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Pulsars are rotating neutron stars that are observed to be slowing down, implying a loss of their rotational
energy. There can be several different physical mechanisms involved in their spin-down process. The
properties of fast-rotating pulsars depend on the nature of the neutron star matter, which can also affect the
spin-down mechanisms. In this work, we examine three different physical phenomena contributing to the
spin-down: magnetic dipole radiation, gravitational mass quadrupole radiation due to the “mountain”
formation, and gravitational mass current quadrupole radiation—or the r-modes—and calculate the
expressions for the braking indices due to all of them. We have also considered the implications of the
uncertainties of the equation of the state of neutron star matter and rapid rotation on the braking indices
corresponding to the aforementioned processes and their combinations. In all cases, the rapid
rotation results in a departure of the braking index from the standard values when the rotational effects
are ignored. If generated with a saturation amplitude within the range of 10−4–10−1, the r-mode oscillations
dominate the spin-down of millisecond pulsars. Moreover, we explore the braking index in the context of
millisecond magnetars. We also study the effects of different choices of baryon mass on the braking indices.

DOI: 10.1103/ngnk-xmgs

I. INTRODUCTION

The majority of neutron stars (NS) are observed as
pulsars, which are rapidly rotating and observed to spin
down over time, indicating a loss of rotational kinetic
energy. The spin-down rate is given as Ω̇ ¼ −kΩn [1],
where n is the braking index and k is a positive constant.
The braking index captures information about the mecha-
nism of energy loss. Depending on the emission loss
mechanism k can be a function of radius, moment of
inertia, magnetic field strength, etc. (discussed later in the
text). In most cases, the pulsar’s rotational energy loss is
attributed to the magnetic dipolar radiation (MDR) from the
pulsar magnetosphere for which the braking index is 3 [2].
However, pulsars can lose energy via gravitational wave
(GW) radiation if there is nonaxisymmetric deformation or
r-mode instability, for which the braking indices are 5 and
7, respectively [3]. Therefore, it is natural to expect a

rapidly rotating neutron star to lose energy via all three
channels if the conditions are favorable. Apart from these
three channels of energy loss, pulsars also lose energy due
to the particle wind [4,5].
The spin period of pulsars spans a large range. The

slowest pulsar has a rotation period of 76 s [6] to the most
rapidly rotating being 1.39 ms [7]. The total population is
typically categorized as normal (or “slow”) pulsars and
millisecond pulsars, with the demarcation around 16 ms
[8]. The braking index has been measured for a few
younger pulsars (through pulsar timing) and found to be
less than 3 [9–15]. This is often attributed to the evolution
of the magnetic field, modified magnetosphere, or even
the interaction of supernova fallback disk [4,16,17]. A
similar sub-3 braking index can be achieved in rapidly
rotating pulsars, which is purely due to structural changes
in the star due to rapid rotation. In such a scenario, the k
cannot be assumed independent of the spin frequency
[18,19], which has been discussed in detail in Sec. IV.
The effect of structural evolution is prominent over a spin

frequency of 200 Hz [18]. Currently, the Australia

*Contact author: avishek.basu@manchester.ac.uk
†Contact author: prasanta.char@usal.es
‡Contact author: rananandi@iitd.ac.in

PHYSICAL REVIEW D 112, 023020 (2025)

2470-0010=2025=112(2)=023020(16) 023020-1 © 2025 American Physical Society

https://orcid.org/0000-0002-4142-7831
https://orcid.org/0000-0001-6592-6590
https://orcid.org/0000-0002-6277-2618
https://ror.org/027m9bs27
https://ror.org/02f40zc51
https://ror.org/00afp2z80
https://ror.org/00afp2z80
https://ror.org/00afp2z80
https://ror.org/05aqahr97
https://crossmark.crossref.org/dialog/?doi=10.1103/ngnk-xmgs&domain=pdf&date_stamp=2025-07-15
https://doi.org/10.1103/ngnk-xmgs
https://doi.org/10.1103/ngnk-xmgs


Telescope National Facility (ATNF) Pulsar Catalogue1 [20]

records 392 pulsars with spin frequency more than 200 Hz,
which corresponds to ∼11% of the total pulsar population
discovered to date. These rapidly rotating pulsars are
important in probing the physics of dense nuclear matter.
The physics of the nuclear interaction and the constituents
of the matter determines the dense matter equation of state
(EOS), which in turn governs the stellar structure and its
response to rapid rotation. There are several ways found in
the literature to model the NS EOS. One may use explicit
nuclear potentials, or energy density functionals describing
phenomenological nucleonic interactions [21–25]. One
may also employ more agnostic and semiagnostic
approaches which do not assume any interactions a priori

]26–30 ]. In this article, we have adopted a semiagnostic
approach to construct the dense matter equation of state
following the formalism of Gandolfi et al. [31], summa-
rized in Sec. II, to study the frequency evolution of the
stellar structure and the braking index.
There are various types of constraints that can be applied

to the EOS model. Astrophysical observations provide
several constraints relevant to the high-density part of the
EOS. In particular, the radio observations of the most
massive pulsar, PSR J0740þ 6620 [32,33], provide the
most stringent constraint on the NS EOS. The tidal deform-
abilitymeasurements from themultimessenger observations
of the binary neutron star merger event GW170817 put
additional constraints on the EOS [34–36]. In recent years,
Neutron star Interior Composition Explorer (NICER) col-
laboration has reported a few simultaneous mass-radius
measurements of PSR J0030þ 0451, PSR J0740þ 6620,
and PSR J0437-4715, respectively, that also help us to
constrain the mass-radius plane and consequently the EOS
parameter space [37–43]. On the other hand, the latest
constraint on the low-density part of theEOScomes from the
advancements of the chiral effective field theory (χ-EFT)
calculations [44–48].
We have employed a Bayesian analysis framework,

supplemented by the measurements from the astrophysical
observations to constrain the EOS model parameters and
present the results of the analysis in Sec. II. In Sec. III, we
used the constrained EOS to investigate their effects on
stellar structure under rapid rotation. In Sec. IV, we have
presented an ab initio derivation of the braking index under
the assumption of energy loss through MDR and GWs due
to finite deformation and r-mode oscillation. The analytical
expressions have been later combined to study the
frequency-dependent evolution of the braking index in
context to millisecond pulsars and nascent millisecond
magnetars born from NS-NS mergers or other formation
scenarios. Finally, we summarize our findings of this work
in Sec. V.

II. DESCRIPTION OF NEUTRON STAR MATTER

In this section, we describe the EOS of dense nuclear
matter. We follow the work by Gandolfi et al. [31] to
construct a double polytrope EOS for our purpose. With
this particular form of the function, Gandolfi et al. [31]
could parametrize the results of the ab initio microscopic
calculations using Quantum Monte Carlo methods. We use
this parametrization to create the EOS directly from nuclear
empirical parameters. We summarize the necessary equa-
tions in the following. The energy per particle for the pure
neutron matter (PNM) is expressed as a function of density,

EPNMðρÞ ¼ a

�
ρ

ρ0

�
α

þ b

�
ρ

ρ0

�
β

; ð1Þ

where ρ0 is the nuclear saturation density.
The symmetry energy is defined as EsymðρÞ ¼

EPNMðρÞ − ESNMðρÞ, where ESNMðρÞ is the energy per
particle of the symmetric nuclear matter (SNM).
Then, the slope of symmetry energy becomes LðρÞ ¼
3ρ0∂EsymðρÞ=∂ρ. At saturation, they can be expressed as

J ¼ Esymðρ0Þ ¼ aþ b − ESNM;

Lðρ0Þ ¼ 3ðaαþ bβÞ: ð2Þ

The density dependence of the symmetry energy can be
parametrized by

EsymðρÞ ¼ C

�
ρ

ρ0

�
γ

: ð3Þ

Thus, we get C ¼ aþ b − ESNM from Eq. (2) at ρ ¼ ρ0.
Finally, from the condition P ¼ ρ2 ∂ESNM

∂ρ jρ¼ρ0
, we get

γ ¼ aαþ bβ
aþ b − ESNM

: ð4Þ

Using the relations above, the general expression of the
EOS as a function of baryon number density (ρ) and proton
fraction (x ¼ ρp=ρ, where ρp is the proton density)
becomes

Eðρ; xÞ ¼ EPNMðρÞ þ C

�
ρ

ρ0

�
γ

½ð1 − 2xÞ2 − 1�: ð5Þ

To describe the NS matter, we also need to include the
contribution from the lepton. In a cold NS, the lepton
density is regulated by the β-equilibrium condition,
μn ¼ μp þ μe. Beyond 2ρ0, we construct the EOS using
the piecewise constant speed of sound EOS model [49] up
to the density of 12ρ0. We randomly sample the density
points within this interval of the cs-ρ plane and
the corresponding speed of sound points complying with
the constraints 0 ≤ cs < 1. For the low-density part of the1https://www.atnf.csiro.au/research/pulsar/psrcat/
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EOS, we have used the standard Baym–Pethick–Sutherland
EOS (≲0.001 fm−3) for the outer crust and Negele–
Vautherin EOS (up to 0.08 fm−3) for the inner crust
[50,51]. The crust EOS is smoothly joined with the core
EOS given by Eq. (5).
After setting up our EOS model, we continue to explore

the parameter space of our model using various theoretical,
experimental, and observational constraints within a
Bayesian analysis. We describe briefly the constraints
and their implementation in the following.
First, we consider constraints around saturation density.

The EOS generated within our model must satisfy the
constraints coming from the chiral effective field theory
(χ-EFT) calculations. We used the results from Drischler
et al. [47] to implement the (χ-EFT) constraints for the
EOSs in β-equilibrium in the range ð0.5; 1.1Þρ0. The priors
of our model parameters are given in Table I. The ranges of

ρ0 and ESNM are chosen according to the experimental
knowledge. Another condition is on the calculated values
of Esym and L at saturation. We have imposed the Esym to be
in the range of 25 to 40 MeV and L to be within 30
and 80 MeV.
We have used the mass measurements of massive

pulsars, and combined tidal deformability (Λ̃) from
GW170817 as our observational constraints on the EOS.
In particular, we have used the mass measurement of
J0740þ 6620 as 2.08� 0.07M⊙ reported by [33] as a
Gaussian likelihood,

PðdataMmax
jXÞ ¼ 1

2

�
1þ erf

�
MmaxðXÞ=M⊙ − 2.08

0.07
ffiffiffi
2

p
��

;

ð6Þ

where (X ¼ a; α; b; β; ESNM; ρ0) represents our model
parameters. Then, we applied the improved constraints
on Λ̃ from Abbott et al. [36]. The value of Λ̃ depends
on the mass ratio q ¼ m1=m2 and the chirp mass

(Mchirp ¼ ðm1m2Þ3=5
ðm1þm2Þ1=5), where m1, m2 are the masses of

primary and secondary objects of the binary system,
respectively. The chirp mass has been determined rather
precisely to be Mchirp ¼ 1.186� 0.001M⊙ for
GW170817. We use the publicly available data from
LIGO–Virgo–Kagra (LVK) collaboration2 assuming the
low-spin prior and construct the likelihood as

PðdataLVKjXÞ ¼
Z

dm1

Z
dm2Pðm1; m2jXÞPðdataLVKjm1; m2;Λ1ðm1;XÞ;Λ2ðm2;XÞÞ; ð7Þ

where Pðm1; m2jXÞ is the prior distribution for the com-
ponent masses of the binary. For simplicity, we have chosen
a uniform prior for m1 and m2. We use a Gaussian kernel
density estimator to construct the GW likelihood from the
discrete data. We have fixed the chirp mass to its median
value because of the high precision of the measurement.
Then, we construct binaries corresponding to that chirp
mass by varying m1 and determine the corresponding m2.
For each EOS, we compute the tidal deformabilities
(Λ1, Λ2) for the pairs of (m1, m2), and find the probability
using Eq. (7).
The final likelihood function with all the astrophysical

constraints is simply the product

PðdataastrojXÞ ¼ PðdataMmax
jXÞ × PðdataLVKjXÞ: ð8Þ

Finally, we sample the posterior using a nested sampling
algorithm [52] in the DYNESTY software package [53]. The
posterior distributions of the EOS parameters for nuclear
matter are shown in Fig. 1. We have also included the

derived values for Esym and L at ρ0. We have found
Esymðρ0Þ ¼ 28.95þ3.31

−2.17 MeV and L ¼ 53.28þ6.56
−5.16 MeV at

68% confidence interval (CI). These values are well within
the agreed ranges found in literature [23,29]. This affirms
the robustness of our EOS samples used to study the
rotational properties of pulsars in this work. We have
shown the corresponding EOSs and their mass-radius
curves in Figs. 2 and 3, respectively. We can see from
Fig. 3 that the EOSs generated in our exercise span across a
large range of radii for a 1.4M⊙ star. Therefore, these
curves are able to represent the parameter space of neutron
star matter. Note that, we have not used the data from
NICER measurements in our analysis as we see that our
68% mass-radius curves in Fig. 3 are consistent with 68%
of those sources.

TABLE I. Summary of the prior range used for our EOS model
parameter.

Parameter Prior

α Uð0.2; 2Þ
β Uð−0.5; 5Þ
a (MeV) Uð5; 25Þ
b (MeV) Uð10−4; 8Þ
ESNM (MeV) Uð−18;−14Þ
ρ0 (fm−3) Uð0.14; 0.17Þ

2LVK collaboration, https://dcc.ligo.org/LIGO-P1800115/
public.
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III. ROTATIONAL EFFECTS ON THE
STRUCTURE OF NEUTRON STARS

To study the effect of rotation on the macroscopic
quantities of the star we have used the RNS code3

[54,55]. For every EOS computed in Sec. II, we calculate

the gravitational mass (M), the equatorial radius (Re), the
ratio of the polar to the equatorial radius (Rp=Re), and the
moment of inertia (I) as a function of rotation frequency
(f ¼ Ω=2π, where Ω is the angular velocity of the star),
keeping the baryon mass (Mb) fixed at 2M⊙.
A rapidly rotating star can sustain more mass than a

nonrotating star with the same central density. To obtain the
sequence of the above-mentioned macroscopic quantities

FIG. 1. Shows the posterior distribution of the model parameters along with the symmetry energy at the saturation density (J) and the
slope of symmetry energy at the saturation density (L).

3https://github.com/cgca/rns
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with rotation frequency, we treat central density as the
parameter and search for the frequency which a star of
baryon mass of 2M⊙ can sustain. However, since a low
central density leads to a low-mass star, the frequency
needed to meet theMb ¼ 2M⊙ condition may be more than
the Kepler frequency (defined as the maximum frequency

of rotation that a star can support before mass-shedding)
if the central density is too low. Hence, the RNS code
does not converge. As we increase the central density, the
Mb ¼ 2M⊙ criteria is fulfilled at increasingly lower
frequencies. When the central density is very high, the
condition of Mb ¼ 2M⊙ is achieved at a frequency
(≲200 Hz) that is too low for the RNS code to handle.
Therefore, we identify the densities corresponding to the
highest and the lowest frequencies for which the RNS code
converges. Subsequently, we generate the sequence
between those two densities for all ∼6000 EOSs in an
automated fashion in our pipeline built around the
RNS code.
The rapid rotation generates a large amount of centrifu-

gal force, which leads to the departure from the spherical
shape of the star that is characterized by the ratio of the
polar to the equatorial radius Rp=Re. The dependence of
this ratio on frequency is shown in the bottom left panel
of Fig. 4 for all EOS. Due to the deformation in the shape of
the star, the definition of the radius becomes ambiguous in
such a case. Yet, in many scenarios, for estimating various
physical quantities, the radius of the star is required as
discussed in Sec. IV. Hence, in this work, we define a
frequency-dependent radius by averaging over the circum-
ferential radius of a rotating star given as

R≡ hRðΩÞi ¼
R
2π
0 Rðθ;ΩÞdθR

2π
0 dθ

: ð9Þ

The expression of circumferential radius Rðθ;ΩÞ ¼ Re½1 −
Ω̄2ð0.788 − 1.03xÞ cos2 θ� is taken from the previous work
by AlGendy and Morsink [56], and Suleimanov et al. [57],
where θ is the polar angle, Ω̄ ¼ ΩðR3

e=GMÞ1=2 and
x ¼ GM=c2Re. The EOS and rotation frequency-dependent
average radius of the star is shown in the lower right panel
of Fig. 4, which can be seen to decrease strongly at higher
frequencies (≳850 Hz). Also at the higher frequency, the
Rp can be ∼25% smaller than the Re, therefore our method
of computing a unique value of a radius and attributing a
spherical shape to the star may have some shortcomings
even if it mathematically renders a valid solution. In the
upper left and right panels of Fig. 4 we show the variation
of the gravitational mass and moment of inertia as a
function of the rotation frequency for all EOS. It is evident
from Fig. 4 that all these physical quantities have signifi-
cant frequency dependence and will contribute to the
braking index of the NS which we will discuss in the next
section. We have confined our studies to the rotational
frequency above ≳200 Hz following Hamil et al. [18],
where the frequency dependence of the macroscopic
quantities has been shown to be prominent above
≳200 Hz only.
The high-frequency behavior of the macroscopic quan-

tities observed in Fig. 4 is controlled by the stiffness of the
EOSs. At a given density, a stiffer EOS produces more

FIG. 2. The brown lines indicate the 99% confidence interval of
the constrained EOS corresponding to the posterior distributions
of Fig. 1 and the blue lines indicate the EOS which falls within
the 68% confidence interval of the constrained posterior distri-
bution of the EOS parameters.

FIG. 3. The M-R diagrams for all EOS within the 99% con-
fidence interval of the posterior distribution from Fig. 2 have been
shown in the brown colored lines and the blue lines indicate the
M-R relations corresponding to the 68% confidence interval of
the posterior distribution of the constrained EOS parameters.
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pressure than a softer one and, therefore, can defy gravity
more easily. Hence, if there is no rotation, the stiffer EOS
will make a star of a larger radius and a lower central
density if a certain number of baryons (equivalent to a fixed
baryon mass) are put together. Consequently, the star with
the stiffer EOS will be less bound, resulting in a higher
gravitational mass. Note the gravitational binding energy is
defined asMb −M. This behavior remains even if the stars
rotate. Therefore, the upper curves in M-vs-f, R-vs-f, and
I-vs-f plots in Fig. 4 correspond to stiffer EOSs. With
increasing frequency, the equatorial radii of all the stars
(irrespective of the underlying EOS) grow, making them
less bound and having higher gravitational mass.
Furthermore, since at a given rotational frequency, the star
with the stiffer EOS is less bound than the softer EOS, it
becomes unstable at a lower frequency. In other words, the
Kepler frequency is smaller in the case of stiffer EOSs. It

explains the behavior seen in the M − f plot. The Rp=Re-
vs-f curve captures the dependence of the stellar deforma-
tion on the rotation frequency. It is clear from the above
discussion that for the stiffer EOSs, the equatorial radius
increases much faster with the small change to the rotation
frequency compared to the softer EOSs. Consequently, the
ratio Rp=Re falls faster in the case of stiffer EOSs.
Therefore, the left curves in the Rp=Re-vs-f plot belong
to stiffer EOSs.

IV. BRAKING INDEX

In this section, we present the derivation of the braking
index and its dependence on the spin frequency. Later in
this section, we discuss the results in the context of
millisecond pulsars and newly born millisecond magnetars
in detail.

FIG. 4. This figure shows the variation of four structural quantities of neutron stars as a function of the rotation frequency for all EOS
obtained in Sec. II. The blue lines indicate the relation for all ∼6 K EOS and the purple lines correspond to the solutions of EOS
constructed from the 68% CI of the posterior distribution of parameters shown in Fig. 1. The upper left panel shows the variation of the
gravitational mass as the function of the rotation frequency, the upper right panel shows the variation of the moment of inertia, the lower
left panel shows the variation of the ratio of the polar to equatorial radius, and the lower right panel shows the variation of average radius
of the star as the function of rotation frequency. For every EOS the baryon mass of the star is kept fixed at 2M⊙; further details can be
found in the Sec. III.
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A. Calculation of braking index

Pulsars spin down at the cost of their rotational kinetic
energy. If the spin-down energy Ė through a mechanism is
proportional to −Ωnþ1, the spin-down relation is obtained
as

d
dt

�
1

2
IΩ2

�
¼ IΩΩ̇ ∝ −Ωnþ1 ⇒ Ω̇ ¼ −kΩn; ð10Þ

where k is a constant which depends on various physical
parameters of the neutron stars depending on the mecha-
nism of the emission loss discussed later in this section. The
braking index n depends both on the first and the second
derivative of the spin frequencies as

n ¼ ΩΩ̈
Ω̇2

: ð11Þ

The numeric value of the braking index is the signature of
the mechanism which dominates the spin-down of a pulsar.
The energy loss by the MDR is given as

jĖEMj ¼
2

3c3
μ2Ω4 sin2 α≡ EEMR6Ω4; ð12Þ

where the magnetic moment jμj2 ¼ B2
pR6=4, with the

surface magnetic field strength Bp, stellar radius R, α is
the angle of inclination between the rotation and the
magnetic axis and EEM ¼ B2

p sin2 α=6c3. The correspond-
ing spin-down rate using Eq. (10) leads to

Ω̇MDR ¼ −
2B2

pR6 sin2 α

3Ic3
Ω3 ⇒ −kMDRΩ3; ð13Þ

indicating the MDR leads to braking index 3. However, in
Sec. III we have noticed at higher spin frequency R and I
depend on f making kMDR dependent on f and hence the
braking index. On the other hand, the f dependence of I
will not allow us to arrive at the Eq. (13), as dI=dΩ ≠ 0.
Hence, for a rapidly rotating star, the modification to the
spin-down expression is essential.
The expression given in Eq. (12) is valid if the external

magnetic field is purely dipole. However, studies show the
presence of complex structures of higher order magnetic
multipole near the stellar surface [58]. But, at a larger
distance from the surface, the approximation of the dipolar
field line is still valid. Therefore in this work, we have
assumed that the pulsar magnetosphere is purely dipolar.
Apart from the geometrical consideration of the magnetic
field, we also ignore any possible evolution of the dipolar
field with time. Otherwise, it would contribute by an
amount 2ΩḂ=Ω̇B to the braking index. Similarly, the
evolution of α would allow the departure of the braking
index by an amount 4Ωα̇=Ω̇ tan α, which has been also
ignored for the current study. As we do not consider any

evolution in B and α, we use them as a parameter in
our model.
A long-lived, nonaxisymmetric deformation of neutron

stars would result in energy loss via the continuous GW
(details can be found in a recent review by Gittins [59]).
These deformations are referred to as mountains and
generate a certain amount of ellipticity (ϵ), whose magni-
tude is still uncertain, depending on the process leading to
the formation of the mountains and the crustal EOS.
However, a typical value of maximum ellipticity that a
neutron star crust can sustain is ∼10−6 [60–62]. The strong
magnetic field can lead to the deformation of a star
generating ϵ ∼ 10−12 and the misalignment between the
magnetic axis and the rotational axis leads to the GW
emission [63–65]. Similarly, mountains are generated from
the accretion process, so they can be either thermal
mountains [66] or magnetic mountains. The thermal
mountains produced from the temperature-sensitive nuclear
reactions on the surface of the neutron stars survive for a
much shorter duration ∼0.2 yrs (this a typical value for
more details refer to Gittins [59] and the references therein)
between the accretion-mediated outburst phase of neutron
stars. However, the magnetic field-supported mountains of
the accreted material may survive over much longer time
scales ≳108 yr [67] giving rise to ϵ ∼ 10−7 to 10−8. This
implies that the mountain formed at the end of the accretion
phase (even after the companion’s disappearance) can
survive for a decent fraction of a neutron star’s lifetime.
The amount of energy loss via the GW emission is
proportional to the sixth power of the spin frequency
and the ellipticity of the star, and is given as

jĖQ
GWj ¼

32

5

G
c5

I2ϵ2Ω6 ≡ EQI2ϵ2Ω6; ð14Þ

where EQ ¼ 32G=5c5. The corresponding spin-down rate,
following the Eq. (10), is

Ω̇Q
GW ¼ −EQIϵ2Ω5 ⇒¼ −kQGWΩ5; ð15Þ

indicating the braking index in this case is 5. However, a
similar argument like in the case of MDR spin-down rate
given in Eq. (13) is valid here, where rotational effects on I
would not lead to the expression we have arrived
at Eq. (15).
The all-sky search for the continuous gravitational waves

did not lead to the discovery of a signal but has enabled to
establish an upper limit of ϵ≲ 10−6 (depending on the
distance and the frequency) [68]. Hence, in our case, we use
ϵ ¼ 10−7 which is an order of magnitude lower than the
established upper limit.
The r-modes are quasitoroidal oscillations in neutron

stars where the coriolis force acts as the restoring
force [69]. Counterrotating r-modes can become unstable
to gravitational radiation reaction via the Chandrasekhar–
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Friedman–Schutz (CFS) mechanism [70,71]. It has been
shown that in the absence of any fluid dissipation, CFS
instability can arise at any rotational frequency of the star
[72–74]. In realistic neutron stars, however, several damp-
ing mechanisms are present, due to the bulk and shear
viscosities, which lead to the r-modes amplitude achieving
a saturation value (αS), as shown in Owen et al. [69]. The
microscopic origin of the damping mechanisms relates to
the nature and the temperature of the neutron star matter. In
the angular velocity-temperature (Ω − T) plane, the inter-
play between the gravitational wave emission timescale and
viscous dissipation timescales curve out an instability
region. When the star resides within the unstable region,
the gravitational wave emission contributes significantly to
the rotational energy loss becoming another mechanism for
the spin-down of the star. The frequency of the emitted GW
is 4=3 the rotation frequency of the star [3]. Considering
previous studies, the r-mode saturation amplitude can attain
a value between 10−4 to 10−1. For these values of αS, the
energy loss due to r-mode is given by [69,75]

jĖR
GWj ¼

�
4

3

�
8 4πG
25c7

α2SM
2R6Ω8J 2 ≡ ERα

2
SM

2R6Ω8J 2;

ð16Þ

where ER ¼ ð4
3
Þ8 4πG

25c7, and J is given by

J ¼ 1

MR4

Z
R

0

ρðrÞr6dr: ð17Þ

The Eq. (10) gives the spin-down rate as

Ω̇R
GW ¼ −ER

α2SM
2R6J 2

I
Ω7; ð18Þ

indicating the spin-down due to r-mode leads to a braking
index of 7. The above Eq. (18) is under the approximation
of the no rotational effect on the stellar structure. However,
we have shown that for rapid rotation there exists signifi-
cant structural evolution, hence a revision to the above
expressions is important.
When all the above three mechanisms of energy loss are

active, the rotational energy loss is given by

d
dt

�
1

2
IΩ2

�
¼ −ĖEM − ĖQ

GW − ĖR
GW; ð19Þ

where ĖEM, Ė
Q
GW, and Ė

R
GW are the rate of loss of energy via

the electromagnetic radiation, gravitational quadrupolar
radiation, and the r-mode. The relation between the spin-
down rate and the other macroscopic properties of the
neutron star’s interior and magnetosphere can be obtained
by expanding the left-hand side derivative of Eq. (19),
where we consider a nonzero time evolution of the moment
of inertia,

İþ2Ω̇I¼−2EEMR6Ω3−2EQI2ϵ2Ω5−2ERα
2
SM

2R6Ω7J 2:

ð20Þ

In Eq. (20), we use the chain rule to write İ ¼ dI
dΩ

dΩ
dt ¼ I0Ω̇

and simply further the equation to obtain Ω̇ as

Ω̇¼−
2EEMR6Ω3þ2EQI2ϵ2Ω5þ2ERα

2
SM

2R6Ω7J 2

I0Ωþ2I
: ð21Þ

Similarly by taking the derivative of Eq. (20) and applying
the chain rule to write ̈I ¼ I00Ω̇2 þ I0Ω̈, we obtain

Ω̈ ¼ ½−6EEMΩ2Ω̇R5ð2R0Ωþ RÞ − 2EQIϵΩ̇Ω4ð2I0ϵΩþ 5IϵÞ − 2ERα
2
SMR5Ω6Ω̇J

× ð2M0RΩþ 6MR0Ωþ 2MRΩJ 0 þ 7MRÞ − 3I0Ω̇2 − I00Ω̇2Ω�=½2I þ I0Ω�: ð22Þ

All the quantities with ( 0) denote the derivative with respect to the angular velocity Ω. Combining the Ω̇ and Ω̈ from the
expressions in the given in Eqs. (21) and (22), we obtain the braking index using the relation (11) as a function of the spin
angular velocity Ω.

nðΩÞ ¼ nEM þ nQGW þ nRGW þ nI; where

nEM ¼ 6EEMR5Ω3ð2R0Ωþ RÞ
2EEMR6Ω3 þ 2EQI2ϵ2Ω5 þ 2ERα

2
SM

2R6Ω7J 2
;

nQGW ¼ 2EQIΩ5ϵ2ð2I0Ωþ 5IÞ
2EEMR6Ω3 þ 2EQI2ϵ2Ω5 þ 2ERα

2
SM

2R6Ω7J 2
;

nRGW ¼ 2ERα
2
SR

5MΩ7J ×
ð2M0RΩJ þ 6MR0ΩJ þ 2MRJ 0Ωþ 7MRJ Þ
2EEMR6Ω3 þ 2EQI2ϵ2Ω5 þ 2ERα

2
SM

2R6Ω7J 2
;

nI ¼ −
3I0Ωþ I00Ω2

2I þ I0Ω
: ð23Þ
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The expression of nðΩÞ above shows the dependence of
the braking index on the spin frequency, which is further
dependent on the EOS through the frequency derivative of
the macroscopic quantities such as M, R, and I. The term
nEM is the contribution of MDR loss, nQGW is the contri-
bution from GW radiation due to long-lived deformations,
and nRGW is the contribution from the emission loss via
r-mode oscillations. The term nI depends purely on the
moment of inertia and its higher-order derivatives, which
has been previously derived in Glendenning et al. [76]. The
quantities EEM; ϵ, and αS can be considered as switches
which by setting to zero help to analyze the braking index
in the absence of a particular channel of energy loss. For
example, setting αS ¼ 0 will help in understanding the
evolution of the braking index purely due to the electric
dipolar emission loss and the GW emission loss due to
finite ϵ. In the limit of slow rotation where all the
derivatives with respect to Ω tend to zero. By setting ϵ
and αS to zero we obtain n ¼ 3; by setting EEM and αS ¼ 0,
we obtain n ¼ 5; and finally by setting EEM ¼ ϵ ¼ 0, we
obtain n ¼ 7, which are in agreement with the limiting
cases known in the literature.

B. Effect of rapid rotation on nEM, nQGW, and nRGW

In Sec. IVA, we have shown how the expressions in
Eq. (23) reduce to the known values of the braking index
when the rotational effects are ignored by setting all
derivatives with respect to Ω to zero. However, when the
effect of rotation is taken into account, the departure of
nEM; n

Q
GW, and n

R
GW from 3, 5, and 7 occurs, which depends

on the EOS through the variation of the macroscopic
quantities and their derivatives as the function of the Ω.
If the energy loss is considered through the magnetic

dipolar radiation only, then

nEM ¼ 3

�
1þ 2R0Ω

R

�
þ nI; ð24Þ

which can be obtained by setting ϵ and αS ¼ 0. Similarly
by assuming the loss of energy is via the GWemission due
to the nonaxisymmetric long-lived deformation (that is by
setting Bp ¼ αS ¼ 0) the braking index is given as

nQGW ¼ 5

�
1þ 2I0Ω

5I

�
þ nI: ð25Þ

Likewise, for the emission to happen purely from the r-
mode oscillation in the absence of the electromagnetic
dipolar radiation and the GW emission from deformations
the braking index takes the form

nRGW ¼ 7

�
1þ 2M0Ω

7M
þ 6R0Ω

7R
þ 2J 0Ω

7J

�
þ nI; ð26Þ

which is obtained by setting Bp ¼ ϵ ¼ 0. In Fig. 5 we have
shown the dependence of these three braking indices
nEM; n

Q
GW, and nRGW separately as a function of f, for three

different EOS. The solid yellow line corresponds to one of
the EOS described in Sec. II with the highest weight (the
parameters of the EOS are: α ¼ 0.699, β ¼ 2.151,
a ¼ 9.423 MeV, b ¼ 5.662 MeV, ρ0 ¼ 0.152 fm−3, and
ESNM ¼ −17.934 MeV), the blue dashed line is for the
density-dependent relativistic mean field (RMF) EOS,
DDME2 [77], and another RMF EOS with nonlinear
meson field couplings, S271v6 [78] is shown by the black
solid line. These phenomenological EOSs are chosen as
examples because they have been shown to satisfy most of
the current constraints [24]. The departure of nEM; n

Q
GW, and

nRGW from the known constant values of 3, 5, and 7,
respectively, is due to the rotational effect and independent
of the magnitude of the magnetic field, deformation, and
the r-mode saturation amplitude. This implies that if an NS
loses energy purely through any of these mechanisms, the
deviation of the braking index is due only to structural
changes.
The response to rapid rotation depends on the stiffness of

the EOS, which is different for different EOSs (refer to
Sec. III for detailed discussion), giving rise to different
braking index curves. However, the differences in nEM and
nRGW for different EOSs (at least for the three representative
ones shown in Fig. 5) are negligible at frequencies
≲550 Hz. Both nEM and nRGW systematically decrease with
increasing spin frequency, which indicates that at frequen-
cies ≳200 Hz the contribution of nI is significant. The
importance of nI can be argued from Fig. 4, where R is
almost constant at f ∼ 200–750 Hz, indicating R0 ∼ 0,
which would lead to nEM ≃ 3 of Eq. (24) in this frequency
range. Hence, the deviation seen in nEM from 3 in Fig. 5 can
be attributed to nI , which becomes increasingly negative
with frequency (see bottom right panel of Fig. 5). A similar
trend in the variation of nRGW can be seen in Fig. 5, which is
also attributed to nI . The finite but small positive value of
M0=M and the finite but small negative value of J 0=J lead
to a slope different from nEM in the initial fall of nRGW from
the value 7.
The dependence of nQGW on spin frequency comes only

from I and its derivative, which changes appreciably even
at f ≳ 200 Hz, making nQGW always > 5 [the first term of
Eq. (25)] and an increasing function of f in the absence of
nI . Whereas nI is always < 0, and the nature of its fall
depends on the EOS. Therefore, there may exist a range of
frequencies for which nQGW > 5 in the presence of the nI
term, as shown in Fig. 5. However, unlike nEM and nRGW (at
least for these EOSs), we find distinguishable EOS-depen-
dent variation in nQGW even at frequencies ∼250–300 Hz.
But as the spin frequency increases, the variation of all
three braking indices for different EOS can be identified
clearly at the f ∼ 716 Hz, the spin frequency of PSR
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J1748 − 2446ad (maximum spin frequency of a pulsar
known to date), an eclipsing binary millisecond pulsar in
the globular cluster Terzan 5 [7]. However, at much larger
frequencies (f ≳ 850 Hz), we find the large change in
radius (see Fig. 5), indicating the size decreases with
frequency, which could be an artifact because of forceful
fitting of a sphere to a largely deformed star. Hence, the
results beyond f ≳ 850 Hz must be interpreted cautiously.

C. Effect of Bp, ϵ, and αS on the braking index

In the previous Sec. IV B, we have discussed the rota-
tional effect on all three separate components of the braking
index individually in the absence of the other two channels
of energy loss. There we found that the departure from the
expected value of the braking index is purely due to
structural change. However, that is not the case when all
three energy loss mechanisms are present simultaneously.
Rather the variation depends on the strength of the source
of energy loss, that is, Bp; ϵ; α, and αS. In this section, we
present the result of rotational dependence of braking index
taking all three energy loss channels into account for the
same set of three representative EOSs used in Sec. IV B.

We further investigate the variation in the braking index for
various physically motivated combinations of parameters
of Bp; ϵ, and αS. The results are shown in Fig. 6, where the
green color indicates the results for the EOS obtained from
our agnostic EOS model (see Sec. II for details). The same
sample EOS has been used in Sec. IV B and has been
shown with the solid yellow line in Fig. 5. The blue and red
colors correspond to S271v6 and DDME2 EOS, and
different line style indicates the different combinations
of Bp; ϵ, and αS.
The upper left panel of Fig. 6 shows the variation of n for

neutron stars with typical values of Bp ¼ 108 G, ϵ ¼ 10−7

and for two values of αS ¼ 10−1 and 10−4 shown using the
solid and dashed line respectively. The justification for
using such values of ϵ and αS has been presented in Sec. IV
A. To arrive at the typical value of Bp, we find the median
value of Bp of pulsars with f > 200 Hz from the ATNF
pulsar catalogue [20]. The overlap of the dashed and solid
lines for all the EOS implies that the braking index is
independent of the value of αS in this case. The braking
index of ∼7 around f ∼ 200–400 Hz indicates that it is
mostly dominated by the GW emission due to r-mode

FIG. 5. This figure shows the effect of rotation on the braking index of pulsars (see Sec. III for detailed discussions and references).
The upper left panel shows the frequency dependence of the magnetic braking index, the upper right panel shows the frequency
dependence of the braking index if the energy loss happens only through the GW emission in the presence of long-lived deformations,
the lower left panel shows the frequency dependence on the braking index due r-mode instability, and the lower right panel shows the
variation of nI as a function of rotation frequency. All these curves are for stars with a baryon mass of 2M⊙. The solid yellow line
represents one of the EOSs from our sample (see Sec. IV B for the details), the blue dashed line indicates the DDME2 EOS, and the
black solid line represents the S271v6 EOS. The vertical magenta line corresponds to f ¼ 716 Hz, the maximum spin frequency of a
pulsar discovered to date.
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instability. The MDR loss and GW radiation from the mass
quadrupole moment do not contribute significantly towards
the braking index. However, the departure from the value of
7 is caused by nI and other frequency-dependent structural
quantities (as discussed in Sec. IV B), which makes n < 7.
In summary, this figure suggests that if the r-mode
instability is generated in a typical millisecond pulsar
(which is dependent on the spin frequency and the
redshifted stellar temperature; for details see Kraav et al.
[79]) then the spin-down would be dominated by the GW
radiation through the r-mode instability, irrespective of the
value of αS. At higher frequency f ∼ 716 Hz the contri-
bution of nI and rotational effects contributing to nRGW lead
to 6 < n < 7. At a much higher frequency of f ≳ 850 Hz,
the rapid decline in braking index is due to a sharp fall in
the radius as discussed previously in Secs. IV B and III.
In the upper right panel of Fig. 6, we show the braking

index as a function of frequency in millisecond pulsars in

the absence of GW radiation through r-mode instability. We
use Bp ¼ 108 G, and two separate values of ϵ ¼ 10−7 and
10−10 shown in the solid and dashed line respectively. Both
lines overlap with braking index ∼3, the deviation from
n ¼ 3 is due to the rotational effect. It indicates that the
emission loss through GW is insignificant even with a
deformation of ϵ ¼ 10−7. Our findings are consistent with
the current observation limit [68]. We find that a large
deformation which can generate ϵ≳ 10−3 can result in the
emission of GW large enough to impact the rotational
evolution of the neutron stars. However, such a high
magnitude of ellipticity is unlikely for normal millisecond
pulsars [80].
The lower left panel of Fig. 6 shows the effect of rotation

on the braking index if a neutron star has an ultrastrong
magnetic field Bp ¼ 1015 G, making them fall in the class
of magnetars. The primary motivation for using such a
strong magnetic field is to study the frequency dependence

FIG. 6. This figure captures the dependence of braking index on the magnetic field strength Bp, the ellipticity due to long-lived
deformation ϵ, and the r-mode saturation amplitude αS as a function of rotation frequency. We use a constant inclination angle α ¼ 45°.
The variation has been studied using three representative EOSs: the red lines indicate DDME2 EOS, the blue lines indicate S271v6 EOS,
and the green lines indicate an EOS from our sample (see Sec. IV C for details). The results for different combinations of Bp; ϵ and αS
have been shown with different line styles. Refer to Sec. IV C for detailed discussion and implications.
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of the braking index of a newly born millisecond magnetar
[81], which may form due to the accretion-induced collapse
of white dwarfs [82] or a merger of two neutron
stars [83,84]. The formation of these objects is believed
to manifest as the gamma ray bursts (GRBs) [85]. From the
figure we observe that if αS ¼ 10−4 and ϵ ¼ 10−7 at lower
frequency f ∼ 200–600 Hz the braking index is ∼3,
indicating the magnetic dipolar radiation dominates the
spin-down rate of the star. At higher frequencies,
f ≳ 600 Hz, the departure from n ∼ 3 is due to the
rotational effects and is sensitive to the EOS. However,
when the saturation amplitude of the r-mode is large—that
is, αS ¼ 10−1—we find at low-rotation frequency
(f ∼ 200 Hz) the braking index is ∼3, but finally rises
to ∼6 close to f ¼ 716 Hz. The increase in the braking
index from ∼3.5 to ∼6 is the manifestation of Ω8

dependence on the energy loss via the r-mode. The braking
index cannot reach the value of 7 because of the rotational
effects where nI is also dominant along with the contri-
bution from R0=R and J 0=J , where all of them are negative
quantities. The behavior of the braking index found here
illustrates the importance of incorporating the rotational
effects to interpret the spin-down evolution of the remnants
produced from the astrophysical transient events discussed
above. For example, if the rotational effect is not consid-
ered, one can misinterpret a measurement of n ¼ 5 for a
magnetar as the spin-down dominated by the GWemission
due to a finite mass quadrupole moment.
We have further investigated the frequency dependence

of the braking index in the parlance of a newborn
millisecond magnetar with a much higher value of
ellipticity (ϵ ¼ 10−3), based on the measurement of Xie
et al. [86]. The results are shown in the lower right panel of
Fig. 6. We use the same color convention of EOS
mentioned earlier in the section. The dashed line style
represents the braking index with Bp ¼ 1015 G, ϵ ¼ 10−3,
and αS ¼ 10−1. This is the combination with the highest
magnetic field, ellipticity, and r-mode saturation amplitude.
We find that the braking index depends on the rotation
frequency exactly in the same way as the set of values
Bp ¼ 1015 G, ϵ ¼ 10−7, and αS ¼ 10−1 (shown by the
solid lines in lower left panel of Fig. 6). It implies that even
with 4 orders of magnitude larger ellipticity, the frequency
dependence of braking index is still dominated by the
r-mode instability if the saturation amplitude is 10−1.
Whereas, if the αS ≤ 10−4, we find the braking index is
dominated by the magnetic dipolar radiation, which is
shown by the solid line with the Bp ¼ 1015 G, ϵ ¼ 10−3,
and αS ¼ 10−4. The dashed-dotted line represents the
variation of braking index with frequency in the absence
of r-mode but large deformation (ϵ ¼ 10−3) and magnetic
field (Bp ¼ 1015 G). The plot again suggests that the
magnetic dipole radiation is the dominant mode of energy
loss from the neutron star.

D. EOS uncertainties and the braking index of
millisecond magnetar

The long and short GRBs are observed to show an x-ray
plateau phase after the prompt emission, which lasts for a
few tens to thousands of seconds, indicating an ongoing
energy injection from the central engine [83,84,86–89].
There exists debate on the nature of the central engine, but a
millisecond magnetar is one of the plausible models often
used in the literature. The spin-down of the magnetar is
believed to power the x-ray plateau region of the light
curve [90,91], which is modeled to obtain the braking
index [86,92]. We have shown above that the braking index
of a neutron star is affected by its structural changes due to
rotation, especially at higher frequencies. Given the rem-
nant is a newly born millisecond magnetar with spin period
P ∼ 1–3 ms [86], its braking index is expected to be
different from that of a slowly rotating neutron star.
However, the response of a neutron star to rapid rotation
also depends on the underlying EOS. To explore the
uncertainty in the braking index due to the EOS, we next
calculate it at different frequencies for all the EOSs
constructed in Sec. II. We have used Eq. (23), supple-
mented by all the frequency-dependent profiles of M, I, R,
and J (as discussed in Sec. III and shown in Fig. 4) and
their derivatives. Here we set Bp ¼ 1015 G, ϵ ¼ 10−7, and
αS ¼ 10−4, where the values of ϵ and αS are conservative
estimates based on our results of Sec. IV C. The result is
shown in Fig. 7 for an NS of 2M⊙ baryon mass. The 90%
CI and the 68% CI in the braking index as a function of
frequency are shown by the blue and red bands, respec-
tively, which have been computed from the weights on the
EOS parameters obtained from the Bayesian analysis in
Sec. II. The figure shows that the range of the braking index
gets wider as the frequency increases. It happens because
the structural changes of a neutron star strongly depend on
the EOS due to rotation.
While the band of uncertainty obtained in the braking

index captures the uncertainty due to the EOS, uncertainty
may arise due to the choice of the baryon mass of the star as
well. Therefore, we calculate the braking indices for stars
with baryon masses 1.6, 2.0, 2.4, and 2.8M⊙ using the
same sample EOS used above in Sec. IV B. The results are
shown in Fig. 7 by curves of different colors and line styles
as described in the caption. We find that the braking index
for a massive star falls less rapidly with frequency than a
lower-mass star. As a result, the heavier star has a larger
braking index at a given frequency than a lighter one. A
similar mass dependence is reflected in nI. This behavior
implies if a massive millisecond magnetar is born from
some astrophysical events, it will spin down faster in
comparison to a millisecond magnetar born lighter. It is
also interesting to note that the uncertainty in the braking
index from baryon mass completely masks the uncertainty
from the EOS in Fig. 7. Therefore, knowing the EOS and
rotation frequency is not enough to infer the braking index
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of a pulsar. We also need to know its gravitational mass.
Please note that one can obtain the baryon mass from the
gravitational mass by assuming an EOS if the rotation
frequency is known. In other words, knowledge of both the
gravitational mass and the braking index of a pulsar is
necessary to constrain the EOS. Similar conclusions are
expected for other combinations of Bp, ϵ, and αS.
Immediately after the birth of a millisecond magnetar,

the object undergoes rapid spin-down, resulting in a
significant and time-dependent variation in the braking
index. Understanding how the progenitor baryon mass,
uncertainties in the EOS, and spin-dependent spin-down
evolution influence the energy injection mechanism and the
resulting GRB light curve morphology requires a compre-
hensive and self-consistent numerical treatment. Such an
analysis is beyond the scope of the present work.

V. CONCLUSION

In this paper, we have investigated the effect of stellar
rotation on the braking index and its dependence on the
EOS and baryon mass. We have generated a large number
of EOSs by employing a semiagnostic model and con-
strained them using the latest astrophysical observations
from the gravitational and radio wave bands within a
Bayesian framework. Our constrained parameter space is
also consistent with the observational findings of neutron
star’s mass and radius from x-ray bands. We then use these

constrained EOSs to study the effect on the macroscopic
quantities of rapidly rotating neutron stars like mass, radius,
moment of inertia, and the ratio of polar to equatorial
radius. Our analysis shows neutron stars with stiffer EOS
experience larger deformations in the shape at a given
frequency, in comparison to the softer EOS. Consequently,
neutron stars with stiffer EOS have smaller Kepler
frequencies.
Next, we study the effect of rotation on the braking index

of neutron stars. We present the first calculation of braking
index in the presence of the r-mode instability jointly with
the other braking mechanism like MDR and GWs due to
nonaxisymmetric deformations, and incorporate the rota-
tional effect. We have shown that the rotation of the star can
impact its braking index significantly. For example, the
rotational effects make the braking index smaller than 3 in
the case of magnetic dipole radiation when the spin
frequency ≳200 Hz. However, the low braking index in
normal pulsars has been explained through various other
mechanisms, such as the evolution of magnetic inclination
angle, which has not been considered here. Similarly, we
have shown that if the neutron stars spin-down is purely due
to GW radiation from nonasymmetric deformations or
r-mode oscillations, rapid rotation leads to the significant
departure of braking index from their classical values of 5
and 7, respectively.
We further explore the dependence of the braking index

on the rotation frequency for various physically motivated

FIG. 7. Left: braking index as a function of rotation frequency assuming a star of 2M⊙ baryon mass. The blue and red bands show the
90% and 68% CIs of the braking index, respectively, originating from the uncertainty in the EOS. The individual curves correspond to
different baryon masses but for the same sample EOS used in Fig. 5. The blue dashed-circled line is for 1.6M⊙ baryon mass, the dashed
diamond corresponds to 2M⊙ baryon mass, the black dashed-dotted line is for 2.4M⊙ baryon mass, and the green star dashed line
corresponds to 2.8M⊙ baryon mass. Right: nI as a function of spin frequency, the color scheme is the same as the left panel. Here we set
Bp ¼ 1015 G, ϵ ¼ 10−7, and αS ¼ 10−4.
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combinations of surface magnetic field strength, ellipticity
of the star, and the amplitude of r-mode oscillations. We
find if there is r-mode instability generated in a typical
millisecond pulsar with αS between 10−4–10−1, then
angular momentum loss through GW r-mode instability
will dominate the spin-down of the pulsar. Whereas,
extremely large deformation of ϵ≳ 10−3 is required for
the spin-down of a typical millisecond pulsar to be
dominated by GW emission due to time-dependent mass
quadrupolar moment, which has been ruled out under
various physical conditions. Our analysis shows that if
the ϵ≲ 10−7, the spin-down is dominated by the magnetic
dipole radiation in the absence of r-mode instability, which
is consistent with the current limit of the GWobservations.
We extended our study in the light of millisecond

magnetars, which are believed to be born from NS-NS
mergers, core collapse of a massive star, or accretion-
induced collapse of a white dwarf. The spin-down energy is
believed to power the x-ray plateau phase of GRBs. These
millisecond magnetars can have large magnetic field
strength ∼1015 G. We find that at large spin-frequencies
≳600 Hz, the presence of large amplitude r-mode oscil-
lations dominates the spin-down rate. However, the effect
of rapid rotation suppresses the braking index closer to 6
instead of 7. But the impact of nonaxisymmetric deforma-
tion on the braking index is less pronounced unless
ϵ > 10−3. However, if the birth spin frequency is
low ∼200 Hz or r-mode amplitude is less than 10−1,
spin-down is always dominated by the magnetic dipole
radiation.
We have used the constrained EOS to compute the

permissible range of the braking index as a function of the
rotational frequency. The width of the range of the braking
index increases with rotation frequency, indicating a wide
range of EOS-dependent structural change of neutron stars
in response to large centrifugal force. We find a millisecond
magnetar with the magnetic field strength 1015 G, defor-
mation ϵ ¼ 10−7, and r-mode amplitude αS ¼ 10−4 has
braking index ∼3 at low frequency and n < 3 at higher

frequency4 as shown in Fig. 7. We have further investigated
the effect of baryon mass on the spin frequency dependent
braking index and found that massive stars have a larger
braking index compared to the star with lower baryon mass
at a given spin frequency. We find there exists a degeneracy
between the uncertainty due to choice of baryon mass and
the uncertainty in the EOS. This work provides a frame-
work for future rigorous analysis for modeling GRB light
curves.
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