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Self-attention neural network for solving correlated electron problems in solids
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The attention mechanism has transformed artificial intelligence research by its ability to learn relations
between objects. In this work, we explore how a many-body wave-function Ansarz constructed from a large-
parameter self-attention neural network can be used to solve the interacting electron problem in solids. By a
systematic neural-network variational Monte Carlo study on a moiré quantum material, we demonstrate that the
self-attention Ansatz provides an accurate and efficient solution without human bias. Moreover, our numerical
study finds that the required number of variational parameters scales roughly as N? with the number of electrons,
which opens a path towards efficient large-scale simulations.
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I. INTRODUCTION

Solving the many-electron Schrodinger equation for solids
is an exceedingly difficult problem due to the exponential
growth of the Hilbert space dimension. Various techniques
based on the variational principle have long been developed to
approximate the ground state of interacting electron systems
using trial wave functions. The Hartree-Fock method based
on independent electron approximation [1,2] usually captures
99% of the total energy [3], but misses electron correlation
effects, the driving force behind fascinating quantum phe-
nomena such as high-temperature superconductivity and the
fractional quantum Hall effect.

Recently, neural network (NN) based variational Monte
Carlo (VMC) has been developed for solving the many-
electron problem with high accuracy [4—-12]. Compared to
human-designed trial wave functions, neural network wave
functions contain a large number of parameters, have enor-
mous representation power, and can be optimized efficiently.
NN-VMC has been shown to be highly accurate in calculating
the ground-state energy of interacting electrons in atoms and
molecules [9-11,13,14], lattice models [6,12,15-17], uniform
electron gas [18-24], moiré semiconductors [25,26], and frac-
tional quantum Hall liquids [27,28].

Despite the rapid progress, two important questions remain
open. First, a number of NN architectures have so far been in-
troduced and used to study different many-electron problems.
Is there any hope of finding a unifying architecture that applies
to a wide range of interacting electron systems? Second, it is
essential to assess the finite-size effect in numerical simula-
tions of solid-state systems. How does the performance of the
neural Ansatz change as the system size increases?

In this work, we present a general NN-VMC method
to solve many-electron problems in solids, where electron
correlations in the NN Ansatz are entirely produced from
the self-attention mechanism. The attention mechanism was
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originally introduced in the context of large language models
to learn relations between words [29]. Here, the attention
mechanism is employed to identify and quantify how elec-
trons influence each other and how such influence affects their
individual orbitals. This enables the construction of NN wave
functions from Slater determinants of generalized orbitals that
depend on the configuration of all electrons [11]. By min-
imizing the energy using Monte Carlo and neural network
techniques [3], variational energy and wave function for the
many-electron ground state are obtained.

The performance of our attention based NN Ansatz is
evaluated for interacting electrons in semiconductor moiré
heterobilayers, such as WSe,;/WS,. This moiré platform
hosts a fascinating variety of correlated electronic states,
including Mott insulators [30-32], generalized Wigner crys-
tals [33], and strongly correlated Fermi liquids [34]. Here,
doped electrons reside on one semiconductor layer and ex-
perience a moiré potential. The Hamiltonian thus takes the
form of a two-dimensional Coulomb electron gas in a periodic
potential [35]:

H =Hy+H,.
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where V(r) = -2V, Z;zl cos(g;-r+¢) is the moiré
4

potential with reciprocal lattice vectors g; = (cos

V3ay
%, sin ?), moiré lattice constant ays, and ¢ controls the
shape of the moiré potential. Despite its conceptual simplicity,
this Hamiltonian exhibits a variety of electron phases that
emerge from the interplay between kinetic energy, moiré
potential, and Coulomb interaction [36,37].

First, for small system size, we benchmark our NN results
with band-projected exact diagonalization. Remarkably, the
NN energies are found to be lower even when five bands
are included in the exact diagonalization. Next, we assess
the performance of the NN wave function as the system size
increases. Specifically, we study how the required number of
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parameters Np, scales with the number of electrons N, and
numerically discover a scaling law Ny, o< N* with a small
exponent « ~ 2. These findings suggests that self-attention
NN Ansatz is an accurate and efficient method in solving
large-scale interacting electron problems.

We note that self-attention NN wave functions were first
introduced in Ref. [11] to solve quantum chemistry problems,
reaching state-of-the-art accuracy. The recent work Ref. [27]
demonstrated that the self-attention Ansarz accurately de-
scribes the fractional quantum Hall ground state, achieving a
lower ground-state energy than Landau-level projected exact
diagonalization. The remarkable success of the self-attention
NN wave function in atoms, molecules, electron gas, and now
moiré materials, taken as a whole, suggests that self-attention
is a key ingredient for a unifying solution to the correlated
electron problem.

In the remainder of the article, we detail the self-attention
neural network wave-function Ansatz and present its bench-
mark with self-consistent Hartree-Fock and band-projected
exact diagonalization. First, in Sec. Il we summarize the tra-
ditional methods of Hartree-Fock and band-projected exact
diagonalization for comparison. Then, Sec. III describes the
construction of the self-attention neural network Ansatz. Sec-
tion IV summarizes principal ideas of the variational Monte
Carlo method applied to optimize the wave-function Ansatz.
Finally, our numerical results and benchmarks are presented
in Sec. V.

II. TRADITIONAL NUMERICAL METHODS

In this section, we present Hartree-Fock and band-
projected exact diagonalization solutions of the interacting
Hamiltonian for transition metal dichalcogenides (TMD) het-
erobilayers. Results from these standard numerical methods
will provide the benchmark for NN-VMC in the following
sections.

Throughout this work we study periodic solids. Numerical
simulation of a periodic solid requires to divide the space into
periodic supercells of finite size and require periodic bound-
ary conditions on the wave function. With periodic boundary
conditions, the Coulomb interaction needs to be carefully
calculated to account for interactions of particles within the
supercell with all their images in the other supercells (see
Appendix A for details).

A. Hartree-Fock

The Hartree-Fock approximation to the ground state of an
interacting fermionic system is obtained by minimizing the
energy over the space of single Slater determinant states:

¢1(r1) on(r1)
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This wave-function Ansatz captures the quantum-mechanical
“exchange” effect by incorporating the Pauli exclusion prin-
ciple, but neglects correlations arising from electron-electron
interactions. Single Slater determinant states have a simple
structure that enables efficient computation of observables

using Wick’s theorem. At the same time, this structure enables
a self-consistent determination of the optimal one-body or-
bitals ¢;(r) underlying the Slater determinant wave function.

By construction, the energy of the Hartree-Fock ground
state is the energy of the best wave function constructed from
independent orbitals. This motivates the definition of correla-
tion energy as the energy difference between the true ground
state and the Hartree-Fock ground state:

Ecorr = Egs — (WHF|H|WHF). 3)

In molecular systems and most solid-state systems, the corre-
lation energy typically is only about 1% of the ground-state
energy [3]. However, it plays an essential role in driving
various quantum phases of matter, ranging from superconduc-
tivity to fractional quantum Hall states.

B. Band-projected exact diagonalization

One approach to capture electron-electron correlations is
to construct a finite set of Slater determinant wave functions
and exactly diagonalize the full Hamiltonian projected onto
this finite subspace of the Hilbert space. This approach is
variational because the restricted choice of Slater determi-
nants forms a variational wave-function Ansatz. The obtained
ground-state energy is an upper bound on the true ground-state
energy because inclusion of additional Slater determinants can
further lower the energy.

A good choice of Slater determinants spanning the
variational subspace is obtained by diagonalizing the nonin-
teracting part of the Hamiltonian Hy, i.e., the first term in
Eq. (1), and keeping only the lowest-energy eigenstates up to
a cutoff. For a periodic system, the single-particle eigenstates
are Bloch states labeled by the Bloch momentum k and band
index n. Projecting onto the subspace of lowest Nyangs bands,
the Hamiltonian matrix elements between Slater determinants
are written in second quantization
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where C;U” creates a Bloch state in the nth band

at crystal momentum k and spin o with corre-
sponding single-particle energy &g , and Vk’i"?’f(’;‘, ol =

(K,o,n;p,0’, m|V|k, o,n’;p,o’, m') are the corresponding
matrix elements of the Coulomb interaction projected onto
the band basis. Equation (4) contains the Madelung energy
Né&y/2 that describes the interaction of charges in the
periodic supercell with their own images in other supercells
(see Appendix A for details).

For a small size system, the band-projected Hamiltonian
H can be numerically diagonalized to yield the ground-state
energy and wave function. The band-projected exact digonal-
ization (BP-ED) method is accurate only if the interaction
strength is small compared to the gap to excitations involv-
ing high-energy bands. However, as we shall show below,
interaction-induced band mixing is substantial for realistic
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material parameters, and therefore it is necessary to include
multiple low-lying bands to obtain quantitatively accurate re-
sults, which limits the practical application of BP-ED to very
small system size.

III. NEURAL NETWORK WAVE FUNCTION

While Hartree-Fock and BP-ED studies have provided
useful results on moiré semiconductors, they suffer from
respective limitations. The Hartree-Fock method fails to cap-
ture electron correlation effect and cannot describe entangled
states such as fractional Chern insulators, while BP-ED is
severely limited by finite-size effect and band truncation.

Recently, a new type of variational method based on neural
network wave functions has been developed to approximate
the ground state of many-electron systems. Traditional vari-
ational wave functions for correlated systems are artfully
designed by humans, tailor made for a given quantum phase,
and usually contain only a few variational parameters. In
contrast, thanks to their universal approximation capability,
deep neural networks can be used to generate powerful wave-
function Ansatz, which has a large number of variational
parameters and can accurately represent distinct phases of
matter in a unified way [10,38,39].

In the following, we show how an expressive neural net-
work wave-function Ansatz capturing correlations between
particles can be constructed. First, in Sec. III A, a universal ap-
proximation of single-particle orbitals is constructed by a deep
feed-forward neural network. Second, in Sec. III B, by gener-
ating a set of single-particle orbitals from the feed-forward
neural network, a single Slater determinant wave function is
obtained, which enables neural network implementation of
unrestricted Hartree-Fock calculations. Finally, in Sec. IIIC,
electron correlations are captured by mixing different electron
streams in a permutation-equivariant way with self-attention
mechanism. The resulting neural network wave function takes
the form of generalized Slater determinants that are built from
“correlated orbitals,” and by construction is antisymmetric in
electron coordinates [10]. This representation is in principle
universal as all many-body fermionic wave functions can be
written as a generalized Slater determinant when allowing for
discontinuous functions [10]. Figure 1 shows schematically
and compares the network architectures representing general
single Slater determinant wave functions, and its extension by
self-attention capturing correlations.

A. Deep neural network for one-body orbitals

A single particle orbital describes the motion of a single
electron in an external potential. Mathematically, it is repre-
sented by a function ¢(r) from real space coordinates R¢ to
the space of complex numbers C describing amplitude and
phase of the electronic wave at the given position r € R?. Due
to the universal approximation theorem for deep feed forward
neural networks [38], any such function can be approximated
to arbitrary accuracy when sufficiently many hidden layers
are included. Therefore, deep feed-forward neural networks
are the main structural element that we employ to construct
general single-particle orbitals.

SlaterNet Self-attention NN
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FIG. 1. Architecture of the neural network wave-function Ansatz.
SlaterNet: Multilayer perceptron neural network generates one-body
orbitals to approximate general single Slater determinant wave func-
tions. Self-attention NN: Self-attention neural network for solids
based on Psiformer [11] capturing correlations by communicating
mutual information between individual particle streams.

The structure of the compositional wave-function Ansarz
consists of three sections with distinct functionality. First, the
function input, i.e., the electron coordinate r in coordinate
space in our case, is transformed into a representative feature

f° = feature(r). 5)

For systems with open boundary conditions, it is sufficient for
the function feature(r) to represent r in dimensionless units.
Systems with periodic boundary conditions satisfy

Yy, ..., ...,rN) =V, ...,ri+L,...,1ry) (6)

for any particle i, where the two vectors L = nL + mL, with
n, m € 7 specify the supercell size and geometry. For periodic
systems, we choose the function feature(r) to express the
coordinate r in terms of periodic coordinates [18,40]

sin (G]Tr)
sin (G3r)
cos (G{r)
cos (G1r)

feature(r) =

; @)

where GiTL j = 2mé;; are the reciprocal supercell vectors and
8;; is the Kronecker delta. This periodic feature representation
uniquely specifies the electron coordinate on the torus and
ensures that proximate positions on the torus are passed as
proximate features to the network, enabling efficient repre-
sentation of general periodic functions by the neural network.
This modification adapts the quantum chemistry implementa-
tion Psiformer of Ref. [11] to periodic solids.

Second, the featured coordinate is embedded in the in-
ternal representation of the neural network by a linear
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transformation
h’=wef°, (®)

where Wy € R% x R?%in is a rectangular matrix with dy the
width of the internal network layers. This embedded featured
is passed through the multilayer perceptron neural network
with functional form

B = B! 4 tanh(WHRD 4 b1, 9)

where W!tl € R4 x R% is the linear transformation be-
tween layers, b'"! € R% is an activation bias vector, and
tanh is the nonlinear activation function of the nodes, and
I =0,1,...,L — 1 enumerates the layers.

Finally, the wave function is obtained by projecting the
output of the neural network h;, onto real and imaginary parts
of a complex number,

o(r) = wo - b + iw, - kY, (10)

where wy, w; € R% are learnable projection vectors and the
center dot denotes the scalar product.

B. SlaterNet: Neural network for unrestricted Hartree-Fock

The ability to construct general single-particle wave func-
tions directly enables the construction of general Slater
determinant wave functions for N electrons. This is achieved
by passing each electron coordinate r; through the feed-
forward neural network,

£ = feature(r;), (11)
B =wOr?, (12)
B! = bl 4 tanh (W'RL 4 B, (13)

where the same transformations W' and shifts b’ are applied to
the single-particle stream hf generated by the coordinates of
each particle. Thereby, this compositional function generates a
single function in a high-dimensional space before projecting
onto the space of N single-particle orbitals CV. Then, N
distinct single-particle orbitals are constructed as

¢;(ri) = waj - hY + iwy; i - bt (14)

with individually learnable projection vectors w;, w;+. The
projection vectors are not required to satisfy an orthogonality
criterion because nonorthogonal directions are projected out
upon forming the Slater determinant as in Eq. (2).

Because all single-electron wave functions are univer-
sally approximated by the deep neural network, this Ansatz
universally approximates all single Slater determinant wave
functions. By minimizing the energy over this variational
space, the best set of single-particle orbitals is identified. This
is equivalent to an unrestricted Hartree-Fock calculation. We
refer to this neural network structure as “SlaterNet” through-
out the paper.

C. Self-attention neural network for electron correlations

Correlations due to interactions among particles can be
described by specifying how the state of individual parti-
cles i is modified by interactions with all remaining particles

J # i. To capture electron correlation effects, it is necessary
to go beyond Hartree-Fock Ansatz as described earlier. One
approach is to promote the single-particle orbitals ¢;(r;) to
the correlated orbitals ¢;(r;; {r,;}) with explicit dependence
on the other particles’ position {r/}. The idea of correlated
orbitals dates back to the backflow transformation used in
variational study of superfluid helium and uniform electron
gas [41,42], and has recently been applied to neural network
wave functions [7,10,11,43].

In this work, inspired by [11], we use the self-attention
mechanism [29] to learn how particles influence each other
and how such influence affects their individual orbitals.
Specifically, the self-attention SELFATTN; operates on the
entire set of outputs {hﬁ} from the previous layer and gen-
erates the set of intermediate states { fﬁ} that is passed as
input to the next perceptron layer that generates the next
state {hﬁ+1 }:

N {hf} SELiA)TTN {f{} PERCE’)TRON {hﬁJrl} N
The following explains the self-attention mechanism and the
mathematical expression of the compositional function is
summarized in Egs. (19) and (20) below.

The first step of the self-attention operation is to define
three distinct features for each element of the set {hﬁ}. The
three features, called “keys,” “queries,” and “values,” are vec-
tors obtained by the linear transformations

k' =Wk, W R - R (15)
q"=w'nj, w/':R% - R%w, (16)
vfh — Wvlth WV”’l : RdL N RdAlana]ues, (17)

where the transformations W%, Wq”’, and W/ are learned
and are independent of the particle index i. The vector space
dimensions da, and daynvaies are typically much smaller than
the dimension dp, of hf because they only represent individ-
ual features of the state hf . Here, we have used multihead
attention mechanism, with the index 4 labeling independent
applications of distinct transformations Wk”‘, quh, WV”’ to ex-
tract multiple sets of keys, queries, and values.

The features “key” k;" and “query” ¢’ are elements of

the same vector space R%w to allow direct comparison be-
tween different electron streams i and j. Specifically, in the
attention mechanism the relevance of streams j for a se-
lected “key” streams i is quantified by the similarity measure
exp(kfh -qi-h). By weighting the scalar product kfh -qgh with
the exponential function, the most relevant streams j for each
“key” stream i are singled out. This procedure can be in-
terpreted as approximating the adjacency matrix of a graph
describing the most relevant relations [44]. The “value” fea-
ture vj-h quantifies the influence the stream j can exert on other
streams i # j.

Altogether, the self-attention operation identifies for each
key stream i the most relevant stream j according to
the feature representations Wik, Wq”’ and returns the value
véh corresponding to the most relevant stream j, up to
exponentially suppressed contributions from less relevant
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streams:

.yl yslh ylh
SELFATTN; ({R} }; W, W, ", W)
1< Ih g ihy, lh
=WZexp(qj kM)l (18)
j=1
where a normalization factor is included:

N
N = Vdauvaes Y exp (g7 k).
j=1

The output of all attention heads /% is then accumulated and
used to generate the input for the next perceptron layer:

fi =l 4+ W!concat,

x [SeLeATTN; ({BL LW/ Wi W] (19)
BT = 7 4 tanh (W 4B, (20)

where the accumulation is performed by the learned transfor-
mation W! € R4 x RMasdaavaws projecting the output of the
attention heads onto the dimension of hf Equations (19) and
(20) replace the compositional relation (13) in the construc-
tion of one-body orbitals as in SlaterNet. Optionally, multiple
perceptron layers can be applied between the attention layers,
which is realized by multiple subsequent applications of (20)
with individually learnable parameters. By mixing different
single-particle streams with the self-attention mechanism, cor-
relations between the particle states are captured.

The generalized single-particle orbitals ¢;(r;, {r/}) con-
structed by the self-attention operation are permutation
equivariant in the coordinates of the remaining electrons {r/;}:

Qiriir, iy ) =i, o1, ) 21

for any k, [ # i. The permutation equivariance is necessary
for the generalized Slater determinant to represent a fermionic
wave function that is antisymmetric under permutation of
particle coordinates. This property is inherent to the functional
form of the self-attention operation (18).

To further enhance the expressive power of our neural
network wave function, it is useful to construct multiple Slater
determinants from the neural network output by projection
onto m =1, ..., Ny distinct sets of correlated orbitals for
each determinant,

@7 iz fryi}) = wh - ki +iwl | Ry (22)

where the projection vectors w3, w3, are individually
learnable.
In summary, the full wave-function Ansatz is of the form

Naet

W(R) =) det (] (ri bryah), (23)

m=1

where the determinant is taken over the argument matrix with
indices i, j, correlated orbitals ¢>}”(r,-; {r;}) are constructed
from Eq. (22). In practice, we find using a few generalized
Slater determinants usually performs better than using a single
generalized Slater determinant.

i Ansatz 1!

: g [ 1
v 5+ _,| Neural —yp ! :
L8 Net . v !
|8 i :
' g t 1| L[6], VgL | !

FIG. 2. Building blocks of variational Monte Carlo. In the
Monte Carlo algorithm, the wave-function Ansatz Wy is constructed
and sampled to efficiently evaluate the optimization goal L[0] :=
(Wy|H|W,) of minimizing the energy. Accordingly updating the
weights of the variational Ansatz by an optimizer during each
step of the iterative procedure ensures convergence to the ground
state of H.

IV. VARIATIONAL MONTE CARLO

Techniques based on a variational wave-function Ansatz re-
quire efficient numerical evaluation of their energy to achieve
the optimization goal of approximating the ground state of the
system Hamiltonian. This is achieved by Monte Carlo sam-
pling of the particle configuration and corresponding energy
according to the distribution determined by the variational
wave function. This section summarizes the principal con-
cepts of the variational Monte Carlo technique applicable to
any variational wave-function Ansatz and refer to Ref. [3] for
a detailed introduction. A schematic overview of the Monte
Carlo method is presented in Fig. 2.

A. Sampling expectation values

The optimization goal to approximate the ground state of
a correlated electron Hamiltonian with a variational wave-
function Ansatz Wy(R) can be chosen to minimize the energy
expectation value

_ [dRY;(R)H(R)Wy(R)
[ dR|Ys(R)|?

b (24)

The numerically expensive integrals over configuration space
R € R4M1 where R = (ry, ..., ry) are particle positions, can
be efficiently evaluated by noticing the identity
£ [ dR|Yy(R)* ¥, (R)H (R)Wo(R)
0 =
[ dR|Wp(R)|?

(25)

This integral can be efficiently approximated by sampling
configurations R = (ry, ..., ry) according to the distribution
|Wo(R)I?,

Eg ~ Eg~jw,®)p[Eoc.0(R)], (26)
where the local energy was introduced,
Eioco = Wy ' (R)H(R)Wp(R), 27

and Egw,®)2[Eloc,0] = All > ur Eloc,6 denotes a summation of
the local energy evaluated for M sampled configurations R
from the distribution |Wy(R)|%.
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The variance of the local energy equals the energy uncer-
tainty AE of the system Hamiltonian,

(AE)* = (H*) — (H)?
~ Eguym [Eie, o R)] — Eg (28)

where the equality is established by inserting 1=
Wo(R)W, ' (R) before and in-between the Hamiltonian
operators when computing (H?) using similar manipulations
as the ones leading to Eq. (26). The energy uncertainty is
proportional to the distance |(Wp|Wo)|* of the variational state
W, from an eigenstate W, of the system Hamiltonian [45]. In
an eigenstate, the energy uncertainty is zero.

The variational wave-function Ansatz Wy generally is un-
normalized because computing the norm itself is numerically
demanding. Unnormalized probability distributions can be
sampled using the Metropolis-Hastings algorithm [46,47];
this technique is applied in the numerical results presented in
this paper.

B. Optimizing variational parameters

To optimize the parameters of the wave function, the
steepest descent direction is identified as the direction that
minimizes the cost function L[@ + d6] for a step d@, where
the distance of the step is measured on the variational wave-
function space ||d0||y [48,49]:

146115, = 1 — [(Wosa0l W) > ~ ) 2un(0)d6,d6,,  (29)

up to higher-order corrections, where the summation includes
all variational parameters 6, and g,, () is the quantum geo-
metric tensor

gnm(0) = (0, Wo|(1 — |Wg) (Wp!)|0s, Vo). (30)

In this way, the information of how each parameter affects
the wave function is included in the distance measure. The
resulting optimal step then includes the inverse of the quantum
geometric tensor [48]

d = —ng ' (0)V,L[6], (31)

where n controls the length of the optimizer step df and
is commonly known as the learning rate. This procedure is
known as natural gradient descent.

In practice, for variational models with large number of
parameters, computing the inverse of the quantum geometric
tensor is numerically impractical. For neural network wave-
function Ansdtze, the inverse of the geometric tensor can be
efficiently approximated by the Kronecker-factorized approx-
imate curvature (KFAC) method [10,50], where correlations
between different layers as well as input and output of individ-
ual layers are neglected. Following Ref. [10], this method is
applied in our numerical calculations. The current implemen-
tation of KFAC operates only on the absolute magnitude of the
wave function, while the phase is neglected. In this case, the
quantum geometric tensor reduces to the Fisher information
matrix.

We remark that around a second-order quantum phase tran-
sition, the Fisher information diverges in the parameter that

TABLE 1. Comparison of ground-state energies of the 27-site
system at % filling and € = 10 and 5 obtained using different meth-
ods. For 27 sites, BP-ED is limited to a single band due to the
prohibitively large Hilbert space dimension. The bold font highlights
the lowest energy result.

N, € Self-attention NN SlaterNet BP-ED
18 10 —32.070(7) —31.35(2) —31.32443
18 5 —59.127(9) —58.01(3) —57.80848

drives the quantum phase transition [51,52]. These divergen-
cies may pose difficulties in the numerical approximation of
the Fisher information matrix so that optimization around a
quantum critical point may be more challenging than deep
within a phase, even if the variational Ansatz remains suffi-
ciently expressive to describe the critical state.

V. RESULTS

This section presents the numerical results obtained from
our variational Monte Carlo calculations of Hartree-Fock us-
ing SlaterNet and the minimal self-attention NN and the
benchmark with band-projected exact diagonalization.

Throughout this article, we consider WSe, /WS, as model
system, with the following model parameters determined by
first-principles calculations [53]: effective mass m* = 0.35m,,
moiré potential strength Vo = 15 meV, and moiré shape pa-
rameter ¢ = 1 /4. We consider a moir¢ lattice period of ay; =
8.031 nm which results from the lattice mismatch between
WSe, and WS,. In this case, moiré filling of v = 1 particles
per moiré unit cell corresponds to a density of n = 1.785 x
10"? cm™2. The relative dielectric constant for a surrounding
dielectric hBN is € ~ 5. Devices with tunable dielectric con-
stants are possible using tunable dielectrics such as SrTiO;
[54]. All our calculations are performed for the spin-polarized
system.

These units are converted to the dimensionless units of
Eq. (1) as follows. In Eq. (1), distances are measured in

. .. 2 . .
effective Bohr radii aj; = 4mee = e—r”;" ap and energies in
*

m*e?
. 2 *
effective Hartree Ha* = -1 = L™ Ha, where qp and Ha
m*aj €7 me

are the standard Bohr radius and Hartree energy defined in
terms of the free-electron mass m,, m* is the effective mass
for charge carriers, and € is the relative dielectric constant of
the surrounding medium.

We summarize the hyperparameters used for training the
models in Table II in Appendix C. While architectural param-
eters must be adjusted for each specific system (as detailed
below), we found that the remaining hyperparameters were
largely independent of the problem’s specifics and consis-
tently yielded stable and optimal results. We particularly
highlight the learning rate ny = 10, which, although unusually
high, emerged as the optimal value for a wide variety of 2D
systems we experimented with, including both free Fermi
liquid and moiré systems.

A. Convergence and scaling with system size

In any numerical method, it is crucial to ensure conver-
gence and address how the numerical complexity scales with
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TABLE II. Table of default hyperparameters used in our numer-
ical calculations with the self-attention neural network.

Parameter Value
Architecture Network layers 3
Attention heads per layer 6
Attention dimension 16
Perceptron dimension 64
No. perceptrons per layer 1
Determinants 4
Training Training iterations 15 x 10*
Learning rate at time ¢ no(1 + t‘fo)*l
Initial learning rate 1 10
Learning rate delay f, 1x10°
Local energy clipping p 5.0
MCMC Batch size 4096
KFAC Norm constraint 1x1073
Damping 1x1073

the system size. Here, we first demonstrate convergence of
the energy estimate as a function of Monte Carlo steps. Next,
we investigate the saturation of the converged energy with the
network dimensions. This enables us to numerically estimate
the numerical complexity in terms of the scaling of the re-
quired number of variational parameters with the number of
electrons.

To ensure the convergence of our results, we verified that
the learning curves (i.e., the local energy averaged of the
batch size of each step) exhibited stable behavior and, on
average, decreased monotonically. This trend remained con-
sistent across different system sizes, as illustrated by the raw
learning curves for the 9- and 27-site systems at v = % filling
in Fig. 3(a), shown without smoothing. We highlight the mean
and standard deviation of the obtained mean-energy-per-batch
using a dashed line and a stripe. The latter arises from the
finite batch size used for sampling at each iteration and sets
an important scale, as independent learning curves typically
remain within one standard deviation of the mean.

To further validate our approach, we examine the conver-
gence of the ground-state energy per particle as a function of
the number of variational parameters for the 9-, 12-, 27-, and
36-site systems at v = % filling. Figure 3(b) explores networks
spanning three orders of magnitude in variational parameters
and reveals a clear convergence pattern in all cases, with
the ground-state energy approaching a lower bound as the
network reaches 1 x 10 variational parameters.

This distinct converging pattern indicates convergence
saturation, meaning that further increasing the number of pa-
rameters does not improve the ground-state energy. We define
the saturation point N, for a given system as the threshold
beyond which the converged energies consistently fall within
one standard deviation of the lowest observed energy. In
Fig. 3(b), these values are marked with stars.

We extract these saturation points as a function of the
number of electrons N and find that they follow a well-defined
scaling law:

Nl;‘ar ~ (400 +49) x N201£005 32

(@) -32.00
o 18 electrons, €=10
—32.02
—32.04 1
—~ —32.06
3 _3
2 -3208) 1
< —59-4251 e 6 electrons, e=5 ]

Step, x104

—&— 6 electrons

—-32.125

——&— 8 electrons

-32.150 —&— 18 electrons

24 electrons
< -32.175
£ -32.200
0y —32.225
—-32.250
—-32.275

~32.300 - o —
par

FIG. 3. (a) Raw (unsmoothed) learning curves for the energy
per electron at v = % filling for 6 electrons with € =5, and 18
electrons with € = 10. (b) Converged energy of the moiré system
atv = % filling and € = 10 as a function of the number of variational
parameters in the self-attention NN. Error bars indicate the standard
deviation of the mean local energy, averaged over the batch size
at the end of optimization. Stars mark the estimated number of
parameters, N, required to reach convergence saturation. Further
increasing in the number of parameters keeps the energies within one
standard deviation (highlighted by the striped region). For sake of
presentation, the 8e data were shifted up by 0.39 meV, and 18e and
24e data shifted down by 0.16 and 0.25 meV, respectively. Default
simulation parameters are contained in Table II.

The fit is shown in Fig. 4. While this scaling behavior is
derived for the present system and network architecture, we
believe it may serve as a useful approximation for estimating
parameter growth in other settings as well, though it may not
directly generalize.

This scaling law provides a helpful estimate for the number
of parameters required to achieve a given accuracy; however,
the parameter count alone is not the only relevant factor. Since
attention heads play a crucial role in capturing correlations,
a minimum number of attention heads and layers (approxi-
mately above 3 in our tests) is necessary to reach the ground
state. Simply increasing the total number of parameters with-
out ensuring sufficient attention heads and layers would not
improve performance. Our scaling law serves as a guideline
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— N=400xN?0

104.

6 101 20 30
N

FIG. 4. Scaling law for the number of variational parameters
at convergence saturation as a function of the number of electrons
for € = 10. The extracted saturation points are well described by a
power-law relation N* = CN*, with best-fit parameters o« = 2.01 £
0.05 and C = (4.00 & 0.49) x 10?. This relation quantifies how the
required parameter count grows with system size and provides a
practical guideline for selecting an optimal network size while en-
suring convergence.

within the regime where these minimal requirements are met.
We leave a more detailed analysis of scaling laws as a function
of individual network dimensions for future work.

In comparison, tensor network methods for two-
dimensional lattices under area-law assumptions require
a number of parameters scaling as oceVN [55]. For tensor
networks, parameter scaling depends on the entanglement
structure of the problem and tensor network Amsatz. Our
empirical result of quadratic scaling of the parameters in the
self-attention NN Ansatz suggests significantly better scaling
compared to tensor network methods.

B. Benchmark for small system size

After ensuring convergence and saturation in the number of
variational parameters, we benchmark our self-attention NN
results with SlaterNet and BP-ED to assess the quantitative
accuracy of predictions from the self-attention NN.

We study a variety of different system sizes and regimes
at different interaction strengths. The comprehensive energy
comparisons given in Fig. 5 graphically evince the difference
in ground-state energy levels between all three methods
for nine-unit cell system again at v = % The self-attention
NN energy is considerably lower than SlaterNet, with the
difference precisely representing the correlation energy. We
see that the correlation energy is about 2% in our moiré
system, considerably higher than the correlation energy in
ordinary molecular systems [3]. This enhanced correlation
energy underscores the relevance of moiré systems for
studying strongly correlated phenomena. Additionally, we
observe that as the number of bands increases in BP-ED, the
ground-state energy approaches but remains higher than that
of the self-attention NN .

The advantage of self-attention NN becomes even more
pronounced in larger systems, such as those with 18 electrons
(Table I), where BP-ED is limited to a single band due to
the enormous Hilbert space dimension. In this case, the self-
attention NN energy is nearly 2.5% lower than that of BP-ED.
In fact, the band mixing is so strong that even SlaterNet
achieves a lower energy than BP-ED.

-31.5 10 -57.5
€ = =
(@) | <% (b) | =5
\
-31.7 l| —58.0
| == Self-att NN e == Self-att NN
S\ ‘| SlaterNet ‘\ SlaterNet
) \ ® BP-ED _58.51 ‘\ ® BP-ED
£ -31.9 \ : v
= | x
D \
\ —59.0+1 P
-32.14 Y .‘\
AN \\\
\.. ®. .
[ T~e-——a. | 5954 s
-32.31
1 2 3 4 5 1 2 3 4 5
Nbands Nbands

FIG. 5. Comparison of ground-state energies obtained from the
self-attention NN (blue), Hartree-Fock from SlaterNet (green), and
BP-ED (dots) in a 3 x 3 supercell with v = % filling. Dashed lines
for the self-attention NN and SlaterNet indicate mean of local energy
obtained from the variational Monte Carlo algorithm. The shaded
region indicates the standard deviation of the mean of the local
energy averaged over the batch size per optimization step. Dashed
gray line is a guide to the eyes.

These results demonstrate that self-attention NN con-
sistently achieves lower energies than both BP-ED and
SlaterNet, underscoring its capacity to express ground states
of the moiré systems to higher accuracy, and revealing the
variational superiority of our self-attention NN method.

C. Fermi liquids and generalized Wigner crystals

With the variational superiority of the self-attention NN
method established, we now demonstrate the capability of
the self-attention NN to not only reveal the essential physics
of the strongly correlated system, but predict expected phe-
nomenon. In real homobilayer systems, experimentalists can
adjust displacement field to tune the level of electron-electron
interactions, driving the system from a Fermi liquid state
to generalized Wigner crystal state as interactions increase.
While heterobilayer systems do not offer the same experimen-
tal freedom, a metal-insulator transition has been theoretically
predicted as electron interactions grow stronger by previous
ED and QMC studies [56,57].

Numerically, we can simulate this phenomenon by chang-
ing the dielectric constant € which is inversely proportional to
interaction strength. When interactions are small compared to
kinetic energy, charge carriers are de-localized and the system
is in the free-electron regime. In the presence of weak interac-
tions, electrons will interact with each other at the boundary
of the Brillouin zone, giving rise to a Fermi liquid. In real
space, the delocalization of electrons results occupation of
all potential minimum sites of the superlattice, producing the
triangular lattice density pattern shown in Fig. 6(a).

As interactions increase, the Coulomb repulsion between
the charge carriers makes it more energetically favorable to
spread as far apart as possible, driving the system to transi-
tion into an electron crystalline state. The crystal breaks the
translational symmetry of the underlying potential. At v = %
electrons per triangular potential unit cell, the electronic crys-
tal has the shape of a honeycomb lattice as shown by the
density pattern in Fig. 6(b).
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FIG. 6. Converged ground-state charge density [(a), (b)] and
density-density correlation function [(c), (d)] the moiré system at
V= % filling of 27 sites per supercell with € = 10 (left) and € =5
(right column). The dashed line indicates the boundary of the peri-
odic simulation supercell.

In addition to the density profile, Figs. 6(c) and 6(d) show
the pair correlation function for weak (¢ = 10) and strong
interaction (€ = 5), respectively. Both the density and pair
correlation profile show clear signatures of a Fermiliquid state
for ¢ = 10 and a generalized Wigner crystal state for € = 5.
This demonstrates the self-attention NN ability to capture
the essential physics and strongly correlated behavior beyond
simply lowering the ground-state energy.

Finally, the difference in energies from the self-attention
NN and SlaterNet allows to estimate correlation energy equa-
tion (3). We include the extracted correlation energy as a
function of dielectric constant in Appendix D. Furthermore,
in Appendix E, we provide additional exact-diagonalization
results on the metal-insulator phase transition.

VI. COMPARISON TO OTHER NEURAL
NETWORK ANSATZE

In contrast to previous works studying periodic solids with
neural quantum states [18,43], we do not multiply an envelope

function when constructing single-particle orbitals. Instead,
the full functional dependence of the periodic orbitals is rep-
resented by the neural network. Reference [18] motivated the
use of envelope functions by a better convergence for their
system; however, our numerical experiments for our system
did not show any improvements when envelope functions
are included. Reference [43] found faster convergence using
plane-wave envelopes when the system was close to a Hartree-
Fock state. Envelope functions introduce human bias towards
a certain functional dependence, therefore, we remove them
in our network architecture.

Further, in our wave-function Ansatz, we do not multi-
ply a Jastrow factor to the wave function constructed from
generalized Slater determinants, thereby deviating from the
PsiFormer architecture for molecular systems [11]. A Jastrow
factor is usually motivated to capture correctly the wave-
function cusps that occur when two particles approach each
other, which is model specific and can be derived analytically
(see Appendix B and Ref. [3] for details). We performed nu-
merical experiments (Appendix B) including a simple Jastrow
factor with a single learnable parameter that only enforces the
correct wave-function shape as two particles approach each
other. We did not find significant improvement by including
the Jastrow factor, instead we observed that including the
Jastrow increased the GPU time per step by around 10% to
20%. In contrast to molecular systems, we suspect that the
Jastrow factor is less relevant for low-density electrons in a
periodic potential as studied in this paper, because electrons
are mostly bound to individual wells while overlap of two
electrons is small.

We highlight that our results have been computed from a
randomly initialized wave function. The only physical input
is the determinant operation guaranteeing the antisymmetric
structure of the fermionic wave function. In contrast, previous
works [10,11] applied pretraining with Hartree-Fock to initial-
ize the wave function before optimizing energy. Also, recent
message-passing architectures [23] describe correlations start-
ing from a chosen Slater determinant of single-particle
orbitals.

In the future, our work can be extended to include com-
putation of excited states [58] and zero-temperature Green’s
functions and spectral functions [59]. Finite-temperature ef-
fects can be studied by an extension of the neural network
architecture to represent thermal density matrices [60,61].
Dynamical and open systems can be studied by applying
the time-dependent variational principle [62] to a variational
density matrix [63—-68].

VII. CONCLUSION

In this work, we studied the performance of a wave-
function Ansatz based on a many-parameter, self-attention
neural network with minimal human input at a case study of a
periodic moiré solid. Our numerical experiments revealed the
following:

(1) The self-attention neural network accurately predicts
ground-state energy, outperforming our benchmark with
band-projected exact diagonalization.

(i) The minimal number of parameters required for en-
ergy convergence scales roughly as N? with the particle
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number, suggesting an efficient description of the ground
state.

(iii) Charge density and correlation functions identify a
Fermi liquid to Wigner crystal phase transition, confirming
convergence on both sides of the phase transition.

Furthermore, Ref. [27] recently demonstrated that a similar
self-attention neural network is able to accurately describe
fractional quantum Hall ground-state wave functions, demon-
strating that the ansatz is able to describe ground states whose
correlations are fundamentally distinct from a state of uncor-
related orbitals.

The conceptual strength of the self-attention neural net-
work Ansatz lies in its two pillars of construction: (i) it
employs a large-scale parametrization without human bias,
and (ii) the self-attention mechanism efficiently learns re-
lations between electrons that encode their correlations.
Altogether, these results put faith in the hope that a unified
wave-function Ansatz may be able to accurately describe a
wide range of, if not all, quantum phases in strongly inter-
acting electron systems.
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APPENDIX A: COULOMB SYSTEM WITH PERIODIC
BOUNDARY CONDITION

In the following, we employ and develop numerical tech-
niques for solving the interacting Hamiltonian (1) on a
finite-size cluster with periodic boundary condition, such that
the N-electron wave function satisfies the condition

Yy, ... r,...,ry) =¥, ...,r;+L,...,ry) (Al

for any particle i, where the two vectors L = nL; + mL, with
n, m € Z specify the cluster size and geometry. For systems
with an underlying periodic potential as in Eq. (1), the cluster
must accommodate an integer number of unit cells of the
periodic potential. Our finite-size system can also be viewed
as one supercell within an infinitely large two-dimensional
(2D) plane in which only particle configurations satisfying
supercell periodicity are allowed.

For systems with periodic boundary conditions, the
Coulomb interaction must be adapted to account for the inter-
action energy with periodic images of the charge configuration
in the other “supercells.” The Coulomb interaction decom-
poses into two terms

. AR 1 l w L
ee—gzz;mJFgZZm (A2)

i i#j i L#0

where the first term describes interaction of the N distinct
electrons in the supercell and their periodic images, while
the second term describes the interaction of each individual
electron in the supercell with its own periodic images. The
second term is determined by the Madelung constant &y =
L £0 ﬁ Because Coulomb interactions are long ranged, the
summation contains a divergent, homogeneous contribution.
This divergence is canceled when a neutralizing charge back-
ground is introduced, as we show later.

The remainder of this Appendix describes how the
Coulomb interaction and Madelung constant are efficiently
evaluated using Ewald summation. Our derivation closely fol-
lows Ref. [72]. Readers not interested in this derivation can
refer to Egs. (Al1) and (A12) for the result of the electron-
electon interaction and Madelung constant, respectively, that
defines the Coulomb Hamiltonian for our numerical study.

The numerical procedure for the efficient computation of
Eq. (A2) proceeds by evaluating the Coulomb potential in-
duced by an individual electron at position r, in the supercell
and its periodic images

1
Pa(r) = Zm

L

(A3)

The principal idea of Ewald summation is to decom-
pose the sum into quickly converging sums for short- and
long-ranged contributions. This is achieved by Fourier trans-
formation of each individual term, where the integration
domain is taken as the infinite plane

eiiq(ra +L)

eiqr
(pa,L(q) = / dr 2w s
R | q

r—r,—L|

(A4)

where g = |q|. By applying the identity

1 2 /‘OO 242 2 " © 2.2
-—=— dte 9! =—[/ +/ ]dte““ (AS)
q ﬁ 0 \/E 0 n

the integration is split into short- and long-ranged con-
tributions. The first term describes the short-ranged con-
tributions, as is seen by Fourier transformation back to
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real space:

1 2 iqr—r,—L) ! —¢*1?
(paL()_ 3/2 dqe o dte

1 |: (|r—ra—L|)]
- Erfc . (A6)
|r —r, — L| 2n

The integral describing the long-ranged contributions can be
directly evaluated in momentum space,

.. Erf
ohrlg) = 2me o D). (A7)
’ q

The complementary error function Erfc(x) ensures fast con-
vergence of the summation due to an exponential suppression
for x > 1.

The long-range part contains a divergent contribution in the
limit ¢ — 0. By requiring that the mean electrostatic potential
is zero, the ¢ = O contributions of both short- and long-range
potentials are canceled by a homogeneous charge background.
This cancels the divergence of the long-range part, and re-
quires to subtract the ¢ — O contribution of the short-range
part:

12 . lil‘f()] 2)
S q iq(r—r,—L)

1) = e —— e

a,q—0 /2 2 E :

d’q : Erf (nq)
= R Sa—G iqr—ry) —_~ N1
/R o Z (g —Ge p

_ 2 3 - —rpEfG) _ 2m 2
Au.c. G G AUC \/_

The total electrostatic potential of a charge at r, and its
periodic images is given by the summation of short- and
long-range contributions from all unit cells shifted by L:

Z (pg,L(r) - wiq—>0
L

+ 3 f T gt (), (A9)
Ry, 4

The long-range contribution can further be simplified

q i
§ f qr(Pa (@)
R, 4

1 . Erf
L qY s(q - G B

(A8)

%(i‘) =

27‘[ R/o G q
_ 21 ZeiG(rfra)ErfC(nG) (A10)
Auc. G
G0

where G are reciprocal supercell vectors G - L = 2mn,n € N.
The total electrostatic energy of a configuration of N parti-
cles in a unit cell is then written as

ee - ZZ%("b)‘l— ZSM»

b a#b

(Al1)

where a,b=1,..., N enumerates the particles in the unit
cell, the first term describes the energy of all particles b in the
total potential of all other particles a # b, while the second

term describes the energy of all particles in the potential
created by their images in the other unit cells, determined by
the Madelung constant

v = ZQObL(I’b) + Z/ q lqrbﬁobL(q)

L#0 L#0
)]
= Z ~ Paq—0
iz LI [ <2n
2 Erfc(nG)
+—> —— g, (A12)
Ay, G
G+#£0

where the ¢ — 0 part of the short-range potential is sub-
tracted, and the term E('; arises from subtracting the L = 0 term
from the evaluation of the long-range potential

dzq Erfc(ng) 1
N

For exact diagonalization in momentum space as presented
in Sec. II, we note that the reciprocal space Coulomb inter-
action [last term in Eq. (4)] arises from Fourier transform of
the first term of Eq. (A2) describing the real-space Coulomb
interaction in systems with periodic boundary condition. In
the reciprocal space formulation of Eq. (4), the divergent
q = 0 term of the Coulomb interaction is set to zero by requir-
ing cancellation with a homogeneous charge background; the
same requirement was imposed when deriving the real-space
Coulomb interaction [Eq. (A11)] using Ewald summation.
Notice that the Madelung energy Néy/2 needs to be explicitly
included in the reciprocal space formulation [Eq. (4)] in order
to capture the interaction of each electron in the supercell with
its own periodic images.

L
S0 = 2 q

APPENDIX B: JASTROW FACTORS

A conventional approach to describe electron-electron cor-
relations beyond Hartree-Fock is to multiply a Jastrow factor
to a Slater determinant [73]. No universal approximation the-
orem exists for this wave-function Ansatz to the knowledge
of the authors at the time of publication. Jastrow factors are
typically be model specific and physically motivated, allowing
to capture a large fraction of the correlation energy [3].

A Jastrow factor is a bosonic (i.e., permutation equivariant)
function that is multiplied to the many-body wave function

U(R) — J(R)W(R).

For systems with Coulomb interactions, a typical choice for
the Jastrow factor is a functional of the form

J(R) _ e_z elecz elec M(Hr,‘—er), (Bl)

where u(r) depends on the relative electron-electron distances
and is tailored to capture the wave-function cusps as two
electrons approach each other: For Coulomb interaction, the
energy diverges as two particles approach each other. This
divergence is canceled by a divergence of kinetic energy con-
tribution for a specific functional form of the wave function.
Because eigenstates of the Coulomb gas have finite energy,
this cancellation occurs for all eigenstates, and the functional
form as two particles approach each other can be analytically
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FIG. 7. Comparison of training curves for 27 sites with % fill-
ing and (a) € =10 and (b) € =5 with simple Jastrow factor
J(R) and u(r) defined by Eq. (B3) to fix cusp conditions (blue)
and no Jastrow factor (green). Dashed and dotted lines indicate
mean and standard deviation of the local energy averaged over batch
size. These calculations were performed with batch size 1024. Each
data point represents the local energy averaged over batch size at
each step.

derived. This dependence can be explicitly enforced by the
Jastrow factor.

Concretely, adapting the derivation of Ref. [3] to two di-
mensions, requiring that the local energy Ej,. is finite for
configurations with two particles approaching each other for
the Coulomb gas Hamiltonian in dimensionless units [Eq. (1)]
leads to the conditions [27]

B = du(r) = {:}/3

for parallel spins,

for opposite spins, (B2)

where 0, is the partial derivative in the radial direction. The
conditions for parallel and opposite spins are different because
for the former, the Slater determinant part of the wave function
vanishes while for the latter it remains finite as two particles
approach each other.

In Fig. 7 we present numerical calculations including a
simple Jastrow factor

o?

a—+r

with a single learnable parameter « and 8 determined by
Eq. (B2) to enforce the analytically known behavior of
W(R) as two particles approach each other. In comparison to
our calculations without Jastrow factor, the inclusion of the

u(ry= -8 (B3)
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FIG. 8. Converged energy of the moiré system at v = % filling

and € = 10 as a function of number of variational parameters. The
labels indicate the parameters (Miayer, Mheads» diMyy, dimpe.) used for
each calculation. The total number of parameters are counted explic-
itly from the checkpoints saved during the training.

Jastrow factor did not significantly improve the results. In-
stead, we found faster training without the Jastrow factor.

In systems with periodic boundary condition, the electron-
electron distance r that enters the Jastrow factor is calculated
with respect to a periodic and smooth norm that reproduces
the Euclidean norm in the limit » — 0. The smooth and
periodic norm ||r||y; with respect to the supercell vectors
M = (L, L) is defined as [18]

1
Pl = 2—\/aTMTMa + 5" MTMb,
T

a=1—cos(Gr), b =sin(Gr), (B4)

where G = 2w M~ are the reciprocal supercell vectors.

APPENDIX C: HYPERPARAMETERS

Table II presents the default hyperparameters used in our
calculations, ensuring stable and monotonous convergence
during training. As discussed in the main text, architectural
parameters must be adjusted according to system size to
achieve convergence. For the convergence and scaling law
analysis, we explored various hyperparameter distributions.
The table lists the set that successfully ensured convergence
for the 18-electron system. These parameters are applied to
generate the figures in the main text.

Additionally, we note that batch size is a crucial factor in
controlling the standard deviation of the energy curves, with
error bars decreasing as 1/+/batch size . In some cases, reduc-
ing the KFAC damping parameter resulted in slightly lower
energies than those reported. However, we observed signifi-
cant instabilities when training with reduced KFAC damping,
often leading to corrupted training runs.

Figure 8 contains the precise network dimensions used to
generate the parameter scaling in Fig. 3 in the main text. For
the self-attention neural network as described in Sec. III C, the
total number of variational parameters depends on the network
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FIG. 9. Correlation energy per electron E.or = Esgipary —

Esjaerver> at v = 2 filling with 27 sites as a function of inverse di-

electric constant €.

dimensions as
Npar = 2dgimdL + L(2NneagsdaundL
+ 2IvheadsdAnnValuede
+du(dL + 1)) + 2d1NeiNeet»

where the first line is the embedding W, of the periodic fea-
tures in the layer dimension dy, the second line are key and
query matrices W;/", Wq”' foreachlayer!/ =1, ..., L and head
h =1, ..., Nheus, the third line are the value matrices W,/ and
projection matrices WOZ onto the layer dimension, the fourth
line are the perceptron weights and biases W', b;, and the last

lin§ are the projection w?j, w’z"j 41 on j=1,..., Ng complex
orbitals form = 1, ..., Ny determinants.

APPENDIX D: CORRELATION ENERGY

Here, we investigate the correlation energy per electron,
defined as the ground-state energy difference between the
Hartree-Fock (SlaterNet) and self-attention NN approaches.
We analyze its dependence on the interaction strength, con-
trolled by the dielectric constant € (see Fig. 9 for the result).
As € decreases (corresponding to stronger interactions), the
correlation energy gradually increases, reflecting the growing
importance of many-body effects beyond mean-field the-
ory. This trend highlights the limitations of Hartree-Fock in
capturing strong correlations and underscores the role of self-
attention NN in accurately describing the correlated electronic
states.

APPENDIX E: BP-ED BENCHMARK

In addition to benchmarking our self-attention NN energies
with BP-ED, we leverage BP-ED to reveal deeper details on
our system, namely, identifying the Fermi-liquid (FL) and
generalized Wigner crystal (GWC) phases, along with the
order and location of the metal-insulator (MIT) transition.
Figure 10 shows two distinct phase signatures at different
interaction strengths € = 10 [Figs. 10(a) and 10(c)], and € =
5 [Figs. 10(b) and 10(d)]. By assigning each crystal mo-
menta an integer index, the many-body spectra (MBS) in
Figs. 10(a) and 10(b) show the lowest energies per momentum
sector, with the corresponding momentum space positions
of each sector graphically displayed in the moiré Brillouin
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FIG. 10. Many-body spectrum (MBS) (a), (b) and ground-state
occupation (c), (d) for 27 sites at % filling for (above) € = 10 and (be-
low) € = 5. The MBS of the left figure demonstrates the sixfold GS
degeneracy, while the MBS on the right demonstrates the threefold
GS degeneracy at the high-symmetry points, indicating a generalized
Wigner crystal state. A clear Fermi surface is also visible in (c) as the
system is in a Fermi-liquid state.

zone (MBZ) as a function of ground-state (GS) occupation
in Figs. 10(c) and 10(d).

The sixfold rotational symmetry of the 27-site cluster
allows the GS to accommodate a sixfold degeneracy, emblem-
atic of a high-mobility, Fermi-liquid-like state. On the other
hand, the 27-site cluster also accommodates a tripled unit cell
where the corners of the MBZ «, «’ fold back to y in the BZ,
indicating an expected threefold GS degeneracy at y, «, k’
for a GWC signature. Not only does the MBS in Figs. 10(a)
and 10(b) show clear signatures of a FL. and GWC state at

124

101
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Egap (meV)
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FL
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£

FIG. 11. Many-body energy gap (E,,, = E4 — E3, where E; la-
bels the state with the ith lowest energy) as a function of interaction
strength € ~'. The gap opens just after e ~! = 0.10, signaling an MIT
atabout e ! = 0.11.
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FIG. 12. (H,) [(a), (c)] and S(q = k) [(b), (d)] as a function of €' for the 21- [(a), (b)] and 27-site [(c), (d)] systems. Here, {...)gs
denotes the expectation value over a single ground state. The discontinuity gap increases with system size evincing a first-order metal-insulator

transition.

respective interactions, but also Fig. 10(c) shows the presence
of a Fermi surface while its e ~' = 5 counterpart does not.

The exact MIT point predicted by BP-ED is shown in
Fig. 11, in which the many-body energy gap (difference
between fourth and third lowest-energy values) are plotted
versus interaction strength € ~'. Our expectation of an MIT
as interaction strength increases is validated by the sixfold
GS degeneracy eventually giving way to a threefold GS de-
generacy at about € ~' = 0.11, signaling the crossover from
FL to GWC. Our BP-ED results are well consistent with our
self-attention NN results in Fig. 6, as evidence for FL and
GWC states are demonstrated at the appropriate interaction
strengths, showcasing the ability of our self-attention NN to
capture the physics of this moiré system.

BP-ED techniques can also be used to gain insight on
the nature of this MIT. We can characterize the transition
as first or second order by probing the discontinuity of ob-
servables across the transition point. First-order transitions
are characterized by discontinuities across transition points
while second-order transitions are continuous across transi-
tion points for large enough system size. Since we are dealing
with finite system sizes in BP-ED, there will always be a dis-
continuity; however, if this discontinuity grows with system
size, then we can deduce that correlation length will not tend
to O with increasing system size, thereby showing evidence for

a first-order transition. Inversely, a decrease in the observable
discontinuity across the transition point as system size grows
is evidence for a second-order phase transition.

By probing the kinetic plus periodic potential one-body
energy ([Hy in Eq. (1),

(Ho) =) ex{ciex)as. (E1)
Kk
and the band-projected structure factor
_ 1
S(q) = ﬁ(ﬁ(q)ﬁ(_q»GS’ (E2)

e

across the MIT point (e ~! = 0.11) for 21- and 27-site clusters
(21, 27 k-point mesh detailed in [74]), we can measure the
discontinuity gap to shed light on the order of the phase transi-
tion. Since the projected structure factor has peaks along q =
Kk, k', we plot S(q = «) as a function of interaction strength to
isolate the effect of the transition.

Figure 12 not only demonstrates a discontinuity exactly
at the critical point for each cluster, but also shows that
the discontinuity gap grows as system size grows for both
kinetic energy and the band-projected structure factor (for
q = k). The discontinuity gap for (H,) increases from 0.61 to
0.87 meV and from 0.88 to 1.35 for S(q = «), demonstrating
evidence for a first-order MIT.
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