagnetic order, and thereby the absence
of a peak structure indicates that the ferromagnetism does not
emerge on the Bethe lattice. This result highlights that the
lattice geometry is crucial for stabilizing itinerant ferromag-
netism in the SU(3) Fermi-Hubbard model.

We note that the absence of the ferromagnetism on the
Bethe lattice has been also reported in the SU(2) Fermi-
Hubbard model on the basis of the DMFT calculations [56],
where no spontaneous magnetization is observed. In Ref. [56],
it is discussed that the absence of high-frequency components
in the noninteracting DOS may be a possible origin of the
absence of the ferromagnetism. As the SU(3) ferromagnetism
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in the current study is of kinetic origin, as in the case of
the SU(2) ferromagnetism, such an argument may hold for

the SU(3) Fermi-Hubbard model, but clarifying the precise
structure is left for future study.
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