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Pauli-blocking effects in Nilsson states of weakly bound exotic nuclei

P. Punta ,* J. A. Lay , and A. M. Moro
Departamento de FAMN, Facultad de Física, Universidad de Sevilla, Apartado 1065, E-41080 Sevilla, Spain

G. Colò
Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy

and INFN, Sezione di Milano, via Celoria 16, I-20133 Milano, Italy

(Received 26 February 2025; accepted 29 May 2025; published 16 June 2025)

Background: The description of weakly bound nuclei using deformed few-body models has proven to be crucial
in the study of reactions involving certain exotic nuclei. However, the core+valence nucleons models face the
challenge of applying the Pauli exclusion principle, since the factorization of the system does not allow complete
antisymmetrization. Therefore, states occupied by core nucleons should be blocked for the valence nucleons.
Purpose: We aim to study the carbon isotopes 17C and 19C which are good examples of weakly bound exotic
nuclei with significant deformation where the valence shell is partially filled. We will explore the effect of
different methods of blocking occupied states in deformed two-body models.
Methods: The structure of 17C and 19C is described with deformed two-body models where a Nilsson Hamil-
tonian is constructed using antisymmetrized molecular dynamic calculations of the cores. Different methods
of blocking occupied Nilsson states are considered using the Bardeen-Cooper-Schrieffer formalism: without
blocking, total blocking, and partial blocking. The latter also takes into account pair correlations to some extent.
These models are later used to study 16C(d, p) 17C, 17C(p, d ) 16C, and 18C(d, p) 19C transfer reactions within the
adiabatic distorted wave approximation. In the first case, the results are compared with experimental data.
Results: A good reproduction of the structure of 17C is found, significantly improving the agreement in the
16C(d, p) 17C reaction including blocking effects. The 19C spectrum is better reproduced considering blocking,
in particular, the partial blocking method that considers the pairing interaction provides the best description.
Conclusions: Promising results are shown for the study of transfer reactions involving weakly bound exotic
nuclei, by highlighting the effect of blocking occupied Nilsson states. We envision to extend the models to the
study of breakup reactions and to newly discovered halo nuclei.

DOI: 10.1103/nj6g-fsj4

I. INTRODUCTION

In recent years, the study of weakly bound exotic nuclei
has been boosted by the development of radioactive beam
facilities. The exotic nuclei have a rather different ratio of
protons to neutrons from that of stable nuclei. Because of
that, their properties can be very different, for example, some
of them exhibit a halo nature. Halo nuclei are weakly bound
systems composed of a relatively compact core and one or two
highly delocalized valence particle(s) forming a halo of matter
around the core.

To study the reactions including weakly bound nuclei, they
have usually been described using few-body models that ig-
nore fragment deformations. However, it is known that core
deformations can significantly affect both the structure and
the dynamics of these systems [1–4]. Therefore, to obtain a
more reliable description of reactions involving these nuclei,
deformation needs to be included in few-body models.

*Contact author: ppunta@us.es

Nuclei composed of a weakly bound neutron and an
even-even core with significant quadrupole deformation are
considered. Different deformed two-body models have been
successfully applied to the description of 17C, 19C, and
11Be. Promising results are obtained with the semimicro-
scopic particle+antisymmetrized molecular dynamics model
(PAMD) [5], in which the Hamiltonian is constructed using
the transition densities of the corresponding cores calculated
in the antisymmetrized molecular dynamics (AMD) formal-
ism. However, in the case of 17C, better results are obtained
with the Nilsson model [6]. In the present work, both models
are combined in order to have a model like Nilsson’s but main-
taining most of the microscopic information of the PAMD
model.

A inherent difficulty in deformed two-body models is the
application of the Pauli exclusion principle related to the states
occupied by the core nucleons. In many-body calculations,
this problem is automatically solved by antisymmetrization of
the wave function, while few-body models require the explicit
exclusion of forbidden states. The simplest way to deal with
this problem is to discard the bound states that are consid-
ered occupied by comparison with the spherical and Nilsson
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limits. However, despite its widespread application, this
method shows limitations in its application to some nuclei.
Total blocking of single-particle states emerges as an alter-
native method, initially proposed for spherical single-particle
states and recently extended to deformed Nilsson states [7].

In this work, the possibility of including more sophisticated
Pauli blocking effects is explored. In particular, single-particle
Nilsson states are totally or partially blocked using the
Bardeen-Cooper-Schrieffer (BCS) formalism, thus including
a residual pairing interaction. In this way, pair correlations are
also approximately taken into account in order to obtain more
complete and descriptive models. The implementation of BCS
theory in a deformed two-body model has already been tested
[8]. However, in this new method, instead of applying the BCS
calculation to the spherical single-particle levels, we use the
deformed Nilsson single-particle levels as a starting point.

We present the results of using different Pauli blocking
methods applied to the deformed weakly bound nuclei 17C
and 19C. The energies of the bound states and some low-lying
resonances, together with their associated wavefunctions, are
obtained by diagonalizing the model Hamiltonian in a basis of
square-integrable functions. We use the transformed harmonic
oscillator (THO) functions [9], which have been successfully
applied to the discretization of the continuum of weakly bound
nuclei for its application to breakup and transfer reactions both
for two-body and three-body systems. [2,5,6,10–13].

The calculated 17C wave functions are tested by apply-
ing them to the transfer reaction 16C(d, p) 17C, comparing
with the experimental data from GANIL [14]. We will also
propose similar reactions not yet experimentally measured,
17C(p, d ) 16C and 18C(d, p) 19C, and analyze how they can be
used to discriminate between the different models presented.

The paper is organized as follows. Section II describes the
structure formalism. It focuses on the description of the new
Nilsson+AMD model and the implementation of the BCS
theory. Section III shows the results of the application to 17C,
including the study of transfer reactions 16C(d, p) 17C and
17C(p, d ) 16C. The application to 19C and 18C(d, p) 19C are
presented in Sec. IV. Finally, in Sec. VI we summarize the
main results of this work.

II. STRUCTURE FORMALISM

We consider systems that can be described using two-body
models, where a neutron moves in a deformed potential gen-
erated by the core. The Hamiltonian of the system can be
written as

H = T (�r) + V�s(r)(�� · �s) + Vvc(�r, ξ ) + hcore(ξ ), (1)

where T (�r) is the kinetic energy operator for the relative
motion between the valence and the core and hcore(ξ ) is
the Hamiltonian of the core. Vvc(�r, ξ ) is the effective valence-
core interaction, which depends on the relative motion
between the valence and the core, but also on the core degrees
of freedom ξ . A spin-obit term with the usual radial depen-
dence V�s(r) is added to this valence-core interaction.

The eigenvalues and eigenfunctions of the Hamiltonian
are obtained by diagonalization in the THO basis. In our
case, the single-particle Nilsson Hamiltonian HN = H − hcore

is diagonalized in the intrinsic system which rotates jointly
with the core. Later, the wave functions are projected in the
fixed laboratory frame to finally add the term hcore. A more
complete description of this method can be found in Sec. II of
Ref. [6]. The eigenfunction associated with an eigenvalue εJπ

i
can be generically expressed as

�Jπ

iM (�r, ξ ) =
∑

α

RJπ

iα (r)�M
αJ (r̂, ξ ). (2)

They are characterized by the index i, parity π , the total
angular momentum J and its projection M on the z axis of the
fixed laboratory frame. The radial functions RJπ

iα (r) are a linear
combination of orthonormal functions of the basis RTHO

n� (r).
�M

αJ (r̂, ξ ) are the eigenfunctions of J2 and Jz resulting from
the coupling of the angular momentum �j of the valence parti-
cle to the core angular momentum �I ,

�M
αJ (r̂, ξ ) ≡ [Y j

�s(r̂) ⊗ φI (ξ )
]

JM . (3)

Here, � is the orbital angular momentum of the valence par-
ticle relative to the core, which couples to the spin of the
valence particle s to give the particle total angular momentum
j. The label α denotes the set of quantum numbers {�, s, j, I}.
Y jm

�s (r̂) denotes the wave function resulting from coupling the
spin of the valence particle with the corresponding spherical
harmonic.

The weight of each α component is given by the integral∫ ∞
0 dr|rRJπ

iα (r)|2. When antisymmetrization between the va-
lence neutron and the core is properly taken into account,
these weights correspond to spectroscopy factors (SF). In our
case, where antisymmetrization between the valence particle
and the remaining nucleons is not considered, this correspon-
dence between weights and SF is only approximate.

A. NAMD model

In the Nilsson+AMD method proposed here, denoted
NAMD hereafter, we combine the Nilsson and PAMD models
compared in Ref. [6]. On the one hand, as in the Nilsson
model, the valence-core interaction is considered in the in-
trinsic frame (�r′), which rotates jointly with the core. For this
frame, considering an axially symmetric quadrupole deforma-
tion, we can assume that the potential Vvc only depends on the
radial coordinate r = r′ and the angle θ ′ with respect to the
symmetry axis of the core

Vvc(r, θ ′) = V0(r)Y00 + V2(r)Y20(θ ′). (4)

Furthermore, as in the Nilsson model, the core is ap-
proximated by a perfect rotor. Therefore, hcore depends on
the angular momentum of the core �I and its moment of
inertia J ,

hcore = h̄2

2J �I2. (5)

On the other hand, the coupling potentials V0(r) and V2(r)
are calculated as in the PAMD model

Vλ(r) = 〈0+||Vλ(�r, ξ )||λ+〉. (6)

Note that |λ+〉 coresponds either to the ground state of the
core (0+) or to the first excited (2+), depending on the
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selected multipolarity λ. The calculation of these reduced
matrix elements follows the procedure of Ref. [5], where
the nucleon-nucleon interaction of Jeukenne, Lejeune, and
Mahaux [15] is convoluted with microscopic transition den-
sities of the core nucleus calculated with AMD [16]. In order
to compare the strength of these couplings with a standard
particle-rotor or Nilsson models, a deformation length δ2 ≡
〈0||δ̂2||2〉 can be extracted from the same transition densities
as defined, for instance, in Refs. [5,16].

In relation to the Pauli exclusion principle, if a method
without blocking is used (NoB), the Hamiltonian in Eq. (1)
is directly the Hamiltonian of the system. In this case, the
Pauli principle is applied after the diagonalization of H: the
obtained bound states that we consider forbidden by com-
parison with the spherical and Nilsson limits are discarded.
This method is called the standard PRM in Ref. [7], since it is
commonly used in particle-rotor models (PRM). In our NoB
method, we discard the states obtained with a dominant con-
tribution from the lowest N/2 Nilsson states, where N is the
number of neutrons of the core. However, the Pauli principle
can have a strong effect on the calculation of energies and
wave functions. Therefore, in some cases, it is convenient to
consider methods for blocking single-particle states occupied
by the core nucleons. In this work, we use the BCS theory
to account for the partial occupation of the single-particle
Nilsson states.

B. Implementation of BCS formalism

The BCS formalism is applied as explained in Ref. [17].
The eigenvalues εν of the Nilsson Hamiltonian HN = H −
hcore are taken as single-particle energies in the BCS calcula-
tion for the N neutrons of the core. A constant pairing strength
G is considered to act between a set of levels around the Fermi
energy λ. Levels from 0 MeV to 10 MeV below the neutron
separation threshold are included in the BCS active space. The
specific levels for each nucleus studied can be seen in Fig. 1,
between the dotted lines. A new Hamiltonian can be defined
in terms of the creation and annihilation operators [17]

HBCS =
∑

ν

(εν − λ)(a†
νaν + a†

ν̄aν̄ ) − G
∑
νν ′

a†
νa†

ν̄aν̄ ′aν ′ . (7)

The single-particle energies εν and their associated wave func-
tions ψν (�r′) are obtained by diagonalizing the Hamiltonian
HN in the THO basis giving rise to the linear combinations

ψν (�r′) =
∑

n j

Cν
n jR

THO
nl (r)Y j�

�s (r̂′), (8)

where Cν
n j are the components of the eigenvector matrix.

These Nilsson states ν do not have well-defined values of �

and j, but they can be characterized by their parity π and
the projection � of �j along the axial symmetry axis. The
energy εν corresponds to the state ν with projection � and
wave function ψν (�r′), but also to the time-reversed state ν̄ with
projection −� and wave function

ψν̄ (�r′) =
∑

j

(−1) j−�Cν
n jR

THO
nl (r)Y j−�

�s (r̂′). (9)

FIG. 1. Spherical single-particle levels and Nilsson levels of 17C
(left) and 19C (right) obtained using the NAMD (PB) model. The
Fermi level obtained in the BCS calculation is also represented. Pos-
itive and negative parity states are represented with different colors,
and Nilsson levels are labeled with the asymptotic quantum numbers
[Nn3� �] referring to large prolate deformations [18].

Therefore, unlike spherical single-particle levels, all the Nils-
son levels can be occupied only by a pair of neutrons or
protons. The schemes of spherical and Nilsson single-particle
levels obtained for 17C and 19C are shown in Fig. 1 with the
model parameters specified below.

The application of the BCS formalism involves the
Bogoljubov-Valatin canonical transformation from particles
to quasiparticles. Therefore, once the BCS calculation is per-
formed, the particle state |ν〉 becomes a one-quasiparticle state
|BCS, νJM〉. Additionally, the state has been projected in the
fixed laboratory system by including the rotational state of the
nucleus. Then, for a total angular momentum J with projec-
tion M on the Z axis of the laboratory system, the one-body
wave function becomes

�M
νJ (�r′, ω) =

√
2J + 1

4π

[
ψν (�r′)DJ

M�(ω)∗

+ (−1)J−�ψν̄ (�r′)DJ
M−�(ω)∗

]
. (10)

The definition of [19] is used for the rotation matrices DJ
M�(ω)

and the three Euler angles are denoted by ω. The functions
�M

νJ (�r′, ω) are orthonormal and take into account the symme-
try regarding the � and −� projections. The effect of hcore

is included by diagonalizing a new quasiparticle Hamiltonian
HJπ = HBCS + hcore − e0 using states |BCS, νJM〉 as a ba-
sis. e0 ≡ 〈BCS|HBCS + hcore|BCS〉 is the energy of the BCS
ground state, that is the quasiparticle vacuum. The matrix
elements of HJπ result:

〈BCS, ν ′JM|HJπ |BCS, νJM〉

= Eνδν ′ν + h̄2

2J
〈
�M

ν ′J

∣∣�I2
∣∣�M

νJ

〉Fν ′ν . (11)
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Eν is the quasiparticle energy associated with εν and the
Fν ′ν factor appears naturally when including a one-body op-
erator between one-quasiparticle states [17,18]. It depends
on the occupation numbers uν and vν obtained in the BCS
calculation as

Fν ′ν = uν ′uν − vν ′vν . (12)

For each angular momentum and parity Jπ , a set of
energies EJπ

i with their corresponding eigenvectors having
components CiJ

ν are obtained. The associated wave functions
can be written in the fixed laboratory frame as in Eq. (2), with
radial functions RJπ

iα (r) = ∑
n CiJπ

nα RTHO
n� (r). The coefficients

can be calculated from the eigenstates of HJπ and HN ,

CiJπ

nα =
√

2I + 1

2J + 1

√
1 + (−1)I

∑
ν

〈 j�I0|J�〉CiJ
ν Cν

n j, (13)

using expression (8) from Ref. [6]. We can also define the oc-
cupation number v2

iJπ = ∑
ν (CiJ

ν vν )2 related to the occupation
of the state by the core neutrons.

The obtained quasiparticle states mix particle and hole
states. However, we assume that the states with low occu-
pation by core neutrons (v2

iJπ < 0.5) can be approximated as
particle states, while those with high occupation (v2

iJπ > 0.5)
are considered hole states and they are discarded. The particle
states have an associated energy εJπ

i = EJπ

i + λ, where λ is
the Fermi energy obtained in the BCS calculation. These are
the energies that can be compared with the eigenvalues of the
Hamiltonian without blocking (1) and the experimental data.

Note that the factor Fν ′ν reduces the coupling between
Nilsson states with high and low occupancy. Therefore, this
formalism can be regarded as a partial blocking method (PB).
It is also interesting to explore the extreme case of a total
blocking method (TB). To do this, we assume that the pair-
ing strength is zero and the lowest N/2 Nilsson states, those
below the Fermi level, are considered fully occupied (uν = 0,

vν = 1), while the rest are completely empty (uν = 1, vν =
0). In this case, the occupied and empty Nilsson states are
completely decoupled because Fν ′ν = 0 between them. This
TB method is equivalent in practice to model III (“deformed
PF model”) from Ref. [7].

III. APPLICATION TO 17C

The NAMD model has been applied to study the 17C
system using the three different blocking methods. A slight
renormalization of the central potential V0(r) was necessary
to match the energy of the ground state with the experimen-
tal value. This renormalization is different depending on the
blocking model: 1.014 (NoB), 1.000 (TB), and 0.997 (PB).
The spin-orbit potential is obtained as a function of the deriva-
tive of V0(r) following the relation from [20], but using our
semimicroscopic function instead of a Woods-Saxon poten-
tial. For all blocking methods, the value h̄/2J = 0.295 MeV
is used for the core Hamiltonian, compatible with the excita-
tion energy of the first excited state 2+ of 16C (1.766 MeV
[21]). Regarding to the deformation length, δ2 = 1.27 fm
(prolate) is obtained following the prescription of [5].

FIG. 2. Energies of the bound states of 17C. The experimental
values from [22,23] are compared with the results of the NAMD
model using different blocking methods.

In the TB method, the five most bound Nilsson states (the
states below the Fermi level in Fig. 1) are considered fully
occupied. In the case of PB, only the first three are considered
fully occupied. For the next four states, which correspond
to a separation energy between −10 MeV and 0 MeV (the
states between the dotted lines in Fig. 1), a BCS calculation
with a pairing strength G = 1.3 MeV is performed. From
the BCS calculation, the Fermi level is found at −4.13 MeV
and the pairing gap is 1.58 MeV, close to the value obtained
with the three-point formula centered on the 16C system,
1.76 MeV.

The Hamiltonian is diagonalized in the THO basis using
the parameters b = 2.4 fm and γ = 3.0 fm1/2 and considering
0 � � � 4 and 1 � n � 30. The energies of the bound states
obtained for the different blocking methods are shown in
Fig. 2 compared to the experimental values [22,23]. Using the
TB and PB methods, the 5/2+ state becomes the first excited
state and the 1/2+ the second, contrary to the experimental
evidence. However, it should be noted that the three bound
states are very close in energy, so that the difference between
the calculated levels and the experimental values is less than
0.5 MeV.

To compare the wave functions obtained with each block-
ing method, the radial overlap functions between the excited
bound states of 17C and the ground state of the core 16C(0+)
are shown in Fig. 3. These are the relevant overlaps for the
study of the 16C(d, p) 17C reaction that will be discussed
later. The overlaps obtained from the resonating group method
(RGM) [24], are also shown. The RGM method is a micro-
scopic cluster model that is much more complex than the
models presented here. For example, 990 Slater determinants
are used in the RGM method to obtain these overlaps. There-
fore, it is natural to find differences between the NAMD
and RGM models. However, in the lower panel of Fig. 3
it can be seen how, by applying total or partial blocking,
the NAMD model produces overlaps 〈17C(5/2+

1 )| 16C(0+)〉
close to microscopic RGM calculation at large distances.
Note that transfer reactions are peripheral, and hence mostly
sensitive to the behavior of the nucleons around the sur-
face of the nucleus. On the other hand, 〈17C(1/2+

1 )| 16C(0+)〉
are similar except for the PB case, where the mismatch in
energy of the state leads to differences in the asymptotic
behavior.
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FIG. 3. Overlaps of the ground state of 16C with the first (upper
panel) and second (lower panel) excited states of 17C. The results
of the RGM calculations [24] are compared with the results of the
NAMD model using different treatments of Pauli blocking.

A. 16C (d, p) 17C

The differential cross sections of the transfer reaction
16C(d, p) 17C populating bound excited states have been
calculated as in Ref. [6], using the finite-range adiabatic
distorted wave approximation (ADWA) [25], and employ-
ing the same optical model potentials for consistency. In
the post form, these calculations require the overlap func-
tions 〈17C | 16C(0+)〉, which are taken from the results of the
NAMD model. The results obtained using the three different
blocking methods are compared with the experimental data
from GANIL [14] in Fig. 4, These data were obtained in
inverse kinematics with a 16C beam at 17.2 MeV/nucleon.

For the case of the first excited state 1/2+, despite the
difference of the PB due to its energy mismatch, we find
good agreement between the results for all blocking methods
and the data [Fig. 4(a)]. The results without blocking (NoB)
are similar to those obtained in [6], which underestimate the
differential cross section for the second excited state 5/2+
[Fig. 4(b)]. However, using the total and partial blocking
methods (TB and PB), the agreement with the experimental
data for this state is significantly improved. Figure 4 also
shows the ADWA results using microscopic RGM overlaps.
The agreement of the results using this RGM model with
the data is rather good, but it should be noted that, using a
simpler model such as NAMD a similar degree of agreement
is found, provided that Pauli blocking effects are properly
accounted for. In Table I, the spectroscopic factors (SF) for
the overlaps 〈17C(Jπ )| 16C(0+) ⊗ n� j〉 are shown. The values
extracted from the RGM calculations [24] and the different
NAMD models are compared with the experimental ones from

FIG. 4. Angular distribution of the 16C(d, p) 17C reaction at 17.2
MeV/nucleon when the 17C bound states 1/2+

1 (upper panel), and
5/2+

1 (lower panel) are populated. The results using the different
blocking methods are compared with the experimental data [14] and
the results using the RGM overlaps [24].

Ref. [14]. These experimental SF are obtained as the ratio
of the experimental cross sections and pure single-particle
finite-rage ADWA calculations using CH89 parametrization.
In Table I, it can be seen how the discrepancy of the NAMD
NoB model in 16C(d, p) 17C(5/2+

1 ) is related to the difference
in SF. Here, the blocking of the Nilsson state [220 1/2] (see
Fig. 1) plays a key role. If this Nilsson configuration is not
blocked, the 5/2+

1 state includes a significant contribution of
states with � = 1/2 that increase the weight of the component
s1/2 ⊗ 2+ (0.39 for NoB versus 0.16 for TB and 0.08 for PB)
over d5/2 ⊗ 0+.

TABLE I. Spectroscopic factors for the overlaps 〈17C(Jπ )|
16C(0+) ⊗ n� j〉. The results of the NAMD and RGM [24] mod-
els are compared with those extracted from the experimental
analysis [14].

Jπ (�, j) NoB TB PB RGM Exp.

3/2+
1 (2, 3/2) 0.00 0.01 0.01 0.01

+0.05
0.03

−0.03
1/2+

1 (0, 1/2) 0.68 0.80 0.82 0.94 0.64 ± 0.18
5/2+

1 (2, 5/2) 0.33 0.66 0.65 0.56 0.62 ± 0.13
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FIG. 5. Differential cross section of 17C(p, d ) 16C transfer to the
first excited state 2+ of 16C at 31 MeV/nucleon. The results using the
NAMD model with different blocking methods are compared with
the results using the RGM overlaps [24].

Although we have fixed the parameters of the NAMD
model in order to meet several constraints which minimise
their freedom, different parametrizations have been tested
(mainly variations in the spin-orbit potential and the moment
of inertia of the core). However, without applying blocking
effects, it was not possible to increase the weight of the
component d5/2 ⊗ 0+ sufficiently in any case. No significant
improvements in the spectrum were achieved for the models
with blocking either.

Table I also shows the agreement in the small contribution
of the component d3/2 ⊗ 0+ in the ground state of 17C. This
makes the 16C(d, p) 17C cross section for this state small
and hence difficult to measure experimentally; to study the
ground state of 17C one may consider the reverse reaction
17C(p, d ) 16C, which is studied in the next subsection.

B. 17C (p, d ) 16C

The transfer reaction 17C(p, d ) 16C is studied at 31
MeV/nucleon so that the relative velocities p − 17C and d −
16C are the same as those of the previous section. Conse-
quently, using the same potentials and the overlap functions
〈17C(3/2+

1 )| 16C〉, differential cross sections can be calculated
using the ADWA approximation in prior form.

The transfer to the ground state in 17C(p, d ) 16C is anal-
ogous to that in 16C(d, p) 17C. In particular, both depend on
the overlap function 〈17C(3/2+

1 )| 16C(0+)〉. Again, the small
weight of this component makes the transfer cross section to
the 0+ ground state of 16C small. The cross section of the
transfer to the first excited state 16C(2+) must be larger and
is expected to provide more information. The results obtained
in this case using the NAMD and RGM models are shown in
Fig. 5. The differences between the models can be understood
by looking at SF for the overlaps 〈17C(3/2+

1 )| 16C(2+) ⊗ n� j〉,
which are presented in Table II. On the one hand, the cross
section is larger using the overlaps from the RGM calculations
because its SF exceeds unity, while the approximate values
obtained with NAMD models are necessarily less than one.

TABLE II. Comparison of spectroscopic factors for the overlaps
〈17C(3/2+

1 )| 16C(2+) ⊗ n� j〉 obtained with the NAMD and RGM
[24] models. For � = 2, the two contributions, 1d3/2 and d5/2, are
summed. For � = 4 all contributions are lower than 0.001.

� NoB TB PB RGM

0 0.33 0.04 0.02 0.37
2 0.50 0.88 0.88 1.13

On the other hand, the larger weight of the s1/2 ⊗ 2+ com-
ponent (� = 0) in the RGM and NAMD NoB models causes
a difference in the shape of the distribution compared to the
others, which is the result of the clear dominance of the � = 2
components.

IV. APPLICATION TO 19C

The NAMD model has also been applied to the study the
19C nucleus, using the same THO basis as in the case of 17C.
The spin-orbit potential is parametrized in terms of the deriva-
tive of the Woods-Saxon function with standard values of
radius (Rso = 3 fm), diffuseness (aso = 0.7 fm), and strength
(Vso = 6.5 MeV). The value h̄/2J = 0.25 MeV is used for
the core Hamiltonian, compatible with the excitation energy
of the first excited state 2+ of 18C (1.588 MeV [26]). The
deformation length of the NAMD model is that of the AMD
calculation, δ2 = 1.20 fm [5] (prolate). In the TB method,
six Nilsson states are considered fully occupied (the states
below the Fermi level in Fig. 1). In the PB method, three
deeply bound Nilsson states are considered fully occupied,
and the BCS calculation is performed with the five bound
states between −10 MeV and the threshold (see Fig. 1). Using
G = 1.3 MeV, the Fermi level is found at −3.73 MeV and the
pairing gap is 1.78 MeV, compatible with the value obtained
with the three-point formula centered on the 18C system, 1.80
MeV.

In principle, the NAMD model gives almost degenerate
spherical single-particle levels 2s1/2 and 1d5/2 around −2
MeV, and the 1d3/2 around 3 MeV. With this sd-shell scheme,
3/2+ and 5/2+ states of 19C are not found up to 1 MeV
above the 1/2+ ground state, as shown in Fig. 6(a). In order
to obtain a better agreement with the experimental spectrum
[23,27–29], a �-dependent renormalization of the central po-
tential V0(r) is applied: 0.9 for � = 0 and 1.1 for � = 2. Thus,
making the 1d levels more bound with respect to the 1s level,
the 3/2+ and 5/2+ states of 19C are closer to the ground state
1/2+. Furthermore, the potential V0(r) continues to be slightly
renormalised globally in each model to match the energy of
the ground state with the experimental value: 0.973 (NoB),
0.972 (TB), 0.998 (PB). We have to emphasize that, after
several tests, this particular parametrization has turned out to
be the most suitable to describe 19C system with our NAMD
model.

In Fig. 6(b), it can be seen that in this way the spectra
obtained with the TB and PB models are close to the experi-
mental one, whereas significant deviations are seen in the case
of the NoB model. Note that we are assuming that the first
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FIG. 6. Spectrum obtained for the 19C nucleus using the NAMD
model considering different Pauli blocking methods in comparison
with the experimental one [23,27–29]. The upper panel shows the
energies obtained without �-dependent renormalization, while the
lower panel shows the result after including this renormalization (see
text).

5/2+ state is a low-energy resonance, as suggested in [28,29],
rather than a bound state as previously reported [23].

18C (d, p) 19C

The wave functions obtained with the NAMD models are
applied to the calculation of the transfer reaction 18C(d, p) 19C
at 17 MeV/nucleon. At this energy, the d − 18C system has a
relative energy very similar to that of the d − 16C system in
the previous reactions.

The transfer to the ground state and the first excited state of
19C are studied and the differential cross sections obtained are
shown in Fig. 7. The results of the models are not very differ-
ent in this case, which can be explained by comparing the SF
calculated for the overlaps 〈19C(Jπ )| 18C(0+) ⊗ n� j〉. These
SF are shown in Table III, and it can be seen that the values
are very close, approximately 0.7 for the s1/2 ⊗ 0+ component
in the ground state and 0.5 for the d3/2 ⊗ 0+ component in the
first excited state, pointing to a smaller importance of Pauli
blocking effects in this case.

TABLE III. Spectroscopic factors for the overlaps 〈19C(Jπ )|
18C(0+) ⊗ n� j〉 extracted using the NAMD model with different
Pauli blocking methods.

State (�, j) NoB TB PB

1/2+
1 (0, 1/2) 0.68 0.72 0.69

3/2+
1 (2, 3/2) 0.52 0.52 0.54

FIG. 7. Angular distribution of the 18C(d, p) 19C reaction when
the 19C ground state 1/2+

1 (upper panel), and first excited state
3/2+

1 (lower panel) are populated. Calculations have been made for
17 MeV/nucleon using the NAMD model with different blocking
methods.

V. SUMMARY AND CONCLUSIONS

A new two-body model based on the combination of Nils-
son and PAMD models from Ref. [6], has been applied to the
study of weakly bound exotic nuclei. The model considers a
neutron moving in a deformed potential generated by the core.
The interaction includes semimicroscopic coupling potentials
calculated using AMD transition densities [5], a spin-orbit
potential, and a collective rotational term. By incorporating
the BCS formalism in the model, different Pauli blocking
methods are used, and their results are compared. Therefore,
we have core+nucleon models suitable for application to the
study of reactions, providing a very complete description of
the nuclei, since they consider the deformation of the core
including microscopic information, the collective rotation,
and the pairing effects in case of PB. The models have been
applied to the description of 17C, 19C, and transfer reac-
tions that involve these nuclei: 16C(d, p) 17C, 17C(p, d ) 16C,
18C(d, p) 19C.

Although all variants of the NAMD model give a reason-
able description of 17C, including Pauli blocking methods
improves the agreement with the data for the stripping reac-
tion 16C(d, p) 17C(5/2+

1 ). Our results are compared with those
obtained using microscope RGM calculations [24], which are
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in good agreement with the experimental data. It should be
noted that using a much simpler model such as NAMD, if we
include blocking effects, the agreement with the data is sim-
ilar to that found with this microscopic model. Blocking the
Nilsson state [220 1/2] (see Fig. 1) which is dominated by the
s1/2 component, implies a reduction of the s1/2 ⊗ 2+ strength
in the second excited state 5/2+

1 , increasing the weight of
the component d5/2 ⊗ 0+. This is reflected in the SF shown
in Table I, or in the complete 〈17C(5/2+

1 )| 16C(0+)〉 over-
laps shown in Fig. 3. The increase in such overlap explains
therefore the better agreement with the experimental data of
16C(d, p) 17C(5/2+

1 ) as compared to the calculation in which
Pauli blocking is not taken into account. TB and PB methods
give goods results in 16C(d, p) 17C reaction, but they predict
the spectrum of the bound states in a different order than that
observed experimentally. Notice, however, that differences in
energies are very small. The energy mismatch is worse in
the case of PB, and this could be indicative that a better im-
plementation of pairing would be needed. Blocking methods
also drastically reduce the s1/2 strength in the ground state,
and it can be seen in the transfer reaction 17C(p, d ) 16C(2+).
Obtaining experimental data for this reaction would help de-
termine whether the ground state of 17C is strongly dominated
by � = 2 components as suggested by the TB and PB models,
or if there is a significant contribution from � = 0 as suggested
by the NoB and the microscopic RGM model.

In case of 19C, an �-dependent renormalisation is needed to
reasonably describe the system using the NAMD model. This
limitation of our model can be related to the assumption of
a prolate deformation, when the possibility that prolate and
oblate structures are almost degenerate (shape coexistence)
has been previously discussed [30]. Using the �-dependent
renormalization, the NAMD TB model obtains a spectrum
up to 1.5 MeV that agrees with the experimental one, the
agreement not being so good in the case of the NoB model.
Including pairing, the PB model even improves the agreement.
However, there are no major differences in the 〈19C | 18C(0+)〉

overlaps obtained with the different models, as reflected in
the SF and the cross section of the reaction 18C(d, p) 19C.
It should be noted that experimental measurements of this
transfer reaction would help confirm or rule out the shape
coexistence in 18C and 19C.

The results shown here prove the suitability of the NAMD
model to describe the 17C and 19C systems. Furthermore, it has
been proven that blocking of Nilsson states occupied by the
core nucleons has significant effects that improve the descrip-
tion of the nuclei. Although the partial blocking method (PB)
is more complete, the limit of total blocking (TB) proves to be
a good approximation in the cases studied. The application
of these models to transfer to the continuum and breakup
reactions is in progress and its extension to other weakly
bound nuclei is planned.
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