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Spin chirality in antiferromagnets offers new opportunities for spintronics. The kagome antiferromagnet
Mn3Sn is a paradigmatic material in which the antiferromagnetic order parameter can be detected and controlled
by electrical means. However, direct investigation of the magnetic texture of Mn3Sn has been challenging
because of the tiny moment hosted in its magnetic octupole, hindering further clarification of this unique
material. Here, we address this issue by observing the stray magnetic field from Mn3Sn using a diamond-based
quantum scanning microscope. The spatially resolved intrinsic domains and domain walls in a high-quality
single-crystalline Mn3Sn film quantitatively reveal the polarization angle of the magnetic octupole in the kagome
plane, the domain’s local magnetization, the domain wall’s width and chirality, and the octupole order in domain
walls. Our nanoscale investigation of Mn3Sn, a powerful complement to macroscopic measurements, paves the
road for developing chiral antiferromagnetism and its potential for spintronic applications.
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Antiferromagnets (AFs) are promising candidates for real-
izing high-speed and high-density spintronic devices thanks to
their intrinsic terahertz spin dynamics and tiny stray magnetic
fields [1,2]. In recent years, much work has been done on the
noncollinear AF Mn3Sn as an ideal platform for AF spin-
tronics [3–12]. Mn3Sn, characterized by a cluster magnetic
octupole, has vanishingly small net magnetization yet shows
a giant anomalous Hall effect comparable to ferromagnetic
materials, reflecting the Berry curvature emerging from the
pair of Weyl points in its topological band structure [13]. The
same feature also leads to an appreciable anomalous Nernst
effect [14,15]. The recently reported tunnel magnetoresistance
effect [16] based on the octupole order [8] further enhances
the attraction of this unique material for device applications.

In light of the history of conventional ferromagnet-based
spintronics [17,18], the importance of a quantitative un-
derstanding of the magnetic domains in AFs cannot be
overemphasized. The dynamics of an antiferromagnetic do-
main are expected to depend on domain wall (DW) chirality
(Fig. 1), influencing the manipulation in spintronic devices
[18–20]. Mn3Sn film is also promising in this direction [21].
Based on the fundamental research of magnetic octupoles
[22–26], electrical manipulation of the magnetization has
been demonstrated using spin-orbit and spin-transfer torque
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[7,11,21,27–29], and the piezomagnetic effect [30]. Obtain-
ing more detailed physical insight into the magnetic domains
would accelerate device applications [17,21,31,32]. Particu-
larly for AFs, focusing on the DWs is an effective strategy
since they locally break the magnetic symmetry, resulting
in an observable stray field. However, the observation of
AF DWs and their chirality are experimentally challenging.
For Mn3Sn, magnetic force microscopy only provides qual-
itative information [33], while the optical resolution of the
magneto-optical Kerr effect (MOKE) measurement is not
sufficiently detailed [32,34,35]. Recent magnetic field mea-
surements by diamond-based quantum scanning microscope
(QSM) are promising, as they provide new insights into the
DWs of model AF such as Cr2O3 [19,36,37]; for Mn3Sn, de-
spite pioneering observations of polycrystalline samples [38],
a quantitative investigation has thus far been lacking.

Here, we report detailed observations of the magnetic do-
mains and chiral DWs in a high-quality single-crystalline
Mn3Sn film using QSM. A stray magnetic field from the
film directly probes the magnetic octupole ordering in the
domains. The simultaneous detection of the weak magneti-
zation, its axis, and its behavior in the DWs further reveals the
nature of the magnetic octupole. Significantly, the observed
DWs, which we determine to be of left Néel type (top panel
of Fig. 1) with a width as narrow as ∼40 nm, clearly show how
the octupole moment performs a chiral rotation in the kagome
plane of Mn3Sn. Our findings will further advance the under-
standing and control of magnetic octupoles in chiral AFs.
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Left Néel

Right Néel

FIG. 1. Octupole-ordered chiral domain wall. Schematic illustra-
tion of left Néel wall (top) and right Néel wall (bottom). Hexagons
indicate the cluster magnetic octupoles, and orange arrows cor-
respond to the octupole moments [also see Fig. 2(b)]. The film
structure, shown in Fig. 2(a), breaks the vertical direction symmetry,
defining the chirality.

We use a thin Mn3Sn film with a thickness t = 20 nm
grown on a 7-nm-thick W buffer layer on an MgO substrate,
capped by a 5-nm-thick MgO layer, as shown in Fig. 2(a).
The films are grown by molecular beam epitaxy. In Mn3Sn,
the Mn atom forms a kagome lattice and takes an antichiral

FIG. 2. Mn3Sn thin film and quantum magnetometry.
(a) Schematic of the sample and QSM tip. The AB stacking
of the crystal lattice is shown inside the Mn3Sn film, where the Mn
atoms in each layer form the kagome lattice. For QSM, we use a
single NV center embedded in the tip, shown by a thick red arrow.
The bias field Bb, shown by a green arrow, is applied along the NV
symmetry axis. The angles α and β, defined by the orange arrow, are
used to analyze the magnetization direction (see text). (b) Schematic
of the cluster magnetic octupole. Each octupole consists of six
neighboring Mn spins, indicated by the green shading in (a). The
gray and orange arrows indicate the dipole moment of Mn spin and
the octupole moment, respectively. The octupole moment direction
is upward and downward in the left and right panels, respectively,
perpendicularly to the film surface (011̄0). (c) and (d) XRD 2θ -scan
and φ-scan data of the Mn3Sn thin film, respectively. (e) Hysteresis
behavior for the z-axis magnetic field measured by MOKE using
660 nm light at room temperature.

triangular spin configuration. As a consequence, the net mag-
netization is vanishingly small at room temperature [24,25].
Nevertheless, a slight canting of the spins polarizes a magnetic
octupole consisting of six Mn spins [Fig. 2(b)], which results
in a detectable magnetic field because they acts as effective
magnetic dipoles for QSM [3,8]. The ferroic order between
them induces a macroscopic magnetization [8]. The x-ray
diffraction data presented in Figs. 2(c) and 2(d) indicate well-
aligned kagome planes. The MOKE result indicates that the
coercive field of the film is ∼300 mT [Fig. 2(e)]. Microscopic
observation of magnetic domains using MOKE suggests that
the crystal grains of the film are several micrometers in size
[7]. These results confirm the high crystallinity of the present
film. While the easy axis in the pristine Mn3Sn is 〈21̄1̄0〉,
the insertion of the W buffer layer increases the perpendicular
magnetic anisotropy so that the easy axis in our film is parallel
to [011̄0] [7].

Figure 2(a) also shows a schematic of our QSM (QZabre
LLC). The magnetic probe consists of a single nitrogen-
vacancy (NV) center embedded in a diamond pillar attached
to the tuning fork of the atomic force microscope. A magnetic
field, when present, shifts the discrete energy levels of the NV
center by the Zeeman effect. The shift can be determined by
optically detected magnetic resonance using a confocal mi-
croscope. The technique enables us to obtain quantitative and
three-dimensional vector information on the magnetic field
felt by the NV center [19]. The NV center scans the xy plane
at a height of dNV [Fig. 2(a)], defined by the distance between
the NV center and the top surface of Mn3Sn film, yielding the
spatial distribution of the magnetic stray field of the sample.
In our work, dNV is approximately 60 nm, determining the
spatial resolution of the imaging (see Sec. I in Ref. [39] for
details). For measurement’s sake, the external bias field Bb is
applied parallel to the NV axis [Fig. 2(a)]. All measurements
are performed at room temperature.

Figure 3(a) shows an image plot of the z-axis projection
of the magnetic field Bz, i.e., the stray field perpendicular
to the film surface, where the contribution of Bb has been
subtracted. Most of the image is covered by red and blue
regions, corresponding to areas where the field is positive and
negative, respectively. This implies magnetic domain forma-
tion due to the perpendicular magnetic anisotropy. The field
changes steeply at the white lines (zero stray fields) between
the red and blue regions, revealing the DWs. We also observe
regions with tiny stray fields (white regions) on the right side
of the image. These may be due to undeveloped magnetic
domains or a different magnetization structure from the rest
of the image. From now on, we will focus on the regions with
strong magnetic contrast. The absolute value of the observed
stray field from our 20-nm-thick film is only about 0.6 mT. For
comparison, the previous QSM measurement [40] reported
stray fields ∼1 mT for a ferromagnet CoFeB film as thin as
1 nm. Therefore the present film has a weak magnetization.

Notably, the magnetic domains tend to elongate along
the [0001] direction, consistent with a previous MOKE ob-
servation [35]. Such a distinctive phenomenon most likely
reflects the easy-plane anisotropy of Mn3Sn. In particular,
the domains in Fig. 3(a), enclosed by the dash-dot black
line, are large and rectangular. A detailed investigation of
them is expected to elucidate the local magnetization texture
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FIG. 3. Observed stray field and magnetization. (a) Image plot of the z-axis component of the magnetic stray field Bz. (b) and (c) Schematics
of stray field from a perpendicular magnetization ‖ [011̄0] and a 30◦ tilted magnetization ‖ [1̄1̄20], respectively. The lower panels schematically
show the corresponding Bz. The case (b) rather than (c) is realized in the present film. (d) Histogram analysis for the reconstructed magnetization
in the area surrounded by the dashed yellow line in (a). Blue bars correspond to pixels well inside domains, while white bars are from pixels
near the DW’s. (e) Standard deviation of |M(α,90)| of the blue peaks in (d) as a function of the assumed angle α. (f) Magnetization image
reconstructed into the perpendicular orientation.

originating from the magnetic octupole. In this area, the stray
field is almost constant inside the domains, implying that the
magnetization is perpendicular to the surface [7]; Figure 3(b)
schematically shows the stray field for the case with per-
pendicular magnetic anisotropy, agreeing with the previous
observation [7]. On the other hand, if the magnetization were
tilted [Fig. 3(c)], we should observe a field slanting in the
domains, which is not the case in Fig. 3(a).

In the case of perpendicular magnetization, a well-known
method exists for reconstructing stray fields to magnetiza-
tion based on the Fourier transform [41,42]. However, for
Mn3Sn, a more careful analysis without such an assumption is
required, as the theory predicts various magnetization direc-
tions different from a perpendicular orientation [8,43]. This
analysis will confirm that the magnetization in Fig. 3(a) is
predominantly out-of-plane.

First, we expand the existing method [41,42] to include
tilted magnetization cases. We define M(α,β )(x, y) as the mag-
netization value in the film at (x, y) and assume that it is
uniaxial with the direction defined by the two angles, α and
β, shown in Fig. 2(a). Scanning the NV center in the xy
plane with z = dNV fixed [Fig. 2(a)] enables us to obtain
the magnetic field amplitude BNV(x, y) at (x, y, dNV). For a
sufficiently thin magnetic film, the relation between the mag-
netization M(α,β )(kx, ky) and the magnetic field BNV(kx, ky)
in the corresponding two-dimensional Fourier space is
given by

M(α,β ) = 1

g̃(k, dNV, t )
× kBNV

ikxex + ikyey − kez

× 1

ikx sin α cos β + iky sin α sin β − k cos α
, (1)

where e = (ex, ey, ez ) is the unit vector to define the NV axis
[the thick red arrow in Fig. 2(a)], (kx, ky) is a wave vector with
k = √

k2
x + k2

y , and g̃ is a Green’s function in Fourier space.
The measured BNV is converted to BNV, then to M(α,β ) using
Eq. (1), and finally to M(α,β ) (see Secs. II and III in Ref. [39]
for detail).

Next, we perform a histogram analysis of the statistical
distribution of the obtained magnetization [44,45] to search
for the most likely magnetization direction. Figure 3(d) shows
the histogram obtained for the magnetization surrounded by
the dashed yellow line in Fig. 3(a). Most data are clustered at
either the positive or negative extremum, forming two sharp
peaks with the same absolute value (blue bars). Meanwhile,
values in-between reflect areas of low perpendicular magne-
tization near DWs (white). These observations imply that the
domains in this area have antiparallel octupole moments of
the same strength. Sharper peaks correspond to better bina-
rization and, thus, a more likely case. Figure 3(e) plots the
standard deviation of |M(α,90)| obtained by varying α from
−50◦ to 50◦ with β = 90◦ fixed for the same area. The fact
that it is minimal at α = 0◦ indicates that a perpendicular
magnetization is the most likely. We have repeated the same
analysis assuming various possible combinations of α and β

and have confirmed that α = 0◦ and β = 90◦ give the small-
est deviation. The resulting magnetization configuration is
shown in Fig. 3(f). Our observations independently confirm
[7] that inserting a W layer favors perpendicular magnetic
anisotropy.

The magnetization obtained by averaging |M(0,90)| exclud-
ing DWs regions [Fig. 3(e)] is 17 ± 2 mμB/Mn. This value
is two orders of magnitude smaller than the typical mag-
netization value of 1–3 μB/Mn in a Mn-based ferromagnet.
Our value is about three times larger than the ∼6 mμB/Mn
reported for a Mn3Sn film by a standard magnetization mea-
surement [7]. The difference is reasonable, as our QSM
is performed on well-developed magnetic domains and not
averaged over the entire film. Rather, our measurements
demonstrate that the intrinsic nature of the material can be
revealed by measuring high-quality portions with a precise
local probe.

Systematic investigation of the response of Mn3Sn to mag-
netic fields elucidates the nature of magnetic domains and
DWs. Figures 4(a)–4(c) show the z projection of the stray
field Bz when the bias magnetic field is sequentially varied
from 9.5 to 26.5 to 10.2 mT, respectively. 100 mT is applied
once between Figs. 4(b) and 4(c). The bias field is subtracted
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FIG. 4. Observation of chiral domain wall. [(a)–(c)] z projection of the stray field when the bias magnetic field is sequentially varied from
9.5 to 26.5 to 10.2 mT, respectively. 100 mT is applied once between (b) and (c). (d) Blue, green, and orange lines are cross-sections of the
dashed black lines in (a), (b), and (c), respectively. DW1 and DW2 are indicated in a gray shade. (e) Shape of DW1 and DW2 extracted as the
magnetic field difference between (a) and (c) is shown as blue dots. The fitted lines of left Néel (ψi = 180◦), Bloch (ψi = 90◦), and right Néel
(ψi = 0◦) walls are drawn by red, magenta, and cyan lines, respectively. (f) y and z projections of the magnetization of the left Néel fitting.
Vertical black dashed lines indicate the positions of DW1 and DW2. (g) Schematics of magnetization and stray field lines near DW1 (left) and
DW2 (right). The schematic of DW2 is equivalent to the top panel of Fig. 1.

in these images. The line scans at the black dashed lines
in Figs. 4(a)–4(c) are shown in Fig. 4(d). As the bias field
increases from Fig. 4(a) to Fig. 4(b), the blue (red) domains
with the magnetization oriented parallel (antiparallel) to the
field expand (shrink). The corresponding two DWs, DW1,
and DW2, shift tens of nm along opposite [21̄1̄0] directions,
shown in Fig. 4(d). The fact that the DWs already move
at Bb = 26.5 mT, a field much smaller than the coerciv-
ity of 300 mT [Fig. 2(e)], indicates that the DW dynamics
are mainly governed by exchange interaction and magnetic
anisotropy rather than by pinning potentials due to grain
boundaries.

The red domain at the center vanishes in Fig. 4(c) after
100 mT is applied. The magnetization of this domain, initially
surrounded by DW1 and DW2, flips in the same direction as
the neighboring domains. The flipping field of the domain is
at only one-third of the coercive field [measured by MOKE,
Fig. 2(e)], again pointing toward on the intrinsic nature of
the observed domains. The obtained field profile shown in
Fig. 4(d) clarifies that the magnetic field far from this region
is almost unchanged between Figs. 4(a) and 4(c), confirming
the high reproducibility and the noninvasiveness of the QSM
measurement. Thus we take the difference between the two
for further analysis, as shown in Fig. 4(e) with blue dots.
The resultant field δBz originates purely from DW1 and DW2,
corresponding to the octupole moment direction in the DWs.
We notice that each wall width is significantly smaller than

200 nm, clearly much smaller than the reported wall width of
∼630 nm [7,21].

We analyze the shape of the two DWs by fitting them using
the conventional DW model given by [19,46,47]

Mx = − Ms sin ψ

cosh
(

y−y1

�1

) + Ms sin ψ

cosh
(

y−y2

�2

) , (2)

My = − Ms cos ψ

cosh
(

y−y1

�1

) + Ms cos ψ

cosh
(

y−y2

�2

) , (3)

Mz = Ms tanh

(
y − y1

�1

)
− Ms tanh

(
y − y2

�2

)
− Ms. (4)

The fitting parameters are the positions yi and widths π�i of
DWi (i = 1, 2), with the saturation magnetization Ms being
common for DW1 and DW2. While the magnetization away
from the DWs is parallel to the z direction, it has a finite
xy-plane component characterized by the angle ψ inside
DWs. ψ = 0◦ corresponds to the positive direction of the
y axis. The stray field from the DWs is determined by My

and Mz due to the translational symmetry along the x axis ‖
[0001] direction. Fitting the DW model to the magnetic field
data with ψ = 180◦, as shown in red in Fig. 4(e), we obtain
Ms = 6.9 ± 0.3 kA/m = 16.1 ± 0.2 mμB/Mn, �1 = 13 ±
3 nm, and �2 = 12 ± 3 nm. The obtained Ms is consistent
with the 17 ± 2 mμB/Mn discussed above in Fig. 3. The
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fittings with ψ = 90◦ and 0◦ shown in magenta and cyan lines
in Fig. 4(e), respectively, are unsuccessful.

The observation of ψ = 180◦ tells us that the DWs are the
left Néel type, rather than the right Néel type (ψ = 0◦) or the
Bloch type (ψ = 90◦). In the Néel cases (ψ = 0◦ or 180◦),
Mx = 0 according to Eq. (2), and the octupole moments with
constant magnitude rotate in the kagome plane around the
x-axis. In the left Néel wall case, the moment at the DW center
is horizontal and faces left when the upward magnetization
region is placed on the left side (the top panel of Fig. 1).
The spatial variations of the magnetization My and Mz are
shown in Fig. 4(f). Mz changes its sign at the center of DWs,
while My is finite only inside the DWs. There are several
other theoretically possible DW structures [32,48]. We have
performed fittings assuming that the magnetization can vary
inside the DW and that the DWs split into several parts. The
fittings confirmed that the left Néel type is the most likely to
explain the observed magnetic field (see Sec. X in Ref. [39]
for details). Figure 4(g) schematically depicts the structure of
the DWs [31,33,49]. The octupole ordering in DWs suggests
that the spins at each site in the octupole also have a ferroic or-
der. While the magnetic field distribution depicted in Fig. 4(d)
contains several DWs, rigorous analysis is possible only for
DW1 and DW2 due to the interference of the fields from
multiple DWs. To further support for the above interpretation,
the observed distribution over 17 DWs can be quantitatively
reproduced by assuming the left Néel-type DWs, eliminat-
ing the possibility of the right Néel-type (see Sec. XIII in
Ref. [39] for details). Our data, therefore, suggest that the
DWs along [0001] in this Mn3Sn/W film are mainly of the left
Néel-type type.

Theoretically, the DW width π� = π
√

A/κ along [0001]
of Mn3Sn is determined by minimizing the energy
density [48],

κ = K + 1
2μ0M2

s cos2 ψ + Kp sin2 ψ, (5)

where A = 0.568 meV/Å is the stiffness constant [43], K =
1.4 × 10−7 meV/Å3 is the magnetic anisotropy [7], Kp is the
in-plane anisotropy, ψ is the DW angle, and μ0 is the vacuum
permeability. The second term of Eq. (5) is the magnetostatic
energy under zero magnetic field. The effect of bias magnetic
field on � is neglected because � changes by at most 1 nm
under the magnetic fields used in this study, which is smaller
than the error bar of the fitting. We use Ms = 6.9 ± 0.3 kA/m
obtained above. The left Néel wall corresponds to ψ = 180◦.
Thus, in Eq. (5), the third term is zero, while the second term
is finite. This magnetostatic energy, in turn, is a hundred times
larger than the magnetic anisotropy K , meaning that it deter-
mines the wall width. The DW width is predicted theoretically
as � = 17 ± 2 nm, a value very close to the experimental
result of Fig. 4(e). Considering that the calculation uses the
known values except for Ms and ψ , the consistency validates
the present result and analysis using the conventional DW
model to Mn3Sn. Further discussion, including the demagne-
tizing factor, suggests that the magnetostatic energy of a Néel
DW is smaller than that of a Bloch wall [50]. This energy
difference leads to a tendency for the domains to be sepa-
rated by DWs running along the [0001] direction, resulting in

the appearance of elongated domains as shown in Fig. 3(a)
and the previous study [35] (see Sec. XII in Ref. [39] for
detail).

We address the implication of the present experimental
findings regarding AF spintronics applications of Mn3Sn.
The observation of the domains by QSM proves the exis-
tence of a perfectly perpendicular magnetization area, which
maximizes the anomalous Hall effect and reduces the power
consumption for readout. The observed magnetization of
the well-developed domains is greater than previous values
[16,21], promising accelerated writing and reading speed of
devices. The coercive field, which is locally smaller than
the area-averaged MOKE result, suggests a smaller thresh-
old of intrinsic magnetization reversal than previous reports,
enabling high-efficiency spin-orbit torque switching [7]. The
identified left Néel wall chirality is crucial for developing
DW devices, as the direction of current-induced DW mo-
tion depends on the chirality. The development of chirality
may be due to the symmetry breaking in the vertical direc-
tion by inserting a W layer. Replacing W with other heavy
metals, such as platinum, might invert the chirality and the
DW motion direction. Considering that the DW width ulti-
mately determines the device size, the narrow width of π� ∼
37 nm obtained in our study redefines the integration limit and
scalability of Mn3Sn devices. These parameters can contribute
to revealing the swapping trajectory of Weyl points at the DW,
which was theoretically discussed recently [51,52]. Finally,
the octupole ordering in DWs is the basis for clarifying the
detailed mechanism of switching the octupole moment using
spin transfer and spin-orbit torque.

To conclude, our QSM measurement experimentally estab-
lished the weak magnetization, the direction of the octupole
moment, and the chiral behavior of the moment inside the
kagome plane of Mn3Sn, all vividly illustrating the role of
its cluster magnetic octupoles. While the weak magnetization
of such thin films is challenging to measure, accurate values
are obtained by the local method of QSM. The magnetic
parameters provide quantitative input for the AF spintronics
applications based on this material. The experimental proof
of chiral DWs is a powerful complement to macroscopic mea-
surements and further advances our understanding and control
of chiral antiferromagnetism.
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