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Pengwei Zhao ,1,* Jiahao Yang ,1,* and Gang v. Chen 1,2,†

1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

(Received 3 January 2025; revised 4 June 2025; accepted 5 June 2025; published 17 June 2025)

Ferroelectricity has been one major focus in modern fundamental research and technological applications. We
consider the physical origin of improper ferroelectricity in Mott insulating materials. Beyond the well-known
Katsura-Nagaosa-Balatsky inverse Dzyaloshinskii-Moriya mechanism for noncollinearly ordered magnets, we
point out the induction of electric polarizations in multipolar-ordered Mott insulators. Using the multiflavor rep-
resentation for the multipolar magnetic moments, we can show the crossover or transition from the pure inverse
Dzyaloshinskii-Moriya mechanism to the pure multipolar origin for the ferroelectricity and also incorporate
the intermediate regime with the mixture of both origins. We expect our results to inspire a reexamination of
ferroelectricity in the multipolar-ordered magnets.
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I. INTRODUCTION

The origin of electric polarization in solid-state systems
has been an enduring subject in modern condensed matter
physics. Even for noninteracting band insulators, this question
turns out to be quite fundamental. It has been realized that
the electric polarization of band insulators in the quantum
case is actually multivalued and thus is related to some kind
of phase variables [1–5]. Progress was made until the in-
troduction of the Berry phase effects of the Bloch states of
the band electrons, and it was pointed out that the electric
polarization is related to the integration of the Berry phase of
the Bloch electrons over the Brillouin zone [6,7]. This result
and understanding were revived in the era of (magnetic) topo-
logical insulators, when the quantized axion magnetoelectric
response was discovered [8]. In the Mott insulating regime,
the degrees of freedom are localized spins and orbitals instead
of physical electrons. Based on the irrelevance of the electron
bands, it seems that the relation to the electron Berry phase is
not directly applicable to the Mott regime. The emergence of
improper ferroelectricity with the magnetic degrees of free-
dom in Mott insulators has been an interesting subject for
multiferroics, in which electric polarization is considered to
be the outcome of magnetism [9–26]. It is expected that the
magnetoelectric coupling in multiferroic materials can enable
the electric control of magnetism and vice versa [27,28].
One well-known mechanism for the improper ferroelectricity
in Mott insulators is the Katsura-Nagaosa-Balatsky inverse
Dzyaloshinskii-Moriya mechanism, which was proposed by
connecting the electric polarization to the spin current for
noncollinearly ordered magnets [12,15]. Despite the success
of this mechanism, the origin of the ferroelectricity in the Mott
regime has still not been fully resolved. Within the limit of our
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understanding, we think there are at least two more important
aspects of this problem, and we explain below.

The first aspect is the local moment structure in the Mott
regime. Often, the local moment is not simply the mag-
netic dipole moment with a pure spin-S contribution and
could involve high-rank magnetic moments, such as magnetic
quadrupole and octupole moments [29]. In the original inverse
Dzyaloshinskii-Moriya mechanism, only the magnetic dipole
moment is considered [12]. It is thus natural to explore the
relation between the electric polarization and high-rank mag-
netic multipoles. The second aspect is the charge fluctuations,
especially since the ferroelectricity is related to the charge
degrees of freedom. While the charge fluctuations are sup-
pressed in the strong Mott regime, they are quite significant in
the weak Mott regime [30–32]. Although the mechanisms for
the ferroelectricity extend to the weak Mott regime, the strong
charge fluctuations in the weak Mott regime could induce new
mechanisms for ferroelectricity. Moreover, the physical spin
in the weak Mott regime is not very far from the electron on
the metallic side, and thus, one may expect the Berry phase
physics to extend to the weak Mott regime when the system
is in certain spin liquid phases. In this work, we focus on
the first aspect and will return to the second aspect in a later
work.

We work in the strong Mott regime with multipolar or-
der. In particular, for the specific J = 1 case, the multipolar
ferroelectricity is narrowed down to the quadrupolar ferro-
electricity. Other cases such as the octupolar ferroelectricity
have been considered in Ref. [29]. We then explore the
relationship between the electric polarization and the lo-
cal magnetic moment and single out the contribution from
the quadrupole moment. This mechanism is beyond the
well-known inverse Dzyaloshinskii-Moriya mechanism and
is referred to as “multipolar ferroelectricity.” In the actual
formulation of our calculation for J = 1, we are able to ob-
tain the contributions from both the dipole and quadrupole
channels and can continuously switch from the pure inverse
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FIG. 1. Schematic diagram of the level splitting of the 3d orbitals
of the Fe2+ ion in the octahedral environment. The crystal electric
field (CEF) splits the fivefold 3d orbitals into the eg and t2g manifolds
with an energy gap �CEF. Arrows show the electron spin configu-
ration on eg and t2g orbitals. Within the t2g subspace, the spin-orbit
coupling of L = 1 and S = 2 produces a new ground manifold with
total angular momentum J = 1.

Dzyaloshinskii-Moriya mechanism to the pure quadrupolar
ferroelectricity.

The remainder of this paper is organized as follows. Sec-
tion II introduces the spin-orbit coupled states for the effective
moment J = 1. An analysis of magnetic dipoles and quadru-
ples carried by these states is also given in this section. In
Sec. III, we consider a minimal three-site cluster model to
illustrate the fundamental mechanism of multipolar ferroelec-
tricity. After providing an analytical expression for electric
polarization in Sec. IV, we summarize the paper with a dis-
cussion and conclusions in Sec. V.

II. SINGLE-ION PHYSICS

A. Ground states

The spin-orbit-entangled J = 1 local moment can arise
from a magnetic ion, such as Fe2+, which has a 3d6 electron
configuration in an octahedral crystal field. In this environ-
ment, the crystal field splits the fivefold degenerate d orbitals
into a t2g triplet as the ground state and an eg doublet, sepa-
rated by an energy gap �CEF [33,34]. Following Hund’s first
rule, we consider the high-spin configuration for 3d6, with
S = 2 and an electron distribution of t4

2ge2
g. As the t2g shell

is partially filled, threefold degeneracy exists for the orbital
configuration, and the spin-orbit coupling (SOC) is active in
the linear order. The total orbital angular momentum in this
degenerate manifold is equivalent to an orbital moment L
with L = 1. After the SOC HSOC = λL · S (λ > 0) is included,
the total angular momentum J = L + S is used to label the
local moment, and it has a threefold degenerate ground state
manifold with J = 1 for the Fe2+ ion [35,36] (see Fig. 1).

In the following, the wave functions of the J = 1 moment
are constructed explicitly, which is necessary for the later
investigation of multipolar ferroelectricity. To begin with, we
derive the effective orbital angular momentum L from the hole
representation since six electrons are more than half filling.
Thus, the orbital configuration of four holes is t2

2ge2
g-like with

three possibilities:

|a〉 = A†|0〉 = d†
3z2 d†

x2−y2 d†
zxd†

xy |0〉,
|b〉 = B†|0〉 = d†

3z2 d†
x2−y2 d†

xyd†
yz |0〉,

|c〉 = C†|0〉 = d†
3z2 d†

x2−y2 d†
yzd

†
zx |0〉,

(1)

where |0〉 is the vacuum state of the holes (full state of
electrons); d†

a creates a hole on the a orbital, with a =
3z2 − r2, x2 − y2, xy, yz, zx; and 3z2 refers to the 3z2 − r2

orbital. Here we choose the quantization of L to be along the z
direction. Based on the states in Eq. (1), we can construct the
corresponding orbital angular momentum operators L and the
eigenstates of Lz as

|Lz = ±1〉 = 1√
2

[|a〉 ± i |b〉], |Lz = 0〉 = |c〉. (2)

Regarding the spin-orbit coupling, the eigenstate of total
angular momentum |J, Jz〉 is expressed in the decoupled
representation of |L, Lz, S, Sz〉 through Clebsch-Gordan coef-
ficients. This leads to threefold eigenstates with total angular
momentum J = 1. The explicit forms in terms of individual
holes are listed in Appendix B.

Regarding the SOC states |Jz = ±1, 0〉 as ground states of
a single Fe2+ ion implies that the Jahn-Teller (JT) effect has
been ignored. This approximation is justified for t2g orbitals,
which have a relatively weak JT effect. Concretely, the mag-
nitude of JT distortions scales with the orbital-ligand overlap.
In the octahedral environment, eg orbitals (directed toward
ligands) undergo strong distortion when they are unevenly
occupied, whereas t2g orbitals (oriented between ligands) dis-
play substantially weaker JT effects. Moreover, when SOC is
dominant over the JT effect, the SOC splits the degenerate
t2g manifold into well-separated spin-orbit states described by
spin-orbit entangled “pseudospins,” and the lattice remains
largely undistorted. The SOC not only can suppress the JT
distortion but can also enable effectively larger spin-orbital
pseudospins [37]. Therefore, we can safely neglect JT effects
in our analysis up to the leading order. Notably, quantitative
analysis of SOC versus JT competition reveals that JT effects
are generally suppressed for typical SOC strengths in 4d and
5d ions [38].

B. Magnetic moments

To reveal the effect of the quadrupole moment, we con-
struct a dipole-order-free basis in the J = 1 manifold as

|x〉 = 1√
2

(|Jz = −1〉 − |Jz = +1〉),

|y〉 = i√
2

(|Jz = −1〉 + |Jz = +1〉),

|z〉 = |Jz = 0〉,

(3)

with a general state in the J = 1 manifold expressed by

|ψ〉 = bx |x〉 + by |y〉 + bz |z〉, (4)

where the coefficient vector b = (bx, by, bz ) is, in general,
complex. Since the total angular momentum of J = 1 allows
for the presence of high-rank magnetic moments, it can ac-
commodate both the dipole and quadrupole moments. The
dipole moment is directly related to the local moment J itself,
while the quadrupole moment Qμν is given by the rank-2
tensor,

Qμν = 1

2
{Jμ, Jν} − J2

3
δμν, μ, ν ∈ {x, y, z}, (5)
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FIG. 2. The corner-sharing octahedral cluster. The red solid ar-
rows at each Fe ion indicate the direction of noncollinear magnetic
ordering ê. The vector determines the “direction” of the quadrupolar
order when the dipolar order is quenched.

where δμν is the Kronecker delta symbol. Qμν can be under-
stood as the second-order Steven’s operator, which reveals the
underlying spin quadrupole orders in the system [39]. In the
state |ψ〉, the dipole and quadrupole orders are evaluated as

〈ψ |J|ψ〉 = −ib∗ × b, (6)

and

〈ψ |Qμν |ψ〉 = 1
3δμν − 1

2 (b∗
μbν + b∗

νbμ), (7)

indicating that their existence and disappearance can be con-
trolled by tuning the vector b. The symmetric tensor Qμν has
five independent components, Q3z2−r2 , Qx2−y2 , Qxy, Qyz, and
Qzx. The presence of the quadrupole moments in the local
Hilbert space suggests that these high-spin systems could
exhibit richer ferroelectric behaviors beyond those explained
by the inverse Dzyaloshinskii-Moriya mechanism. Moreover,
when the dipole moment vanishes under the condition b∗ ‖ b,
the state |ψ〉 retains only the quadrupole order. This enables
the exploration of the mechanism from which the ferroelec-
tricity arises purely from the quadrupole orders.

To incorporate both the dipolar order and quadrupo-
lar order for the Mott insulator, we treat these orders as
a mean field coupled to the local spin J in the rele-
vant channel. We consider a generic local coupling, H0 =
J1ê · J + J2(ê · J)2, where the magnetic ordering vector ê =
(sin θ cos φ, sin θ sin φ, cos θ ) for the J = 1 local momentum
and the couplings J1,2 > 0. Under the application of H0, the
ground state of the d6 electrons of the Fe2+ ion can be
described as |ψ〉 with a J1,2-dependent vector b (see Ap-
pendix C). In particular, when J1 < J2, the vector b is identical
to the unit vector ê, and a spin state without the magnetic
dipole orders is established.

III. THREE-SITE CLUSTER

We consider a minimal model consisting of two corner-
sharing octahedra (see Fig. 2). Without loss of generality,
the cluster is oriented along the x direction, and the orbital
quantization is along the z direction. Due to the finite in-
tersite overlap between the 3d orbitals of the Fe sites and
the 2p orbitals of the oxygen site, i.e., the π bonding from
the t2g orbitals and the σ bonding from the eg orbital, the
electron hopping is described by the following perturbative

Hamiltonian:

Hhop =
∑

σ ;α=y,z

t (d†
1,xα,σ pασ − d†

2,xα,σ pασ )

+
∑

σ

t0(d†
1,3x2,σ

pxσ − d†
2,3x2,σ

pxσ ) + H.c., (8)

where t and t0 are the hopping parameters, d†
i,a,σ (i = 1, 2, a =

xy, xz, 3x2 − r2, σ =↑,↓) creates a hole with spin σ in the d
orbital of the ith Fe site, p†

βσ (β = x, y, z) creates a hole with
spin σ in the p orbital of O, and 3x2 refers to the 3x2 − r2 or-
bital. The 3x2 orbital is related to the 3z2 and x2 − y2 orbitals
by the relation d†

i,3x2,σ
=

√
3

2 d†
i,x2−y2,σ

− 1
2 d†

i,3z2,σ
. Therefore,

the total Hamiltonian for the three-site cluster is

H = HFe,1 + HFe,2 + HO + Hhop, (9)

where the first three terms describe the on-site electron cor-
relations leading to different ground states, such as |ψ〉 in
Eq. (4) for the d6 electrons at the Fe site.

We take the electron-doped Fe-based Mott insulator as an
example, where the d6 and d7 electron configurations are con-
sidered for the two Fe sites and the net charge order is assumed
to be absent. For the perturbation of the d6 (d7) configuration,
we obtain an intermediate configuration of d7 (d8) due to the
virtual hopping process. Furthermore, it should be noted that,
owing to the strong on-site interaction and SOC, the electron
configurations have to be reconstructed; the details are given
in Appendix B.

In the hole representation, the ground state of the four holes
(d6) is given by |ψ〉 in Eq. (4). The low-energy physics of
three holes (d7) can be effectively described by a total an-
gular momentum J = 1/2. We denote |Jz = 1/2〉 ≡ |⇑〉 and
|Jz = −1/2〉 ≡ |⇓〉, and the ground state is |φi〉 = ai⇑ |⇑〉 +
ai⇓ |⇓〉, where ai = (ai⇑, ai⇓) is a normalized complex-valued
vector. Hence, the ground state for the cluster is given
by |
0〉 = 1√

2
(|φ1, ψ2〉 + |ψ1, φ2〉). The notation |φ1, ψ2〉 is

shorthand notation for P |φ1〉 ⊗ |0〉 ⊗ |ψ2〉, where P is an
operator ensuring fermionic antisymmetry. We have assumed
the oxygen site is filled with electrons, i.e., lacks holes.

Due to Hhop, an electron on the Fe site can hop to the
oxygen site, or equivalently, a hole on the Fe site can hop to
the oxygen site. With this hybridization process, the first-order
perturbed (un-normalized) state is given by

|
〉 = |φ1, ψ2〉 + |ψ1, φ2〉

+ 1

�

∑
d8,α

∣∣d8
1 , pα, ψ2

〉 〈
d8

1 , pα, ψ2

∣∣Hhop|φ1, ψ2〉

+ 1

�

∑
d7,α

∣∣φ1, pα, d7
2

〉 〈
φ1, pα, d7

2

∣∣Hhop|φ1, ψ2〉

+ 1

�

∑
d8,α

∣∣ψ1, pα, d8
2

〉 〈
ψ1, pα, d8

2

∣∣Hhop|ψ1, φ2〉

+ 1

�

∑
d7,α

∣∣d7
1 , pα, φ2

〉 〈
d7

1 , pα, φ2

∣∣Hhop|ψ1, φ2〉, (10)

where the summation runs over all possible two-hole (d8)
and three-hole (d7) states and all 2p orbitals of the oxygen.
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The energy separation between a 2p orbital and d orbitals is
approximated as �.

IV. ELECTRIC POLARIZATION

For the perturbed state |
〉, the electric polarization P =
〈
|er|
〉. The operator r is a many-body operator, which
is a sum of the position vectors of all particles r = ∑

n rn

if the first quantization language is used. After a detailed
analysis, we find six nonvanishing contributions. The first four
contributions are from

〈φ1, ψ2|r
∣∣d8

1 , pα, ψ2
〉 = 〈φ1|r

∣∣d8
1 , pα

〉
,

〈φ1, ψ2|r
∣∣φ1, pα, d7

2

〉 = 〈ψ2|r
∣∣pα, d7

2

〉
,

〈ψ1, φ2|r
∣∣ψ1, pα, d8

2

〉 = 〈φ2|r
∣∣pα, d8

2

〉
,

〈ψ1, φ2|r
∣∣d7

1 , pα, φ2
〉 = 〈ψ1|r

∣∣d7
1 , pα

〉
,

(11)

each depending only on the single Fe site parameters. Hence,
we refer to these as the on-site contributions to the electric
polarization and denote them as Pon. The remaining terms,
referred to as the intersite contributions and denoted as Pint,
are given by

〈φ1, ψ2|r
∣∣d7

1 , pα, φ2
〉
,

〈ψ1, φ2|r
∣∣φ1, pα, d7

2

〉
, (12)

which have a hybrid form involving b and a. Other terms
in 〈
|r|
〉 vanish due to the orthogonality and the parity
requirements.

The on-site contributions Pon arise purely from the hy-
bridization between the Fe ions and the ligand O ion. Since
the on-site contributions are obtained for each Fe site, we can
discuss their contribution separately, i.e., Pon = P1,on − P2,on.
The on-site contribution from the hybridization between the
ith Fe atom and the O atom can be obtained from the pertur-
bative calculation

P̃x
i,on = 49√

3
〈Q3z2−r2〉i + 〈Qx2−y2〉i − 3(

√
3 − 1)t0t−1

× [
2 〈Qxy〉i + 〈Jx〉(d6 )

i + 〈Jy〉(d6 )
i

]
, (13)

P̃y
i,on = −〈Qxy〉i , (14)

P̃z
i,on = 〈Jx〉(d6 )

i − 8 〈Jx〉(d7 )
i , (15)

where we have introduced P̃μ
i,on = Pμ

i,on/sμ, with sx = 4c,
sy = 2c, sz = 10c, and c = etI/(480�) accounting for the
anisotropy. The integral I is the overlap between d orbitals
and p orbitals and is given by

I =
∫

d3r dxy(r)xpy(r) (16)

and its cyclic permutations of x, y, and z. It is clear that
both the quadrupole and dipole of the J = 1 states and the
dipole of the J = 1/2 states make contributions to Pon. This
result indicates that Pon is finite as long as P1,on �= P2,on, cor-
responding to the nonuniform alignment of the quadrupoles
and dipole moments. The underlying origin is the fact that
the finite Pon arises from the inversion symmetry breaking
of the local moments via the nonuniform ordering, instead of

directly from an imbalanced charge density distribution. Thus,
it belongs to the so-called improper ferroelectricity. Moreover,
these on-site contributions to the electric polarization, which
are absent in the case considered in the original work in
Ref. [12], are essential in the many-electron configurations.
Moreover, we can make a zeroth-order estimation to the order
of magnitude for Px,y,z. With the lattice constant a = 5 Å,
P ∼ c ∼ 10−5(t/�) C/m2, which is consistent with the re-
sults for Ga2−xFexO3 [40].

For the intersite contribution Pint, two Fe ions are hy-
bridized. The full expressions for Pint in terms of ai and bi (i =
1, 2) are given in Appendix D. Here, to explain the essence of
the multipolar ferroelectricity, we simplify our discussion to
two different cases: (1) d7 states are uniform; (2) d6 states are
uniform.

In case 1, we set a1 = a2 = (1, 0), such that the dipolar
order of the d7 states is collinear and along the z direction.
The intersite contribution Pint can be reduced as follows:

P̃x
int = 0, (17)

P̃y
int = −[x̂ × (b∗

1 × b2)]y − 2ib∗
1zb2z + H.c., (18)

P̃z
int = −[x̂ × (b∗

1 × b2)]z + i(b∗
1yb2z + b∗

1zb2y) + H.c. (19)

The first terms in P̃y
int and P̃y

int resemble the inverse
Dzyaloshinskii-Moriya mechanism [12], while the second
terms endow the mechanism with some additional effects. For
a generic b1 and b2, the dipolar and quadrupolar orders are
concomitant. We single out the quadrupolar order by choosing
b1 = ê1 and b2 = ê2 to be the real-valued unit vectors, in
which the dipolar orders are quenched. We then establish
the multipolar version of the inverse Dzyaloshinskii-Moriya
mechanism,

P̃int ∼ x̂ × (ê1 × ê2). (20)

This indicates that in a system without noncollinear magnetic
orders, finite electric polarization can still be generated from
the nonuniform quadrupolar orders. This clearly goes be-
yond the scope of the original inverse Dzyaloshinskii-Moriya
mechanism [12]. The difference is that our mechanism is
now determined by the underlying vector ê of the quadrupole
moment Qμν rather than the direction of the dipole moment.

In case 2, the d6 states are taken to be uniform. We discuss
how the quadrupolar orders and the dipolar orders of the d6

states modify the inverse Dzyaloshinskii-Moriya mechanism
of the d7 states. Fixing b1 = b2 = (0, 0, 1), we obtain P̃x

int =
P̃z

int = 0 and

P̃y
int = −i(a∗

1⇑a2⇑ − a1⇑a∗
2⇑ − a∗

1⇓a2⇓ + a1⇓a∗
2⇓). (21)

Finite electric polarization is generated by the noncollinear
order of the J = 1/2 dipole moments of the d7 states. We find
that

P̃y
int ∼ sin θ1 sin θ2 sin(φ1 − φ2), (22)

with the two spinors of the d7 states being a1 = α
|α|e

−iφ

(sin θ1
2 , eiφ1 cos θ1

2 ) and a2 = (sin θ2
2 , eiφ2 cos θ2

2 ), where φ =
φ1 − φ2 and α = e−iφ/2 cos θ1

2 cos θ2
2 + eiφ/2 sin θ1

2 sin θ2
2 . This

expression for P̃y
int is consistent with the earlier results in

Ref. [12]. It demonstrates the crossover from the multipolar
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origin to the original inverse Dzyaloshinskii-Moriya mecha-
nism for ferroelectricity.

V. DISCUSSION AND CONCLUSION

In this work, we considered a minimal cluster to demon-
strate that quadrupolar-ordered magnets can make a pro-
nounced contribution to ferroelectricity. The original inverse
Dzyaloshinskii-Moriya mechanism revealed the presence of
finite electric polarization under noncollinear magnetic dipo-
lar orders. We generalized this formalism to cases with
higher-rank magnetic moments. By tuning the quadrupo-
lar order together with the dipolar order, we obtained a
crossover or transition from the multipolar ferroelectricity
to the dipolar ferroelectricity. Moreover, the coexistence of
the quadrupolar and dipolar orders significantly modifies the
inverse Dzyaloshinskii-Moriya mechanism. In general, we
expect the multipolar ferroelectricity to occur widely in spin-
orbit-coupled Mott insulators with large J moments. These
insulators include 4d/5d materials [41–46], 4 f /5 f magnets
[39,47,48], some 3d transition metal compounds [40,49], and
hybrid orbital systems [50–52].

The interplay between the high-rank multipolar orders and
the dipolar order can lead to rather rich behaviors at zero
and finite temperatures. The quadrupolar order often does
not break time reversal symmetry, while the dipolar order
breaks time reversal symmetry. From the Ginzburg-Landau
theory [43], the dipolar order can induce the quadrupolar order
as a subsidiary order, but the reverse is not true. Moreover,
the quadrupolar order can persist up to a higher temperature
than the dipolar order [53,54]. In terms of the ferroelectricity,
quadrupolar ferroelectricity can occur at a higher tempera-
ture than dipolar ferroelectricity. Quadrupolar ferroelectricity
further enriches the magnetoelectric response. The previously

proposed “double-leaf Riemann surface topological converse
magnetoelectricity” for the dipolar ferroelectricity [55], which
dictates the half-periodic response of the magnetic dipolar
moment to the external electric field, could generalize to
quadrupolar ferroelectricity. More interestingly, in the case
when the quadrupolar order itself is induced by the dipo-
lar order, such a double-leaf Riemann surface topological
converse magnetoelectricity could be further complicated be-
cause the response of the dipolar order to the variation of
the quadrupolar order is another level of the double-leaf Rie-
mann surface. Likewise, the previously proposed topological
Roman surface realized by dipolar-order-induced ferroelectric
polarization [56] can be further complicated for quadrupolar
ferroelectricity with intertwined structures of the dipolar and
quadrupolar orders.

To summarize, our work indicates a multipolar origin for
the ferroelectricity in Mott insulators, even in the absence of
the dipolar order. It provides a framework that unifies dipolar-
and multipolar-based electric polarization. This framework
may provide a better understanding of unconventional ferro-
electric materials and experimental guidance for the design of
materials with tunable multiferroic properties.
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APPENDIX A: REVIEW OF ATOMIC ORBITALS

In this Appendix, we provide a brief review of atomic orbitals and introduce our notations. For those who are familiar with
atomic orbitals, this Appendix can be skipped.

When we talk about atomic orbitals, we are talking about the eigenstates of hydrogen and hydrogenlike atoms. Basic quantum
mechanics tells us that real space wave functions of atomic orbitals are given by ψn,l,m(r) = Rn,l (r)Yl,m(θ, φ). The angular part
Yl,m(θ, φ) is the complex-valued spherical harmonics, while the radial part Rn,l (r) is real valued. Eigenstates in the form of
ψn,l,m(r) are called complex orbitals. In practice, people usually use real orbitals, which are linear combinations of complex
orbitals. Following the Condon-Shortley phase convention, we define real orbitals as

ψ real
n,l,m(r) =

⎧⎪⎪⎨
⎪⎪⎩

√
2(−1)mReψn,l,|m|(r) = 1√

2
[ψn,l,−|m|(r) + (−1)mψn,l,|m|(r)], m > 0,

ψn,l,|m|(r), m = 0,√
2(−1)mImψn,l,|m|(r) = i√

2
[ψn,l,−|m|(r) − (−1)mψn,l,|m|(r)], m < 0.

(A1)

These orbitals are purely real and usually labeled by harmonic polynomials. For example, p orbitals (l = 1) are given by

ψn,x = ψ real
n,1,+1 = 1√

2
(ψn,1,−1 − ψn,1,+1) = Rn,1

√
3

4π

x

r
,

ψn,z = ψ real
n,1,0 = ψn,1,0 = Rn,1

√
3

4π

z

r
,

ψn,y = ψ real
n,1,−1 = i√

2
(ψn,l,−1 + ψn,l,+1) = Rn,1

√
3

4π

y

r
. (A2)
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d orbitals (l = 2) are given by

ψn,x2−y2 = ψ real
n,2,+2 = 1√

2
(ψn,2,−2 + ψn,2,+2) = Rn,2

1

4

√
15

π

x2 − y2

r2
,

ψn,zx = ψ real
n,2,+1 = 1√

2
(ψn,2,−1 − ψn,2,+1) = Rn,2

1

2

√
15

π

zx

r2
,

ψn,3z2−r2 = ψ real
n,2,0 = ψn,2,0 = Rn,2

1

2

√
5

π

3z2 − r2

r2
,

ψn,yz = ψ real
n,2,−1 = i√

2
(ψn,2,−1 + ψn,2,+1) = Rn,2

1

2

√
15

π

yz

r2
,

ψn,xy = ψ real
n,2,−2 = i√

2
(ψn,2,−2 − ψn,2,+2) = Rn,2

1

2

√
15

π

xy

r2
. (A3)

APPENDIX B: MANY-BODY STATES FOR DIFFERENT
ELECTRON CONFIGURATIONS

Throughout our paper, we are working with the 3dn con-
figurations of Fe atoms. In this environment of an octahedral
crystal field, the crystal field splits the fivefold degener-
ate d orbitals into a t2g triplet as the ground state and
an eg doublet, separated by an energy gap �cry. We con-
sider the situation in which �cry is smaller than the on-site
repulsion of each orbital. Then electrons tend to occupy dif-
ferent orbitals rather than fill t2g. In this circumstance, we
analyze the many-body states for d6, d7, and d8 electron
configurations.

1. d6 = t4
2ge2

g configuration

For the d6 electron configuration, there are two elec-
trons in eg orbitals and four electrons in t2g orbitals. Thus,
we can denote d6 as t4

2ge2
g. There are three possibilities to

arrange the four electrons in t2g orbitals, giving rise to three-
fold orbital states. Since six electrons are more than half
filling, it is more convenient to use the hole representa-
tion. In the hole representation, threefold orbital states are

given by

|a〉 = A†|0〉 = d†
3z2−r2 d†

x2−y2 d†
zxd†

xy |0〉,

|b〉 = B†|0〉 = d†
3z2−r2 d†

x2−y2 d†
xyd†

yz |0〉,
|c〉 = C†|0〉 = d†

3z2−r2 d†
x2−y2 d†

yzd
†
zx |0〉,

(B1)

where d†
α creates a hole at the orbital α with arbitrary spin

and |0〉 is the vacuum state of the holes. The projection
of the physical orbital angular momentum Lphysical onto the
threefold orbital states gives an effective angular momentum
L ∼= −Lphysical with a quantum number L = 1. The eigenstates
of Lz are

|Lz = +1〉 = 1√
2

(|a〉 + i |b〉),

|Lz = 0〉 = |c〉,
|Lz = −1〉 = 1√

2
(|a〉 − i |b〉). (B2)

Hund’s first rule tells us the d6 configuration has a total spin
S with spin quantum number S = 2. The eigenstates of Sz are
given by

|Sz = 2〉 = |↑↑↑↑〉,

|Sz = 1〉 = 1

2
(|↑↑↑↓〉 + |↑↑↓↑〉 + |↑↓↑↑〉 + |↓↑↑↑〉),

|Sz = 0〉 = 1√
6

(|↑↑↓↓〉 + |↑↓↑↓〉 + |↑↓↓↑〉 + |↓↑↑↓〉 + |↓↑↓↑〉 + |↓↓↑↑〉),

|Sz = −1〉 = 1

2
(|↓↑↑↑〉 + |↑↓↑↑〉 + |↑↑↓↑〉 + |↑↑↑↓〉),

|Sz = −2〉 = |↓↓↓↓〉. (B3)

Then, we consider the spin-orbital coupling (SOC) HSOC = λL · S with the coupling constant λ > 0. We can define the total
angular momentum J = L + S and write HSOC = λ(J2 − L2 − S2)/2. Thus, the SOC ground states are given by the quantum
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number J = 1. Utilizing the Clebsch-Gordan coefficients, we obtain

|Jz = 1〉 =
√

1

10
|Lz = 1, Sz = 0〉 −

√
3

10
|Lz = 0, Sz = 1〉 +

√
3

5
|Lz = −1, Sz = 2〉,

|Jz = 0〉 =
√

3

10
|Lz = 1, Sz = −1〉 −

√
2

5
|Lz = 0, Sz = 0〉 +

√
3

10
|Lz = −1, Sz = 1〉,

|Jz = −1〉 =
√

3

5
|Lz = 1, Sz = −2〉 −

√
3

10
|Lz = 0, Sz = −1〉 +

√
1

10
|Lz = −1, Sz = 0〉. (B4)

We also define three real-valued states from the threefold J = 1 states,

|x〉 = X † |0〉 = 1√
2

(|Jz = −1〉 − |Jz = +1〉),

|y〉 = Y † |0〉 = i√
2

(|Jz = −1〉 + |Jz = +1〉),

|z〉 = Z† |0〉 = |Jz = 0〉. (B5)

Combining Eqs. (B1) to (B3), we can express the states in Eq. (B5) in terms of the creation operators of a hole,

X̂ = 1

4
√

15
d†

z2,↑d†
x2−y2,↑(−3d†

yz,↑d†
zx,↓ − 3d†

yz,↓d†
zx,↑ + 2id†

xy,↓d†
yz,↓ − 6id†

xy,↑d†
yz,↑ + 6d†

zx,↑d†
xy,↑)

+ 1

4
√

15
d†

z2,↓d†
x2−y2,↓(3d†

yz,↑d†
zx,↓ + 3d†

yz,↓d†
zx,↑ − 6id†

xy,↓d†
yz,↓ − 6d†

zx,↓d†
xy,↓ + 2id†

xy,↑d†
yz,↑)

+ 1

4
√

15
d†

z2,↑d†
x2−y2,↓(2id†

xy,↑d†
yz,↓ + 2id†

xy,↓d†
yz,↑ + 3d†

yz,↓d†
zx,↓ − 3d†

yz,↑d†
zx,↑)

+ 1

4
√

15
d†

z2,↓d†
x2−y2,↑(2id†

xy,↑d†
yz,↓ + 2id†

xy,↓d†
yz,↑ + 3d†

yz,↓d†
zx,↓ − 3d†

yz,↑d†
zx,↑), (B6)

Ŷ = − 1

4
√

15
id†

z2,↑d†
x2−y2,↑(3d†

yz,↑d†
zx,↓ + 3d†

yz,↓d†
zx,↑ − 2d†

zx,↓d†
xy,↓ + 6id†

xy,↑d†
yz,↑ − 6d†

zx,↑d†
xy,↑)

+ 1

4
√

15
d†

z2,↓d†
x2−y2,↓[−6d†

xy,↓d†
yz,↓ − i(3d†

yz,↑d†
zx,↓ + 3d†

yz,↓d†
zx,↑ − 6d†

zx,↓d†
xy,↓ − 2d†

zx,↑d†
xy,↑)]

− 1

4
√

15
id†

z2,↑d†
x2−y2,↓(−2d†

zx,↑d†
xy,↓ − 2d†

zx,↓d†
xy,↑ + 3d†

yz,↓d†
zx,↓ + 3d†

yz,↑d†
zx,↑)

− 1

4
√

15
id†

z2,↓d†
x2−y2,↑(−2d†

zx,↑d†
xy,↓ − 2d†

zx,↓d†
xy,↑ + 3d†

yz,↓d†
zx,↓ + 3d†

yz,↑d†
zx,↑), (B7)

Ẑ = 1

4
√

15
d†

z2,↑d†
x2−y2,↑(3d†

zx,↑d†
xy,↓ + 3d†

zx,↓d†
xy,↑ − 3id†

xy,↑d†
yz,↓ − 3id†

xy,↓d†
yz,↑ − 4d†

yz,↓d†
zx,↓)

+ 1

4
√

15
d†

z2,↑d†
x2−y2,↓(3d†

zx,↓d†
xy,↓ + 3d†

zx,↑d†
xy,↑ + 3id†

xy,↓d†
yz,↓ − 3id†

xy,↑d†
yz,↑ − 4d†

yz,↑d†
zx,↓ − 4d†

yz,↓d†
zx,↑)

+ 1

4
√

15
d†

z2,↓d†
x2−y2,↑(3d†

zx,↓d†
xy,↓ + 3d†

zx,↑d†
xy,↑ + 3id†

xy,↓d†
yz,↓ − 3id†

xy,↑d†
yz,↑ − 4d†

yz,↑d†
zx,↓ − 4d†

yz,↓d†
zx,↑)

+ 1

4
√

15
d†

z2,↓d†
x2−y2,↓(3d†

zx,↑d†
xy,↓ + 3d†

zx,↓d†
xy,↑ + 3id†

xy,↑d†
yz,↓ + 3id†

xy,↓d†
yz,↑ − 4d†

yz,↑d†
zx,↑). (B8)

A generic state in the threefold J = 1 space can be expressed as

|ψ〉 = bx |x〉 + by |y〉 + bz |z〉, (B9)

where b = (bx, by, bz ) is a complex-valued vector that satisfies the normalization b∗ · b = 1.

2. d7 = t5
2ge2

g configuration

For the d7 electron configuration, there are two electrons in the eg orbitals and five electrons in the t2g orbitals. Thus, we can
denote d7 as t5

2ge2
g. There are three possibilities to arrange the five electrons in the t2g orbitals, giving rise to threefold orbital
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states. In the hole representation, threefold orbital states are given by

|d〉 = D†|0〉 = d†
3z2−r2 d†

x2−y2 d†
xy |0〉,

|e〉 = E†|0〉 = d†
3z2−r2 d†

x2−y2 d†
yz |0〉,

| f 〉 = F †|0〉 = d†
3z2−r2 d†

x2−y2 d†
zx |0〉. (B10)

The projection of the physical orbital angular momentum Lphysical on the threefold orbital states gives an effective angular
momentum L ∼= −Lphysical with a quantum number L = 1. The eigenstates of Lz are

|Lz = +1〉 = 1√
2

(|e〉 + i | f 〉),

|Lz = 0〉 = |d〉,

|Lz = −1〉 = 1√
2

(|e〉 − i | f 〉). (B11)

Hund’s first rule tells us the d7 configuration has a total spin S with spin quantum number S = 3/2. The eigenstates of Sz are
given by

|Sz = 3/2〉 = |↑↑↑〉,

|Sz = 1/2〉 = 1√
3

(|↑↑↓〉 + |↑↑↓〉 + |↓↑↑〉),

|Sz = −1/2〉 = 1√
3

(|↓↓↑〉 + |↓↑↓〉 + |↑↓↓〉),

|Sz = −3/2〉 = |↓↓↓〉. (B12)

After the SOC, the total angular momentum J of the ground states has a quantum number J = 1/2. These states are given by

|Jz = 1/2〉 = φ
†
1/2 |0〉 =

√
1

6
|Lz = 1, Sz = −1/2〉 −

√
1

3
|Lz = 0, Sz = 1/2〉 +

√
1

2
|Lz = −1, Sz = 3/2〉,

|Jz = −1/2〉 = φ
†
−1/2 |0〉 =

√
1

2
|Lz = 1, Sz = −3/2〉 −

√
1

3
|Lz = 0, Sz = −1/2〉 +

√
1

6
|Lz = −1, Sz = 1/2〉. (B13)

Using Eqs. (B11) and (B12), we can write Eq. (B13) in terms of hole operators,

φ
†
1/2 = − 1

3 d†
z2,↑d†

x2−y2,↓d†
xy,↓ − 1

3 d†
z2,↓d†

x2−y2,↑d†
xy,↓ − 1

3 d†
z2,↓d†

x2−y2,↓d†
xy,↑ + 1

6 d†
z2,↑d†

x2−y2,↑d†
yz,↓

+ 1
6 d†

z2,↑d†
x2−y2,↓d†

yz,↑ + 1
6 d†

z2,↓d†
x2−y2,↑d†

yz,↑ + 1
6 id†

z2,↑d†
x2−y2,↑d†

zx,↓ + 1
6 id†

z2,↑d†
x2−y2,↓d†

zx,↑

+ 1
6 id†

z2,↓d†
x2−y2,↑d†

zx,↑ + 1
2 d†

z2,↓d†
x2−y2,↓d†

yz,↓ − 1
2 id†

z2,↓d†
x2−y2,↓d†

zx,↓, (B14)

φ
†
−1/2 = − 1

3 d†
z2,↑d†

x2−y2,↓d†
xy,↓ − 1

3 d†
z2,↓d†

x2−y2,↑d†
xy,↓ − 1

3 d†
z2,↓d†

x2−y2,↓d†
xy,↑ + 1

6 d†
z2,↑d†

x2−y2,↑d†
yz,↓

+ 1
6 d†

z2,↑d†
x2−y2,↓d†

yz,↑ + 1
6 d†

z2,↓d†
x2−y2,↑d†

yz,↑ + 1
6 id†

z2,↑d†
x2−y2,↑d†

zx,↓ + 1
6 id†

z2,↑d†
x2−y2,↓d†

zx,↑

+ 1
6 id†

z2,↓d†
x2−y2,↑d†

zx,↑ + 1
2 d†

z2,↓d†
x2−y2,↓d†

yz,↓ − 1
2 id†

z2,↓d†
x2−y2,↓d†

zx,↓. (B15)

3. d7 = t4
2ge3

g configuration

After hopping, we have the d7 electron configuration as intermediate states, with three electrons in the eg orbitals and four
electrons in the t2g orbitals. Thus, we can denote d7 as t4

2ge3
g. There are three possibilities to arrange the four electrons in the t2g

orbitals, giving rise to threefold orbital states. There are two possibilities for the three electrons in the eg orbitals. In the hole
representation, threefold orbital states are also given by

|g〉 = G†|0〉 = d†
eg

d†
zxd†

xy |0〉,
|h〉 = H†|0〉 = d†

eg
d†

xyd†
yz |0〉,

| j〉 = J†|0〉 = d†
eg

d†
yzd

†
zx |0〉,

(B16)

where eg represents one of the eg orbitals, either 3z2 − r2 or x2 − y2. The projection of the physical orbital angular momentum
Lphysical on the threefold orbital states gives an effective angular momentum L ∼= −Lphysical with a quantum number L = 1. The
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eigenstates of Lz are similar to Eqs. (B11). Hund’s first rule tells us the d7 configuration has a total spin S with spin quantum
number S = 3/2. The eigenstates of Sz are similar to Eqs. (B12). After the SOC, the total angular momentum J of the ground
states has quantum number J = 1/2. These states are similar to Eqs. (B13). Therefore, we can obtain the ground state in terms
of hole operators,

φ
†
1/2 = − 1

3 d†
eg,↑d†

zx,↓d†
xy,↓ − 1

3 d†
eg,↓d†

zx,↑d†
xy,↓ − 1

3 d†
eg,↓d†

zx,↓d†
xy,↑ + 1

6 d†
eg,↑d†

xy,↑d†
yz,↓

+ 1
6 d†

eg,↑d†
xy,↓d†

yz,↑ + 1
6 d†

eg,↓d†
xy,↑d†

yz,↑ + 1
6 id†

eg,↑d†
yz,↑d†

zx,↓ + 1
6 id†

eg,↑d†
yz,↓d†

zx,↑

+ 1
6 id†

eg,↓d†
yz,↑d†

zx,↑ + 1
2 d†

eg,↓d†
xy,↓d†

yz,↓ − 1
2 id†

eg,↓d†
yz,↓d†

zx,↓, (B17)

φ
†
−1/2 = − 1

3 d†
eg,↑d†

zx,↓d†
xy,↓ − 1

3 d†
eg,↓d†

zx,↑d†
xy,↓ − 1

3 d†
eg,↓d†

zx,↓d†
xy,↑ + 1

6 d†
eg,↑d†

xy,↑d†
yz,↓

+ 1
6 d†

eg,↑d†
xy,↓d†

yz,↑ + 1
6 d†

eg,↓d†
xy,↑d†

yz,↑ + 1
6 id†

eg,↑d†
yz,↑d†

zx,↓ + 1
6 id†

eg,↑d†
yz,↓d†

zx,↑

+ 1
6 id†

eg,↓d†
yz,↑d†

zx,↑ + 1
2 d†

eg,↓d†
xy,↓d†

yz,↓ − 1
2 id†

eg,↓d†
yz,↓d†

zx,↓. (B18)

4. d8 = t6
2ge2

g configuration

After hopping, we can have a d8 electron configuration as
the intermediate state, with two electrons in the eg orbitals and
six electrons in the t2g orbitals. Thus, we can denote d8 as
t6
2ge2

g. There is only one possibility to arrange these electrons,
giving rise to the orbital state

|Lz = 0〉 = d†
3z2−r2 d†

x2−y2 |0〉. (B19)

According to Hund’s rule, the total spin momentum S has
quantum number S = 1. The eigenstates of Sz are

|Sz = 1〉 = |↑↑〉,

|Sz = 0〉 = 1√
2

(|↑↓〉 + |↓↑〉),

|Sz = −1〉 = |↓↓〉. (B20)

After the SOC, the total angular momentum J has quan-
tum number J = 1, and the eigenstates are |Jz = jz〉 = ϕ

†
jz

|0〉
( jz = 1, 0,−1), with

ϕ
†
1 = d†

3z2−r2,↑d†
x2−y2,↑, (B21)

ϕ
†
0 = 1√

2
(d†

3z2−r2,↑d†
x2−y2,↓ + d†

3z2−r2,↓d†
x2−y2,↑), (B22)

ϕ
†
−1 = d†

3z2−r2,↓d†
x2−y2,↓. (B23)

5. d8 = t5
2ge3

g configuration

After hopping, we can also have a d8 electron configuration
as the intermediate state, with three electrons in the eg orbitals
and five electrons in the t2g orbitals. Thus, we can denote d8 as
t5
2ge3

g. There are three possible states in which to arrange five
electrons in the t2g orbitals and two possible states for three
electrons in the eg orbitals. In the hole representation, we have

|k〉 = K†|0〉 = d†
eg

d†
xy |0〉,

|p〉 = P†|0〉 = d†
eg

d†
yz |0〉,

|r〉 = R†|0〉 = d†
eg

d†
zx |0〉,

(B24)

where eg represents one of the eg orbitals, either 3z2 − r2

or x2 − y2. The projection of the physical orbital angular

momentum Lphysical onto the threefold orbital states gives an
effective angular momentum L ∼= −Lphysical with a quantum
number L = 1. The eigenstates of Lz are similar to Eqs. (B11).
According to Hund’s rule, the total spin angular momentum
S has quantum number S = 1 with eigenstates (B20). After
the SOC, the total angular momentum J has quantum number
J = 0, and the only eigenstate is

|J = 0〉 = ϕ
†
0 |0〉 = 1

3
(|Lz = 1,wSz = −1〉 − | Lz = 0,

Sz = 0〉 + |Lz = −1, Sz = 1〉)

= 1

3
√

2

(
d†

eg↓d†
yz↓ + id†

eg↓d†
zx↓ − d†

eg↓d†
xy↑

− d†
eg↑d†

xy↓ + d†
eg↑d†

yz↑ − id†
eg↑d†

zx↓
) |0〉.
(B25)

APPENDIX C: SINGLE-SITE HAMILTONIAN
AND MAGNETIC MOMENTS

Given a system with a total angular momentum J, the
generic Hamiltonian should be a function of J. Expanding the
Hamiltonian in terms of polynomials of J, we obtain

H0 =
∑

μ

aμJμ +
∑
μν

bμνJμJν +
∑
μνσ

cμνσ JμJνJσ + · · · .

(C1)

It is clear that H0 is diagonal for different angular momentum
quantum numbers J . For the cases considered in this paper,
the largest J is 1. Thus, polynomials with more than two Jμ

either are constant or can be absorbed into polynomials with
lower order. We can truncate H0 at the second order and obtain

H0 =
∑

μ

aμJμ +
∑
μν

bμνJμJν . (C2)

For generic aμ and bμν , the eigenstates of H0 are hard to
obtain. Therefore, we focus on a simpler case, in which

H0 = J1ê · J + J2(ê · J)2, (C3)

where ê = (sin θ cos φ, sin θ sin φ, cos θ ) is a unit vector. The
eigenstates of H0 are those of ê · J. In the J = 1/2 subspace,
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the eigenstates are

|ê · J = 1/2〉 = cos
θ

2
|⇑〉 + eiφ sin

θ

2
|⇓〉, with energy

J2 + 2J1

4
,

|ê · J = −1/2〉 = sin
θ

2
|⇑〉 − eiφ cos

θ

2
|⇓〉, with energy

J2 − 2J1

4
, (C4)

where we have defined |⇑〉 = |Jz = 1/2〉 and |⇓〉 = |Jz = −1/2〉. In the J = 1 subspace, the eigenstates are

|ê · J = 1〉 = 1√
2

[(cos θ cos φ − i sin φ) |x〉 + (cos θ sin φ + i cos φ) |y〉 − sin θ |z〉], with energy J2 + J1,

|ê · J = 0〉 = sin θ cos φ |x〉 + sin θ sin φ |y〉 + cos θ |z〉, with energy 0,

|ê · J = −1〉 = 1√
2

[(cos θ cos φ + i sin φ) |x〉 + (cos θ sin φ − i cos φ) |y〉 − sin θ |z〉], with energy J2 − J1. (C5)

Without loss of generality, we assume J1 > 0 and J2 > 0.
In this case the ground state of H0 in the J = 1/2 subspace
is always |ê · J = −1/2〉. In the J = 1 subspace, the ground
state is |ê · J = 0〉 if J2 > J1 and is |ê · J = −1〉 if J2 < J1.

We are interested in the magnetic moments carried by these
states. For a generic state in the J = 1/2 space,

|φ〉 = a⇑ |⇑〉 + a⇓ |⇓〉, (C6)

one can calculate its magnetic dipole as

〈φ|Jx|φ〉 = a∗
⇑a⇓ + a∗

⇓a⇑,

〈φ|Jy|φ〉 = −i(a∗
⇑a⇓ − a∗

⇓a⇑),

〈φ|Jz|φ〉 = a∗
⇑a⇑ − a∗

⇓a⇓. (C7)

If we choose |φ〉 to be the ground state |ê · J = −1/2〉, then
〈J〉 = −ê. Namely, the magnetic dipole is polarized along −ê.
For a generic state in the J = 1 space,

|ψ〉 = bx |x〉 + by |y〉 + bz |z〉, (C8)

both the magnetic dipole and quadrupole appear. The mag-
netic dipole is

〈ψ |J|ψ〉 = −ib∗ × b. (C9)

We can see that the magnetic dipole vanishes for the unpo-
larized state |ê · J = 0〉 but equals −ê for the polarized state
|ê · J = −1〉. The magnetic quadrupole is defined as

Qμν = 1

2
(JμJν + JνJμ) − J2

3
δμν. (C10)

Its expectation value for |ψ〉 can be obtained as

〈ψ |Qμν |ψ〉 = 1
3δμν − 1

2 (b∗
μbν + b∗

νbμ). (C11)

Although the tensor Qμν has nine components, only five com-
ponents are independent. They are

〈ψ |Q3z3−r2 |ψ〉 = −
√

3(〈ψ |Qxx|ψ〉 + 〈ψ |Qyy|ψ〉)

= −b∗
xbx + b∗

yby√
3

,

〈ψ |Qx2−y2 |ψ〉 = 〈ψ |Qxx|ψ〉 − 〈ψ |Qyy|ψ〉

= −(b∗
xbx − b∗

yby),

〈ψ |Qxy|ψ〉 = −1

2
(b∗

xby + b∗
ybx ),

〈ψ |Qyz|ψ〉 = −1

2
(b∗

ybz + b∗
z by),

〈ψ |Qzx|ψ〉 = −1

2
(b∗

z bx + b∗
xbz ). (C12)

APPENDIX D: FULL EQUATIONS FOR ELECTRIC POLARIZATION

Here we consider a generic J1 and J2 for the single-site Hamiltonian H0, leading to a general expression for b with complex
components. For the d7 electron state, a = (sin θ/2,−eiφ cos θ/2) is considered to be a complex vector under the effective
ordering field ê. Then under this condition, the ground state has both dipole and quadrupole orders in the d6 electron state and
a dipole-only order d7 electron state. The electric polarization P contains on-site contributions and mixed-site contributions.
Due to a model-dependent anisotropic factor sμ, we may define a scaled polarization P̃μ = Pμ/sμ. The on-site contributions are
given by

P̃x
on = (24|b1x|2 + 25|b1y|2) − (24|b2x|2 + 25|b2y|2) + 3(

√
3 − 1)rt (b1yb∗

1x + b1xb∗
1y − ib1zb

∗
1x + ib1xb∗

1z + ib1zb
∗
1y − ib1yb∗

1z

− b2yb∗
2x − b2xb∗

2y + ib2zb
∗
2x − ib2xb∗

2z − ib2zb
∗
2y + ib2yb∗

2z ), (D1)

P̃y
on = (b∗

1xb1y + b∗
1yb1x ) − (b∗

2xb2y + b∗
2yb2x ), (D2)

P̃z
on = [−i(b∗

1yb1z − b1yb∗
1z ) + i(b∗

2yb2z − b2yb∗
2z )] − 8[(a∗

1⇑a1⇓ + a∗
1⇓a1⇑) − (a∗

2⇑a2⇓ + a∗
2⇓a2⇑)], (D3)

224416-10



MULTIPOLAR FERROELECTRICITY IN THE MOTT … PHYSICAL REVIEW B 111, 224416 (2025)

where rt = t0
t1

, sx = 4C, sy = 2C, and sz = 10C. We have defined a constant C = et1I/(480�), and I is the following integral:

I =
∫

d3r dxy(r)xpy(r), (D4)

which has cyclic permutation in x, y, and z. On-site contributions can be expressed in terms of the magnetic dipole and
quadrupole,

P̃x
on =

[
49√

3
〈Q3z2−r2〉1 + 〈Qx2−y2〉1 − 3(

√
3 − 1)

(
2 〈Qxy〉1 + 〈Jx〉(d6 )

1 + 〈Jy〉(d6 )
1

)]

−
[

49√
3

〈Q3z2−r2〉2 + 〈Qx2−y2〉2 − 3(
√

3 − 1)
(
2 〈Qxy〉2 + 〈Jx〉(d6 )

2 + 〈Jy〉(d6 )
2

)]
,

P̃y
on = −(〈Qxy〉1 − 〈Qxy〉2),

P̃z
on = [ 〈Jx〉(d6 )

1 − 8 〈Jx〉(d7 )
1

] − [ 〈Jx〉(d6 )
2 − 8 〈Jx〉(d7 )

2

]
. (D5)

The mixed-site contributions are written as

P̃x
mix = 0, (D6)

P̃y
mix = a1⇓a∗

2⇓(b2yb∗
1x − b2xb∗

1y + 2ib2zb
∗
1z ) + a2⇓a∗

1⇓(b1xb∗
2y − b1yb∗

2x − 2ib1zb
∗
2z )

+ a1⇓a∗
2⇑(ib2zb

∗
1x + b2zb

∗
1y + ib2xb∗

1z + b2yb∗
1z ) + a2⇑a∗

1⇓(−ib1xb∗
2z + b1yb∗

2z − ib1zb
∗
2x + b1zb

∗
2y)

+ a1⇑a∗
2⇓(ib2zb

∗
1x − b2zb

∗
1y + ib2xb∗

1z − b2yb∗
1z ) + a2⇓a∗

1⇑(−ib1xb∗
2z − b1yb∗

2z − ib1zb
∗
2x − b1zb

∗
2y)

+ a1⇑a∗
2⇑(b2yb∗

1x − b2xb∗
1y − 2ib2zb

∗
1z ) + a2⇑a∗

1⇑(b1xb∗
2y − b1yb∗

2x + 2ib1zb
∗
2z ), (D7)

P̃z
mix = a1⇓a∗

2⇓(−b2zb
∗
1x + ib2zb

∗
1y + b2xb∗

1z + ib2yb∗
1z ) + a2⇓a∗

1⇓(−b1xb∗
2z − ib1yb∗

2z + b1zb
∗
2x − ib1zb

∗
2y)

+ a1⇓a∗
2⇑(ib2xb∗

1y − ib2yb∗
1x ) + a2⇑a∗

1⇓(ib1xb∗
2y − ib1yb∗

2x )

+ a1⇑a∗
2⇓(ib2yb∗

1x − ib2xb∗
1y) + a2⇓a∗

1⇑(ib1yb∗
2x − ib1xb∗

2y)

+ a1⇑a∗
2⇑(b2zb

∗
1x + ib2zb

∗
1y − b2xb∗

1z + ib2yb∗
1z ) + a2⇑a∗

1⇑(b1xb∗
2z − ib1yb∗

2z − b1zb
∗
2x − ib1zb

∗
2y). (D8)
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