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Cosmic-ray (CR) streaming instability (CRSI) is believed to play an important role in CR transport and
CR feedback to galaxies. It drives the growth of magnetohydrodynamic (MHD) waves that scatter CRs, and
leads to energy/momentum exchange between CRs and interstellar medium. Despite extensive research on
CRSI, its dependence on the thermodynamic state of the gas and its multidimensional effects have not been
systematically studied. In this study, we derive the dispersion relation of the CRSI for three types of MHD
waves including their dependence on propagation direction and plasma β (the ratio of thermal pressure to
magnetic pressure). We verify the analytical dispersion relation with one-dimensional and two-dimensional
magnetohydrodynamic particle-in-cell simulations. Furthermore, we use 2D simulations to investigate the
role of obliqueMHDwaves in scattering CRs, and find that these waves are important in helping low-energy
particles overcome the 90-degree pitch angle barrier. While magnetosonic waves tend to be damped by
transit time damping under typical conditions, oblique Alfvén waves likely play an important role in low-β
plasmas.

DOI: 10.1103/mzkz-z24p

I. INTRODUCTION

Cosmic rays (CRs) are (trans-)relativistic high-energy
charged particles. In the Galaxy, the dominant CR pop-
ulation is ∼GeV protons with a number density of nCR ∼
1 × 10−9 cm−3 [1]. For comparison, the number density of
background ions in the interstellar medium (ISM) is
ni ∼ 1 cm−3. Despite the low number density, the energy
density of CRs is significant, measuring around
1 eV cm−3, which is comparable to the energy density
of gases, magnetic fields, and turbulence in the ISM [2].
Therefore, CRs can play an important role in the dynami-
cal processes of galaxy formation and evolution (known as
CR feedback). In addition to providing pressure support
against gravity, CRs are well known to be able to drive
galactic winds [e.g., [3–7] ], and also serve as a crucial
source of ionization and heating in dense regions of the
ISM [1,8].
Measurements of CR composition reveal that ∼GeV CRs

reside in the Galaxy for 1–2 × 107 years, which is much
longer than the light crossing time of the Galaxy, implying

that CRs are efficiently confined [9]. The confinement is
attributed to scattering on magnetic fluctuations. The
scattering of high-energy CRs [above a few hundred
GeV; [10] ] is likely dominated by external turbulence
[e.g., [11–13] ]. For ∼GeV CRs, these fluctuations are
widely believed to be self-generated magnetohydrodynamic
(MHD) waves. The physical mechanism underlying this
process is the gyroresonant cosmic-ray streaming instability
(CRSI). When the bulk drift speed of the CRs exceeds the
phase velocity of MHD waves, the free energy stored in CR
streaming can be transferred to the background gas through
resonant interactions between the gyrating CRs and the
MHD waves, thus driving their growth [14–18].1 By
enabling energy and momentum exchange between CRs
and the ISM gas, the CRSI is believed to play a crucial role
in CR feedback (e.g., Ref. [20]).
The CRSI has been mostly studied as a 1D instability

which excites parallel-propagating Alfvén waves of both
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1We note that in the limit of extremely strong CR streaming,
the streaming CRs leads to a strong CR current that substantially
enhances the right-handed Alfvén mode, whose dominance is
known as the Bell instability [19] and is nonresonant (current-
driven) in nature. In this work, we do not consider this regime.
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polarizations along the direction of CR streaming [e.g.,
[21,22] ]. The growth rates for parallel-propagating modes
are fully characterized by the CR distribution function and
the Alfvén speed. However, the role of oblique modes have
not been systematically investigated. These modes not
only include the Alfvén waves, but also the fast and slow
magnetosonic waves, which can also resonantly interact
with the CR particles under certain conditions. The
interaction of the CRs with oblique MHD waves would
enable additional wave-particle coupling, potentially alter
our understandings of CR feedback. Moreover, the incor-
poration of the fast and slow modes introduces another
parameter, the sound speed, into the problem, which can be
characterized by plasma β (ratio of gas to magnetic
pressure).
Early studies by [14,23] already showed the full

dispersion relation of waves in the general propagation
direction, indicating that the CRSI can be generated for both
Alfvén and fast magnetosonic waves over a broad range of
wave obliquities. The resonant scattering of particles by a
given distribution of waves, including oblique ones, was
examined in [24]. However, these analyses were restricted
to the cold plasma limit. While [25] incorporated finite
sound speed and discussed all MHD modes, the focus was
primarily on the slow mode in a low-β condition. On the
other hand, [21] considered the high-β limit, but only
focused on waves propagating parallel to the background
magnetic field. The lack of theoretical investigation of
oblique modes in a general plasma-β condition is particu-
larly limiting given that the plasmas in the ISM and
circumgalactic medium (CGM) are multiphase in nature,
encompassing a wide range of physical conditions (e.g., β
values) across and beyond the Galaxy [2,26]. Therefore, the
oblique CRSI could potentially operate in different ways in
different environments. In this work, our first goal is to
derive and systematically study the linear dispersion relation
of the CRSI in the most general case (general β and oblique
propagation), filling in a major gap in the literature.
In recent years, it has become possible to directly

simulate the CRSI to not only verify the linear theory
but also study the subsequent evolution of both particles and
waves [27,28]. The problem is difficult for standard particle-
in-cell (PIC) approaches, as the requirement to resolve the
background plasma scale leaves substantial scale separation
to accommodate the CRs, and simulations typically adopt
relatively extreme parameters with δ-function-type CR
distribution functions [28,29]. By treating electrons as fluid,
the hybrid code partially alleviates the scale separation
problem [e.g., [30,31] ]. The issue of scale separation is
largely overcome thanks to the use of magnetohydrody-
namic particle-in-cell (MHD-PIC) method [32]: by treating
the background plasma as a fluid described by MHD, one
can better focus on the dynamics at CR-gyroradius scale.
When supplemented by the δf weighting scheme, one can
further suppress Poisson noise, allowing for the accurate

reproduction of CRSI growth rates over a broad range of
wavelengths [27]. This opens the avenue to incorporate
more physics [e.g., [33] ] and to faithfully follow its
subsequent evolution [e.g., [34,35] ].
In this paper, following the derivation of the most general

dispersion relation of CRSI, we further verify the analytical
results using one-dimensional and two-dimensional MHD-
PIC simulations. In particular, our 2D simulations are the
first of this type, allowing us to follow the subsequent
quasilinear evolution of CR particles with a full spectrum of
waves. While CRs are expected to get isotropized over time,
there is the well-known 90-degree pitch angle barrier where
quasilinear theory (QLT) fails (as resonant wavelength goes
to zero). The presence of oblique waves leads to the
formation of weakly oblique discontinuity structures that
we find to play an important role in helping CR particles
cross the 90-degree barrier, especially for low-energy CRs.
This paper is organized as follows. In Sec. II, we derive

the dispersion relation for CRSI under a general plasma β.
A more in-depth analysis of the underlying physics is
presented in Sec. III. We describe the setup of 1D and 2D
simulations in Sec. IV and present the simulation results in
Sec. V. We conclude with further discussions in Sec. VI.
Additional derivations and explanations are provided in the
Appendixes.

II. FORMULATION AND DERIVATIONS

In this section, we present the general form of the
growth rates of three MHD wave modes with basic
derivations. The results are obtained in the nCR=ni ≪ 1
limit (see Appendix A for a more general result). We
assume that the CRs and the background ions have the
same composition in this paper, but this can be generalized
easily. In the nCR=ni ≪ 1 limit, eigenmodes of the system
are ordinary MHD waves with slight modifications: There
is an additional imaginary part in the frequency of the
waves,

ωðkÞ ¼ ω0ðkÞ þ iΓðkÞ; ð1Þ

where ω0 is the ordinary frequency without CRs and Γ is
the additional imaginary part. Since Γ ≪ ω0, ω0 ≈ ω and
we will no longer distinguish between them. The emer-
gence of Γ means that the waves would grow or damp.

A. MHD wave modes: Basic geometry

Consider a static background gas with constant density
ρ0 and magnetic field B0 ¼ B0ẑ with B0 > 0. It is well-
known that in such a system there are three MHD wave
modes: Alfven, fast, and slow mode (the latter two are
magnetosonic modes). For simplicity, consider monochro-
matic waves in the form of

q ¼ q̃ exp½iðk · r − ωtÞ�; ð2Þ
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where q represents a perturbed quantity, which could be the
perturbed magnetic field δB≡ B − B0 or fluid velocity u; q̃
is its amplitude, a complex number that also contains phase
information; k and ω are the wave vector and frequency,
respectively. The dispersion relation of these three modes
reads,

ω2
i ¼

8>>><>>>:
k2kv

2
A

k2½v2Aþc2sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2Aþc2sÞ2−4v2Ac

2
scos2θ

p
�=2

k2½v2Aþc2s−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2Aþc2sÞ2−4v2Ac

2
scos2θ

p
�=2

9>>>=>>>;; ð3Þ

where θ refers to the angle between background field B0

and wave vector k, vA ¼ B0=
ffiffiffiffiffiffiffiffiffiffi
4πρ0

p
is the Alfven speed

and cs is the sound speed. The top, middle and bottom lines
correspond to the Alfven mode (i ¼ a), fast mode (i ¼ f)
and slow mode (i ¼ s), respectively, and this ordering is
maintained throughout this paper.
Without loss of generality, let the wave vector be in the

x-z plane. The geometry of the modes is shown in Fig. 1.
The perturbed velocity of the Alfven mode is along ŷ, which
is perpendicular to the plane shown in the figure. The
perturbed velocities of the fast and slow modes, represented
by uf and us, are in the x-z plane, and they are perpendicular
to each other. Using the relationE ¼ −u × B0=c, where c is

the speed of light, we see that electric field of the Alfven
mode is parallel to the x axis while those of magnetosonic
mode are parallel to the y axis. Thus, we can decompose the
perturbed electric fields E into the form

E ¼ Exx̂þ Eyŷ ¼ Eax̂þ ðEf þ EsÞŷ; ð4Þ

where Ex and Ey represent the components of electric fields
along x̂ and ŷ. The subscripts “a,” “f,” and “s” correspond to
the Alfven wave, fast wave, and slow wave, respectively.
The angle between us and B0 is denoted by α. For an

Alfven wave, fast wave, or slow wave, the proportion of
electric field energy in the total wave energy is
ðvA=cÞ2=2; cos2 αðvA=cÞ2=2, or sin2 αðvA=cÞ2=2, respec-
tively. One can show that α is determined solely by β and θ,
and the explicit expression of α is

cos2 α ¼ 1

2

�
1þ 1 − β cosð2θÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ β=2Þ2 − 2β cos2 θ
p �

;

sin2 α ¼ 1

2

�
1 −

1 − β cosð2θÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ β=2Þ2 − 2β cos2 θ

p �
: ð5Þ

B. Interaction between CRs and MHD waves

When introducing the CRs, the linearized momentum
equation of the gas becomes

ρ0
∂u
∂t

¼ 1

4π
ð∇ × δBÞ × B0 −

1

c
jCR;0 × δB

−
1

c
jCR;1 × B0 − enCRE −∇P; ð6Þ

while the continuity equation, the induction equation and
the equation of state remain unchanged. In the above, e is
the elementary charge; jCR;0 is the current from CR bulk
motion and the response of CRs to MHD waves is
represented by perturbed CR current, jCR;1; P is the thermal
pressure. In linear analysis, jCR;1 is linearly related to electric
fields,

jCR;1 ¼ −
iω
4π

χCR · E; ð7Þ

where χCR is the CR susceptibility tensor. Growth or
damping of the waves is due to the energy exchange
between background gas and CRs. The power of the work
done by the background gas on the CRs is

P ¼ h jCR;1 ·Ei
¼ −

ω

4π
hðiχCRxx Ex þ iχCRxy EyÞEx þ ðiχCRyx Ex þ iχCRyy EyÞEyi

¼ ω

8π
½χCRxx;IfEa

�fEa þ χCRyy;IðfEf
�fEf þfEs

�fEsÞ�; ð8Þ

FIG. 1. Geometry of the system. The background field and
wave vector are denoted by B0 and k, with θ being the angle
between them. Both of them lie in the x-z plane and B0 is along z
axis. The perturbed velocities of fast and slow mode are
represented by uf and us, and they are perpendicular to each
other. The angle between us and B0 is denoted by α, which is
related to the ratio of the electric field energy to the total wave
energy. The perturbed velocity of the Alfven mode is along ŷ,
which is perpendicular to the plane shown in the figure.
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where h…i represents averaging on time and space. The xx
and yy components of χCR are denoted by χCRxx and χCRyy , and
χCRxx;I , χ

CR
yy;I are their imaginary parts. In the above, we have

used the formula

hq1q2i ¼
1

4
ð eq1� eq2 þ eq1 eq2�Þδðk1; k2Þδðω1;ω2Þ: ð9Þ

The two δ-functions imply that these waves evolve inde-
pendently: the cross terms vanish since these waves have
different dispersion relations. Contribution of each mode to
the total power is clearly

Pi ¼
ω

8π

8<: χCRxx;IfEa
�fEa; i ¼ a

χCRyy;I eEi
� eEi; i ¼ f; s

9=;: ð10Þ

The total energy density of the wave is

E ¼ 2E k ¼
1

2
ρ0jũj2; ð11Þ

where E k ¼ ρ0jũj2=4 is the density of kinetic energy. For an
MHD wave, its total energy is twice its kinetic energy.
Based on energy conservation,

dE
dt

¼ 2ΓE ¼ −P: ð12Þ

Using Eq. (10), we arrive at

Γi ¼ −
Pi

2E i
¼

8>>>>>>>><>>>>>>>>:

−
�
1
2

�
vA
c

�
2
�
χCRxx;Iω

−
�
1
2
cos2α

�
vA
c

�
2
�
χCRyy;Iω

−
�
1
2
sin2α

�
vA
c

�
2
�
χCRyy;Iω

9>>>>>>>>=>>>>>>>>;
: ð13Þ

Here Γ can be divided into two parts. The first part,
ðvA=cÞ2=2; cos2 αðvA=cÞ2=2, and sin2 αðvA=cÞ2=2, are the
proportions of the electric field energy in the total wave
energy of the three modes. Note that this part is unrelated to
the presence of the CRs. As mentioned before, the response
of CRs to MHD waves is included in χCR, the second part
of Γ.
In order to obtain the CR susceptibility tensor, we solve

the Vlasov equation,

∂f
∂t

þ v ·∇f þ e

�
Eþ v × B

c

�
·∇pf ¼ 0; ð14Þ

where fðr; p; tÞ is the distribution function of CRs, r is the
position, p is the momentum, v is the velocities of CRs. Let
f0ðpÞ ¼ f0ðpk; p⊥Þ be the background CR distribution

function and f1 ¼ f1ðt; r; pk; p⊥;ϕÞ be the CR response to
the waves, where subscripts k and ⊥ denote components
parallel and perpendicular to background magnetic field,
and ϕ is the gyrophase. Thus, f ¼ f0 þ f1. For perturba-
tions of the form exp½iðk · r − ωtÞ�, f1’s dependence on r
and t should also be in this form. After some algebra, we
obtain the explicit expression of f1 (see [36] or [37] for
detailed derivation),

f1 ¼ −eAeiðk·r−ωtÞ
Z þ∞

0

½Ex cosðϕþΩτÞ þEy sinðϕþΩτÞ�

· ei½ðω−kkvkÞτ−k⊥v⊥½sinðϕþΩτÞ−sinϕ�=Ω�dτ; ð15Þ

where Ω≡ eB0=ðγmcÞ is the CR gyrofrequency, γ is the
Lorentz factor, m is the mass of a CR, and

A≡
�
1 −

kkvk
ω

�
∂f0
∂p⊥

þ v⊥kk
ω

∂f0
∂pk

: ð16Þ

Having obtained f1ðr; p; tÞ, we can find jCR;1 through

jCR;1 ¼ e
Z

d3pvf1ðr; p; tÞ: ð17Þ

The integral can be done by using the relationZ
2π

0

dϕe−iζ½sinðϕþΩτÞ−sinϕ�
�
cosϕ cosðϕþ ΩτÞ
sinϕ sinðϕþΩτÞ

�
¼ 2π

Xþ∞

n¼−∞
e−inΩτ

�
n2J2nðζÞ=ζ2
ðJ0nðζÞÞ2

�
; ð18Þ

where ζ ≡ k⊥v⊥=Ω, Jn is the Bessel function of the first
kind of order n, and J0n is the derivative of Jn. Then, the
susceptibility tensor is found to be(

χCRxx

χCRyy

)
¼ 4πe2

ω

Xþ∞

n¼−∞

Z
d3p

v⊥A
ω − kkvk − nΩ

×

	
n2J2nðζÞ=ζ2
ðJ0nðζÞÞ2



: ð19Þ

Inserting this into Eq. (13), we obtain

Γi ¼ 2π2e2
�
vA
c

�
2 Xþ∞

n¼−∞

·
Z

d3pv⊥Aδðω − kkvk − nΩÞ

8>><>>:
n2J2nðζÞ=ζ2
ðJ0nðζÞÞ2cos2α
ðJ0nðζÞÞ2sin2α

9>>=>>;:

ð20Þ
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In the above, we have adopted the Landau contour, and
used the Plemelj formula

lim
ϵ→0þ

Z
gðzÞ
z − iϵ

dz ¼ P
Z

gðzÞ
z

dzþ iπ
Z

gðzÞδðzÞdz; ð21Þ

where gðzÞ is an analytic function, and P denotes the
Cauchy principle value.

C. The drifting model

If the background CR momentum distribution is iso-
tropic, denoted by FðpÞ, in a frame drifting relative to the
background gas along the background magnetic field B0 at
velocity vd ≪ c (assuming vd > 0 without loss of general-
ity), then A will reduce to (one can find the detailed
derivation in Chap. 12 of [38])

A ¼ dF
dp

p⊥
p

�
1 −

kkvd
ω

�
: ð22Þ

This is the case we focus on below.
Although the CRSI is commonly analyzed with F being

a truncated power law distribution, we adopt a κ distribu-
tion as F in this paper for two reasons. We have found that
the artificial discontinuity of a truncated power law dis-
tribution could lead to spurious growth rates when θ is large
(see Appendix B for a detailed discussion). Also, the δf
method employed by the simulation requires F to be finite
at all p. The general form of a κ distribution reads

FðpÞ ¼ nCR
ðπκp2

0Þ3=2
Γðκ þ 1Þ
Γðκ − 1

2
Þ
�
1þ 1

κ

�
p
p0

�
2
�
−ðκþ1Þ

: ð23Þ

Inserting this and Eq. (22) into Eq. (20), we obtain

Γi

Ωc
¼
�
kkvd
ωi

−1

�
nCR
ni

·
2

ffiffiffi
π

p
κ3=2

κþ1

κ

Γðκþ1Þ
Γðκ− 1

2
Þ
Xþ∞

n¼−∞

1

jk̃kj
Z þ∞

jnjp̃res

dp̃p̃

�
1þ p̃2

κ

�
−ðκþ2Þ

·

8>>><>>>:
n2

k̃2⊥
J2nðk̃⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃2−n2p̃2

res

p
Þ

ðp̃2−n2p̃2
resÞ½J0nðk̃⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃2−n2p̃2

res

p
Þ�2cos2α

ðp̃2−n2p̃2
resÞ½J0nðk̃⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃2−n2p̃2

res

p
Þ�2sin2α

9>>>=>>>;; ð24Þ

where Ωc ≡ eB0=mc is the cyclotron frequency; p̃≡
p=p0; k̃k ≡ kkp0=ðmΩcÞ; k̃⊥ ≡ k⊥p0=ðmΩcÞ; p̃res ≡mΩc=
ðjkkjp0Þ are dimensionless parameters.
In Eq. (24), we see that the sign of the growth rate is

determined by the factor ðkkvd=ω − 1Þ. The physical
meaning of this factor can be referred to in [27,38].

When kk < 0 (waves propagating backward relative to
CR streaming), we always have Γ < 0, which means wave
damping. When kk > 0, Γ > 0 if vd exceeds the wave
phase speed. In this case, waves can grow, and the
following discussion will mainly focus on this scenario.

III. PHYSICAL ANALYSIS

In this section, we investigate the general properties of
the dispersion relation. For numerical calculations here, we
adopt fiducially vd=vA ¼ 4; nCR=ni ¼ 10−4. These param-
eters retains the scale separation consistent with reality, i.e.,
nCR=ni ≪ 1; vA < vd ≪ c, thus are representative. We
choose κ ¼ 1.25 for the κ distribution, such that when
p ≫ p0, FðpÞ ∝ p−4.5. In Fig. 2, we present a gallery of the
growth rates of all three modes for the selected parameters.
Our main findings are summarized as follows:
(i) Plasma β, which represents the relative importance

of thermal energy to magnetic energy, determines
the ratio of electric field energy to total wave energy
in an MHD wave. The growth rates are proportional
to this ratio and thus depend on plasma β.

(ii) Although the growth rate reaches maximum when k
is parallel to B0, we find that it decreases only
marginally until the wave vector becomes suffi-
ciently oblique.

(iii) When θ is large, the maximum growth rates of the
fast/slow modes can be much higher than that of the
Alfven mode. Besides, the most unstable wave
number roughly follows 1= cos θ for the Alfven
mode, while for the magnetosonic modes it roughly
follows 1= sin θ. We attribute these differences to the
zeroth-order resonance, the n ¼ 0 term in the
summation in Eq. (20), which is also known as
Landau resonance or transit time damping (TTD).

A. The role of plasma β

The effects of plasma β are included in ðkkvd=ω − 1Þ;
ðkkvd=ω − 1Þ cos2 α; ðkkvd=ω − 1Þ sin2 α for the Alfven,
fast and slow modes. Since MHD waves are nondispersive,
the three terms above are all independent of wavelength,
meaning that plasma β affects the growth rates in the same
way for all wavelengths. Therefore, the shape of the growth
rate curves in each column of Fig. 2 remains unchanged
with varying β. A direct inference is that the most unstable
wave number, km, is independent of β. In addition, one can
see that the magnetosonic modes share the same km since
they have the same integrand in Eq. (24). For the Alfven
mode, we have ðkkvd=ω − 1Þ ¼ ðvd=vA − 1Þ being inde-
pendent of β, meaning that this mode is not affected by
plasma β. This is reasonable since the Alfven mode is
incompressible and does not “feel” the thermal pressure.
Therefore, we focus on the magnetosonic modes in the
following.
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Equation (5) shows that plasma β determines the ratio of
electric field energy to total wave energy in an MHD wave,
to which the growth rates are proportional. With increasing
β, fast waves become increasingly acoustic and slow waves
become increasingly electromagnetic. Since sound waves
do not involve electromagnetic field fluctuations, they do
not exchange energy with cosmic rays. Therefore, with
increasing β, the growth rate of fast waves decreases while
the growth rate of slow waves increases, which is shown in
each column of Fig. 2. When β exceeds βc ≡ 2ðvd=vAÞ2,
the sound speed surpasses the drift speed, thus fast waves
are damped regardless of the propagation direction.

B. Propagation direction dependence

We note that the growth rates are similar across a wide
range of θ values. The first and second columns in Fig. 2
show that the growth rates of the dominant branch are
comparable across the entire spectrum when comparing
θ ¼ 0.1 and θ ¼ 0.6 cases. Low-k magnetosonic waves
even grow faster when θ ¼ 0.6. In Fig. 3, we plot the
maximum growth rates, Γmax, of each mode as a function of
θ at different βs. Although, in general, the maximum
growth rates decrease with increasing θ (except for the
slowest-growing one among the three, whose growth rate is

negligible), this decrease is modest until θ becomes large,
θ > π=4 [23]. These analyses indicate that the growth of
oblique waves and their interaction with CRs are non-
negligible. In Fig. 3, we can see the existence of a critical
angle, θc, beyond which the fast waves are damped. The

FIG. 3. Maximum growth rates of each mode as a function of θ
at different βs. The growth rates of Alfven waves do not depend
on β. When β ¼ 50, fast waves are damped, thus their (negative)
growth rates are not shown in the figure. When β ¼ 0.02, the
growth rates of slow waves are too small to appear in the figure.

FIG. 2. A gallery of the growth or damping rates as a function of wave number kwith fiducial parameters: vd=vA ¼ 4; nCR=ni ¼ 10−4,
and κ ¼ 1.25. The damping rates of the fast waves are shown in red dashed lines. The angle between k and B0, θ, is the same in each
column and β is the same in each row. We choose θ ¼ 0.1, 0.6, 1.2 for the first, second and third columns, and β ¼ 0.02, 2.0, 50 for each
row from top to bottom. In the top panel, we also plot the growth rates of the fast mode excluding the contribution of the zeroth-order
resonance in green lines.
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explicit form of θc can be derived from ðkkvd=ω − 1Þ ¼ 0:

cos2θc ¼
�
vA
vd

�
2
�
1þ β

2

�
1 −

�
vA
vd

�
2
��

: ð25Þ

where we have used the dispersion relation for the fast
waves [Eq. (3)].
In Fig. 4, we plot the most unstable wave numbers km as

a function of θ for different wave modes. For Alfven and
Slow modes, these wave numbers correspond to fastest
growth, while for the fast mode, they correspond to either
fastest growth or fastest damping. When θ > 0.6, the most
unstable wave number of the Alfven waves roughly follows
km ∝ 1= cos θ, while that of the magnetosonic waves
roughly follows km ∝ 1= sin θ. We will discuss the origin
of this difference in the next section.

C. Zeroth-order resonance

In Fig. 2, we see that when θ ¼ 1.2, growth rates of the
magnetosonic modes can be much higher than those of
the Alfven mode in the low-k region. Furthermore, the
behavior of the most unstable wave numbers of the Alfven
mode differs significantly from that of the magnetosonic
modes when θ is large, as shown in Fig. 4. We find that
these differences are caused by the zeroth-order resonance.
In Eq. (20), it is straightforward to see that the n ¼ 0 term
is nonzero for magnotosonic modes but zero for the
Alfven mode.
In the top panel of Fig. 2, the green lines show the growth

rates of the fast mode excluding the contribution of the
zeroth-order resonance. By comparing the red and green
lines, one can see that the zeroth-order resonance has little
contribution when θ ¼ 0.1, but dominates the growth of the
fast wave when θ ¼ 1.2. The same analysis also applies to

the slow mode. While the zeroth-order resonance of
magnetosonic waves has been well studied in the context
of cosmic-ray transport with energy gain [12,39], here we
study its role in detail in the excitation of the CRSI (and
hence CR energy loss).
The zeroth-order resonance can be best understood in the

wave frame, which moves with a velocity uw ¼ ω=kk along
the background field B0. Since the three wave modes have
different phase speeds, there are, in principle, three wave
frames. However, in our system, the dominant magneto-
sonic modes are near-parallel Alfven-like. Thus, we take
uw ¼ vA hereafter, which is exact for the Alfven mode and
serves as a good approximation for the dominant magneto-
sonic modes. In this frame, the electric field vanishes, and
the perturbed magnetic field, δBw, reads,

δBw ¼ ½δBaŷþðδBf þ δBsÞðcosθx̂− sinθẑÞ�exp ½iðk · rwÞ�;
ð26Þ

where the superscript w refers to the wave frame and we
have neglected the difference between δBw

i , k
w and δBi, k,

since uw ≪ c. To the first-order of δB=B0, the energy
density of magnetic field is

E b ¼
B2
0

8π

�
1 − 2 sin θ

ðδBf þ δBsÞ
B0

cosðk · rwÞ
�
: ð27Þ

The fluctuation part comes only from obliquely propagat-
ing magnetosonic waves since they can create longitudinal
magnetic field perturbation, whereas the Alfven wave
cannot. These strong perturbations in magnetic field energy
density can reflect particles in a way similar to magnetic
mirrors, thus we refer to them as mirrorlike structures in
this paper. The typical scale of the perturbed magnetic field
is λk ¼ 2π=kk in the parallel direction and λ⊥ ¼ 2π=k⊥ in
the perpendicular direction. For particles with vwk ∼ c, they

can pass through multiple λk within one gyroperiod, so on
average the mirrorlike structures have no net effect on
them. For particles with vwk ∼ 0, the distance they travel in

multiple gyration periods is less than λk, thus their motion is
strongly influenced by the mirrorlike structures. This
analysis is consistent with the condition for the zeroth-
order resonance, vwk ¼ 0. In the adiabatic approximation,

the longitudinal motion is determined by

dvk
dt

¼ −2π
v2⊥
B2
0

dE b

dz
¼ −

v2⊥
4
k sin2θ

ðδBf þ δBsÞ
B0

sinðk · rwÞ:

ð28Þ

By applying a longitudinal force, the mirrorlike structures
can reflect particles with pitch angles sufficiently close to
90-degree.

FIG. 4. The most unstable wave numbers km as a function of θ
for different wave modes (note that km is independent of β as
discussed in Sec. III A). The dashed lines in yellow and purple
mark the wave numbers with constant kk and k⊥ respectively
(the yellow line shows kmp0=ðmΩcÞ ¼ 1= cos θ and the purple
line shows kmp0=ðmΩcÞ ¼ 1=ð2 sin θÞ), which reasonably well
reproduce the trends for θ > 0.6.
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The adiabatic approximation requires that the magnetic
field experienced by particles does not change signifi-
cantly within one gyration motion. This assumption holds
only when k⊥rL ≲ 1, where rL is the gyroradius of the
particle. Within this range, Eq. (28) shows that the strength
of the parallel force increases as k increases. When
k⊥rL ≫ 1, particles cross multiple λ⊥ within one gyration
period, so there is no net effect of the mirrorlike structures.
This is consistent with the fact that the red and green lines
overlap in the high-k region in Fig. 2, which means the
zeroth-order resonance has little effect on short-wave-
length waves. Combining these two conditions, it can be
concluded that for the zeroth-order resonance, the most
unstable wave number is given by ðkmÞ⊥rL ∼ 1. For the κ
distribution, its derivative reaches the maximum at p ∼ p0.
These particles make the most significant contribution to
wave growth. Therefore, the typical rL can be estimated as
rL ∼ p0=ðmΩcÞ. Then, for the case dominated by the
zeroth-order resonance, the most unstable wave number
roughly follows ðkmÞ⊥p0=ðmΩcÞ ∼ 1. This explains the
behavior of km ∝ ðsin θÞ−1 for magnetosonic waves when
θ is large, as shown in Fig. 4. For comparison, the growth
of Alfven waves is solely supported by cyclotron reso-
nances (n ≠ 0), so the most unstable wave number roughly
follows ðkmÞkp0=ðmΩcÞ ∼ 1, meaning that km ∝ ðcos θÞ−1.

IV. SIMULATION SETUP AND CHOICE
OF PARAMETERS

We study the linear growth of the CRSI and later
quasilinear evolution through 1D and 2D MHD-PIC
simulations. We use the Athena++ MHD code [40] with
the MHD-PIC module implemented by [41]. Our simu-
lation setup mostly follows [27] with only minor changes.
In Table I, we summarize all simulation runs presented in
this paper with the chosen parameters.
We set up the simulation in the drift frame, where the CR

momentum distribution is isotropic, FðpÞ ¼ FðpÞ. The
distribution function is chosen to be a κ distribution with
κ ¼ 1.25, p0 ¼ 300mvA. To ensure that the entire distri-
bution function is well resolved, we divide the momentum
space into eight bins ranging from p0=500 to 500p0 and
inject an equal number (Np) of CR particles per cell per bin.
In this frame, the gas has a bulk motion with velocity −vd.
For simplicity, we adopt the isothermal equation of state
with the background density being ρ0 ¼ 1. The plasma β is

chosen to be 0.02,2,50, same as in previous analytical
calculation. The magnitude of the background magnetic
field is set to B0 ¼ 1, and the Alfven speed is then
vA ¼ B0=

ffiffiffiffiffi
ρ0

p ¼ 1. The code units are chosen such that
the cyclotron frequency Ωc ¼ 1 for CRs in the background
field B0, and a natural unit of time isΩ−1

c . The length unit in
the simulation is then di ¼ vA=Ωc ¼ 1. The artificial speed
of light is chosen to be C ¼ 300vA.
In our 1D simulations, we align the simulation box with

the wave vector, and there is an angle θ between the
background magnetic field and the simulation box. On top
of the bulk motion of gas, we initialize the system with a
spectrum of waves. For each wave number jkj, there are six
wave modes: forward- and backward-propagating Alfven
waves, fast waves, and slow waves. The wave numbers
cover the range from jkj ¼ 2π=L to jkj ¼ 2π=ð2ΔxÞ (except
that the shortest-wavelength wave is initialized with zero
amplitude), where L ¼ NxΔx is the simulation domain size,
Nx and Δx are the number of grid cells and cell size.
Correspondingly, we set up 6ðNx=2 − 1Þ modes in total.
The eigenvector of each mode, Ri ¼ ðρ1; u1;B1Þ can be
obtained by solving the linearized MHD equations, and its
explicit expression is provided in Appendix C. We normal-
ize Ri such that ju1j ¼ vA. The perturbed quantities in the
simulations are set by AðkÞRi sinðkxþ ψ iðkÞÞ, where AðkÞ
is the wave amplitude, x is the coordinate along the
simulation box, and ψ is a random phase. The form of
AðkÞ is chosen to be AðkÞ ¼ A0=

ffiffiffi
k

p
with A0 being a

constant, and energy density of a single wave mode is
IðkÞ ¼ ðA2

0=kÞðB2
0=2Þ, which is equally distributed in log-

arithmic k-space. The total wave energy density is

Itot
B2
0=2

¼ 6A2
0 ln

�
Nx

2
− 1

�
: ð29Þ

We perform simulations for θ ¼ 0.1, 0.6, 1.2, same as in
previous analytical discussion. When θ ¼ 0.1, 0.6, the most
unstable wavelength is near λ0 ¼ 2πp0=ðmΩcÞ ¼ 1885di
for three modes, as shown in Fig. 4. Thus, in these two
cases, we choose the simulation box size L to be 4800000di,
∼2500 times the most unstable wavelength. When θ ¼ 1.2,
the most unstable wavelength of the Alfven mode is about
λ0=2, while for the magnetosonic modes it is about 2λ0.
Therefore, we set L ¼ 9600000di to maintain it approx-
imately 2500 times the longer most unstable wavelength.
The resolution (di per cell) is set to Δx ¼ 10di.

TABLE I. List of main simulation runs.

Run Dimension θ β vd=vA nCR=ni LxðdiÞ LyðdiÞ ΔxðdiÞ ΔyðdiÞ A0 Np t (Ω−1
c )

1D-s 1D 0.1=0.6 0.02=2=50 4 1 × 10−4 4,800,000 � � � 10 � � � 1.0 × 10−5 256 1 × 104

1D-l 1D 1.2 0.02=2=50 4 1 × 10−4 9,600,000 � � � 10 � � � 1.0 × 10−5 256 1 × 104

2D 2D � � � 0.02=2=50 4 3 × 10−4 36,000 18,000 15 15 1.0 × 10−5 16 1 × 105

1D-c 1D 0 0.02 4 3 × 10−4 36,000 � � � 15 � � � 3.7 × 10−5 256 1 × 105

SHUZHE ZENG, XUE-NING BAI, and XIAOCHEN SUN PHYS. REV. D 111, 123050 (2025)

123050-8



In our 2D simulations, the background field B0 is set
along x̂, and the simulation is performed in the x-y plane.
Similar to the 1D simulations, we initialize a spectrum of
waves, with parallel wave numbers jkxj ranging from 2π=Lx
to 2π=ð2ΔxÞ and perpendicular wave numbers jkyj ranging
from 2π=Ly to 2π=ð2ΔyÞ (waves with the maximum wave
numbers have their amplitudes set to zero). For a given
ðjkxj; jkyjÞ, a total of 12 wave modes are initialized: Alfven
waves, fast waves, and slow waves, each propagating along
four directions corresponding to the four quadrants of
k-space. Additionally, a series of waves propagating along
the background magnetic field (ky ¼ 0) are added in the
simulation, and their setup is identical to that in the 1D
simulations with θ ¼ 0. In this setup, a total of 6ðNx=2 − 1Þ
½ð2ðNy=2 − 1Þ þ 1� waves are added in the simulation. For
waves with ky ≠ 0, their amplitudes are determined by
Aðkx; kyÞ ¼ A0=

ffiffiffiffiffiffiffiffiffi
kxky

p
. The total wave energy density is

Itot
B2
0=2

¼ 6A2
0 ln

�
Nx

2
− 1

��
2 ln

�
Ny

2
− 1

�
þ 1

�
: ð30Þ

The size of the simulation box is Lx ¼ 36000di;
Ly ¼ 18000di, with a resolution of Δx ¼ Δy ¼ 15di.

This relatively small simulation box is accompanied with
the phase randomization procedure described in [27]. The
basic idea is to rotate the momentum of each particle
around the background field by a random angle every
Lx=C. This allows particles to effectively see different wave
packets throughout the simulation. In 1D-s and 1D-l runs,
since the computational cost is manageable, we choose to
use a longer simulation box instead of employing phase
randomization.
In both 1D and 2D simulations, the initial amplitude is

set to A0 ¼ 10−5 to keep the system in the linear stage for a
relatively long time, allowing for more accurate measure-
ment of growth rates. The drift speed is chosen as
vd ¼ 4vA. For 1D runs, we use nCR=ni ¼ 1 × 10−4, while
in 2D we increase it to 3 × 10−4, which leads to faster
growth and earlier saturation, thus reducing computational
cost. The number of particles per cell per bin is Np ¼ 256

in 1D runs and Np ¼ 16 in 2D runs.
To better investigate the effects of oblique waves, we

conduct a 1D simulation (run 1D-c) containing only
parallel waves. Its setup is identical to that in the 1D
simulations with θ ¼ 0, except that the phase randomiza-
tion procedure is employed here to ensure consistency with

FIG. 5. Growth and damping rates measured from 1D simulations with theoretical comparison. Solid and dashed lines represent
growth and damping rates, respectively. Yellow, red and blue lines correspond to the measured growth/damping rates of the Alfven, fast,
and slow modes in the simulations. Black lines are analytical values. The raised ends of the red dashed lines in the last two panels are due
to the numerical dissipation.
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the 2D simulations. The parameters are the same as those in
2D runs, except for the initial amplitude and number of
particles per cell. We set A0 ¼ 3.7 × 10−5 for run 1D-c such
that the initial energy density of waves is identical in run
1D-c and 2D runs. The number of particles per cell per bin
is chosen as Np ¼ 256 to ensure sufficient resolution in
momentum space of the CRs.

V. SIMULATION RESULTS

A. Growth rate in 1D simulations

We measure the growth and damping rates of three
forward-propagating wave modes from simulations using

the method described below. At a sequence of evenly spaced
time steps, we decompose the perturbed fields into six
modes and obtain Iðk; tÞ for each mode (see Appendix C).
To reduce noise, for each time step, we apply a moving
average filter with a window width of Δk ¼ 100 × ð2π=LÞ
(that is, 100 data points) to the spectra Iðk; tÞ. A linear fit is
then performed on ln½Iðk; tÞ�, with the slope being 2ΓðkÞ.
The entire time interval for measuring growth rates should
not be too short, otherwise even the fastest-growing mode
cannot grow much, making it difficult to measure growth
rates accurately. The interval should also not be too long,
otherwise the quasilinear diffusion (QLD) would start to
modify the CR distribution function. We adopt the time
interval being t ≤ 5 × 103Ω−1

c except for β ¼ 2, θ ¼ 1.2
case, in which we adopt t ≤ 1 × 104Ω−1

c since the maxi-
mum growth rates are relatively small.
The measured growth and damping rates are shown in

Fig. 5. Under all parameter conditions, the growth and
damping rates measured in the simulations well match the
theoretical predictions across a wide range of wave
numbers. The growth and damping of the CRSI are better
captured in the low-k regime. In the high-k regime,
the CRSI growth competes with numerical dissipation,
leading to a cutoff in the measured growth rates at
kcut ∼ 10mΩc=p0. In the panel for β ¼ 50 and θ ¼ 0.6,
the red line matches the black dashed line at small k,
indicating that the damping of the fast wave is dominated
by the CRSI. However, as k approaches kcut, numerical

FIG. 6. Time evolution of total wave energy density in 2D and
1D-c runs. All numbers are in code units.

FIG. 7. Perturbed density at t ¼ 1 × 105Ω−1
c in the 2D run with β ¼ 0.02, overplotted with the field lines. In the zoom-in panels, we

show the perturbed density, perturbed magnetic field strength, and the y, z components of fluid velocity and magnetic field.
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dissipation becomes dominant, eventually surpassing the
CRSI growth at k≳ kcut, resulting in the cutoff.

B. 2D simulation

Having successfully reproduced the analytical growth
rates of oblique CRSI modes in 1D, we now proceed to
2D simulations. This will allow us to simultaneously
measure the growth rates of waves propagating in different
directions and study the process of their collective
scattering of CRs. Besides, the multidimensional nature
of these simulations enables us to discuss the role of
plasma β.
In Fig. 6, we show the growth history of the

energy density of waves in all 2D runs and run 1D-c.
The energy density of waves in all simulations exhibit
similar growth behaviors: they grow exponentially until
t ∼ 3 × 104Ω−1

c , then transition into a quasilinear evolution
stage, and finally reach comparable saturated values after
t ∼ 6 × 104Ω−1

c . Despite the similarity, there are slight
differences: waves in run 1D-c grow faster at first since
parallel modes on average have larger linear growth rates,
but saturate at a slightly lower level compared with 2D
runs with β ¼ 0.02, 50. Besides, in run 1D-c, there is a
kneelike feature at t ∼ 2.5 × 104Ω−1

c , where a fast growth
phase transitions to a slow growth phase. In contrast, the
transition from fast growth to saturation in the 2D
simulations is smoother.
In Fig. 7, we show the perturbed density of the entire

simulation domain in saturated state (t ¼ 1 × 105Ω−1
c )

together with the field lines. The perturbed magnetic field
strength, and the y, z components of fluid velocity and
magnetic field are shown in the zoom-in panels. Here, we
choose β ¼ 0.02 as a representative, but the following
features are also found in the other two 2D runs:

(i) The field lines wiggle thanks to the presence of
waves, while neighboring field lines are largely
parallel to each other, suggesting that the waves
remain quasiparallel. No clear magnetic mirror/
bottle configuration is observed.

(ii) There are oblique Alfven and magnetosonic waves
(in this case, fast waves) sweeping the entire domain.
These waves can be identified through the correla-
tions between perturbed fields: vz=vA ≈ −Bz=B0

matches the eigenvector of the Alfven mode,
vy=vA ≈ −By=B0 matches the eigenvector of the fast
mode in the low-β limit. Furthermore, the correlation
between ðρ − ρ0Þ=ρ0 and ðB − B0Þ=B0 suggests that
the field strength perturbation is primarily driven by
compressible oblique magnetosonic waves, consis-
tent with the analysis in Sec. III C.

(iii) These waves interfere with each other and form
weak shocks, i.e., abrupt change of sign of physical
quantities in a short spatial scale. We note that there
are regions where By and Bz change sign, whereas B

remains approximately constant. They may be the
counterparts of the rotational discontinuities found
in 1D simulations [33].

FIG. 8. Growth rates of Alfven waves measured from 2D
simulations with β ¼ 0.02, 2, 50. Since the growth rates is
symmetric about kx, we only show the growth rates of waves in
the first quadrant of the k-space. In the left panels, the black
contours are analytical predictions. To better compare the
simulation and theory, we select three slices at ky ¼
2π=Ly; 6π=Ly and 18π=Ly. They are represented by the straight
lines in each of the three left panels, and we plot the analytical
(black dashed) and simulation (blue solid) results at these slices in
the right panels.
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In the following subsections, we first present the mea-
sured growth rates during the linear phase. Next, we discuss
the quasilinear evolution and the saturated state. We end
this section with an investigation of how particles overcome
the well-known 90-degree barrier.

1. Linear wave growth

We measure the linear growth rates of forward-
propagating waves from 2D simulations based on a similar
procedure as described in Sec. VA. The 2D box is
approximately 100 times shorter than the 1D box, and
the resolution in k-space is comparable to the window
width of the filter adopted in 1D; therefore no filter is
applied here. The decomposition of the perturbations into
different wave modes becomes more complicated in 2D,
and the details are described in Appendix C. The meas-
urement is done within t ¼ 1 × 104Ω−1

c .
The measured growth rates of Alfven waves, fast waves

and slow waves are shown in Figs. 8–10. Due to the
system’s rotational symmetry about x̂, waves in the first
ðjkxj; jkyjÞ and fourth ðjkxj;−jkyjÞ quadrants of the k-space
have identical growth rates, so we show results only

for the first quadrant. Waves in the second and third
quadrants are backward-propagating and damped, thus are
not shown here.
At all values of β, the growth rates measured in the

simulations match the theory quite well over almost the full
kx − ky plane, as seen more quantitatively from the right
panels, which show growth rates along selected slices. In
Fig. 8, the measured growth rates in three 2D panels are
similar, supporting our previous claim that the growth rates
of Alfven waves are independent of β. Despite the
similarity, the noise levels of highly oblique (θ ≥ π=4)
waves increase with increasing β. A similar phenomenon is
observed in Fig. 5 as well. In Fig. 9, one particularly
important finding is that our simulations accurately capture
the critical angle phenomenon of fast waves. Besides, both
the growth rate spectra and the critical angles clearly
exhibit a dependence on β. The contours of theoretical
growth rates suggest that, for certain values of kx, oblique
magnetosonic waves may have higher growth rates than
parallel ones. Such behavior is indeed observed in our
simulations, particularly in Fig. 10. Similar to the 1D

FIG. 9. Same as Fig. 8 but for fast waves with β ¼ 0.02, 2.
When β ¼ 50, fast waves decay rather than grow, thus this case is
not shown here. We also plot the θc, beyond which fast waves
decays.

FIG. 10. Same as Fig. 8 but for slow waves with β ¼ 2, 50.
When β ¼ 0.02, growth rates of slow waves is negligible, thus
this case is not shown here.
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simulations, in 2D simulations, the measured growth rates
are truncated around kx ∼ 10mΩc=p0, which is also due to
the numerical dissipation. While we did not do 3D
simulations, the physics of oblique waves remains the
same in 3D, and we expect a similar agreement between
the theory and the simulations.

2. Quasilinear evolution and the saturated state

After the linear growth phase, the energy in waves
becomes significant enough so that waves can substantially
influence the momentum distribution of particles, driving it
toward isotropy in the wave frame through QLD. This

FIG. 11. The 2D distribution function δfw=f0 in the wave frame at four snapshots in run 1D-c and 2D runs. Here μ is the pitch angle
cosine.
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process is shown in Fig. 11, where we display the time
evolution of the particle distribution function in the wave
frame ðδfw=f0 ≡ ðfw − f0Þ=f0Þ via four successive snap-
shots of each run. The distribution in the wave frame
becomes isotropic when δfw approaches 0. In all cases,
isotropization is first achieved for particles with p≳ p0,
which resonate with the fastest-growing mode. At the end
of our simulations at t ¼ 105Ω−1

c , substantial isotropization
is achieved for all particles with p≲ 5p0, whereas for
particles with p > 5p0, only those with small pitch angles
are isotropized. This is because the low intensity at long
wavelengths and the finite size of the simulation box, which
corresponds to 20 times the most unstable wavelength. At
the late stage (t ≥ 6 × 104Ω−1

c ), isotropization of low-
energy particles ðp < p0Þ is more effective in 2D simu-
lations, leading to higher saturated wave energy densities in
Fig. 6, particularly in the β ¼ 0.02 and β ¼ 50 cases. As
discussed in [27], the main obstacle from isotropization is
to reflect particles across 90-degree pitch angle where QLD
fails. In the next subsection, we will show that in 2D
simulations, particles can cross the 90-degree barrier more
efficiently thanks to the oblique waves.
In the absence of a driving source in our simulations, the

system reaches saturation once isotropization of the dis-
tribution in the wave frame is achieved. The saturated wave
intensity spectra in all 2D runs exhibit similar features,
except that the types of waves that appear are different. As a
representative example, Fig. 12 shows the saturated spectra
of Alfven and fast waves for the β ¼ 0.02 case. As
expected, forward-propagating waves grow significantly,
with a notable region in k-space showing a substantial
intensity. By comparing Figs. 8 and 9 with Fig. 12, one can
see that the saturated intensity correlates with the linear
growth rates. However, it does not necessarily coincide
with the linear growth rate as the final wave amplitudes
depend on the interplay with QLD. Despite remaining at
low amplitudes, waves with kx < 0 emerge. Note that this
is also found in 1D simulations [27], likely attributed to the
development of rotational discontinuities [33].

3. Overcoming the 90-degree barrier

It is well-known that the QLD fails to account for
particles’ pitch angles crossing 90-degree, and several
mechanisms have been proposed to reflect particles.
Within QLT, by relaxing the magnetostatic approximation
(ω=k ∼ 0), [42] found that diffusion across 90-degree pitch
angle can occur if both forward- and backward- propagating
waves are present. Beyond QLT, efforts to alleviate this
problem in general resort to either nonresonant scattering
effects, e.g., magnetic mirroring [43], or nonlinear effects
which lead to resonance broadening [44–46]. In recent
numerical simulations, the main mechanisms are identified
as mirroring reflection or reflection across the rotational
discontinuities [27,28,35]. In this study, we find that
low-energy (p < p0) particles mainly undergo mirrorlike

reflections, which conserves magnetic moment M≡
p2⊥=2B, while high-energy (p > 3p0) particles usually
cross 90-degree pitch angle within a few gyroperiods
experiencing abrupt changes in magnetic field.
To reveal the mechanism behind particle crossing of the

90-degree pitch angle, we trace the trajectories of a
subsample of particles for a time interval of 100Ω−1

c in
the saturated state, during which no phase randomization is
applied. We count the number of particles that have
undergone reflection across 90-degree over this interval.
Here we consider the particle pitch angle in the wave frame
that is relative to the full magnetic field at the guiding
centers. The pitch angle cosine in the wave frame is denoted
as μw. The magnetic field at the guiding center is obtained
by applying a moving average filter to the magnetic field
sequence experienced by a particle, with a window width of
the gyroperiod. For simplicity, we adopt the nonrelativistic
gyroperiod, which is identical for all particles. To be
counted, a particle must exhibit a sign change in μw across
the interval, with jμwj exceeding vA=C ¼ 0.0033 both
before and after the crossing.
The fraction of particles that cross the 90-degree barrier in

different momentum ranges is summarized in Fig. 13. In the
2D runs with β ¼ 0.02 and β ¼ 50, the crossing efficiency
is comparable and approximately 2.4 times higher than in
run 1D-c and the 2D run with β ¼ 2, consistent with the
enhanced isotropization observed in the former cases.
Particles with momentum between p0=

ffiffiffiffiffi
10

p
and 10p0

exhibit a similar crossing efficiency, whereas those with
higher or lower momenta show lower efficiency, likely due
to the limited wave energy at high-k and low-k.

FIG. 12. The saturated spectra of Alfven and fast waves
measured in the 2D simulation with β ¼ 0.02. Here we use a
logarithmic scale for the y axis, which cannot extend to ky ¼ 0.
Thus the growth rates of parallel waves (ky ¼ 0) is shown in the
middle stripes. The spectra are symmetric about kx, thus we only
show the first and second quadrants for Alfven waves and the
third and fourth quadrants for fast waves.
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The mirroring and rotational discontinuity mechanisms
can be distinguished by checking the behavior of magnetic
moment during the reflection process. Initially, a particle
has pitch angle cosine μi and experiences a magnetic field
of strength Bi. Upon reflection, its pitch angle cosine
becomes μf ¼ 0, and the magnetic field strength changes to
Bf. We define the parameter rc ≡ ðΔB=B0Þ=μ2i , where
ΔB≡ Bf − Bi. Assuming ΔB ≪ Bf ≈ B0, the conserva-
tion of the magnetic moment implies rc ≈ 1. Figure 13
shows the distribution of rc for all reflection events across
different momentum bins. In all runs, the distribution of rc
shows a similar dependence on particle energy: For low-
energy particles with momenta below p0, the distribution
peaks at 0.5 < rc < 2, indicating the conservation of
magnetic moment during reflection, consistent with mirror-
like reflections. For these particles, we further show the
correlation between μ2i and ΔB=B0 in Fig. 14. Most data
points lie along the μ2i ¼ ΔB=B0 line, again supporting the
mirrorlike reflection. Besides, events with μ2i ≈ ΔB=B0 >
0.01 are all from 2D runs with β ¼ 0.02 and β ¼ 50,
indicating that larger magnetic field strength perturbations
in these two runs allow particles to undergo reflection with
higher jμij. As discussed at the beginning of this section, the
field strength perturbation is primarily driven by compress-
ible oblique magnetosonic waves. For higher-energy par-
ticles with momenta exceeding p0, the distribution of rc is
more diverse. The significant deviation of rc from unity for
a substantial fraction of these particles indicates that
mirrorlike reflection is not the dominant reflection mecha-
nism at higher energies.
To further confirm that low-energy particles undergo

mirrorlike reflections and investigate the mechanism
that reflects higher-energy particles, we looked at the

trajectories of reflected particles in 2D simulations and
show two representative cases in Fig. 15. We find that most
of the trajectories of low-energy particles exhibit the same
characteristics: the pitch angle cosine changes smoothly
and crosses zero when the magnetic field strength reaches
maximum. Besides, the magnetic moment remains almost
constant throughout the process. These features, illustrated
in the left panel of Fig. 15, provide strong evidence that
these particles indeed undergo mirrorlike reflections. For
higher-energy particles, we observe some particle reflection

FIG. 13. The fraction of particles that cross the 90-degree barrier (over a time interval of 100Ω−1
c ) in different momentum ranges

(upper panels) and the distribution of rc for all reflection events within each momentum bin (bottom panel). In the bottom panels, the
bins of rc are marked by vertical dashed black lines. The momentum ranges represented by each color in the bottom panels are the same
as in the upper panels.

FIG. 14. The correlation between μ2i and ΔB for low-energy
particles (0.1p0 < p < p0) in run 1D-c and all 2D simulations.
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show mirrorlike features, but not for other cases.2 When not
reflected by mirrors, we commonly see that the change in
pitch angle cosine is more abrupt and accompanied by a
significant variation in magnetic moment, as shown in the
right panel of Fig. 15. Additionally, there are abrupt
changes in By and Bz. This is consistent with the mecha-
nism identified in [27], which can be attributed to the
formation of rotational discontinuities [33,35]. As shown at
the beginning of this section, weak oblique shocks form in
2D simulations, which could be counterparts of the rota-
tional discontinuities. For low-energy particles, these shock
structures enhance mirrorlike reflections. We notice that
there was a miscalculation of δB in [27], who thus did not
attribute the reflection of low-energy particles to mirrors.
While the role of mirrors was studied for a single case in
[28], here we provide a more in-depth, energy-dependent
analysis.

VI. SUMMARY AND DISCUSSION

In this paper, we present the first systematic study of the
CRSI in multidimensions, using both analytical and numeri-
cal approaches. We first present the dispersion relation of
the CRSI for all MHD waves with arbitrary propagation
directions under a general plasma β. This allows us to

investigate the dependence of the growth rates on β and the
wave propagation direction θ, with the following major
findings:
(1) Waves with θ up to ∼π=6 exhibit growth rates

comparable to those of parallel modes across the
entire spectrum. For the fast wave, there is no
growing mode when θ exceeds the critical angle
θc, which is determined by Eq. (25),

cos2θc ¼
�
vA
vd

�
2
�
1þ β

2

�
1 −

�
vA
vd

�
2
��

:

(2) The growth rate of Alfven waves is not affected by β;
the growth rate of slow waves increases with
increasing β; the growth rate of fast waves decreases
with increasing β and transitions to decay when β
exceeds the critical β, βc ¼ 2ðvd=vAÞ2.

(3) For large values of θðθ ≳ π=3Þ, zeroth-order reso-
nance dominates the growth of magnetosonic waves,
leading to a growth rate significantly higher than that
of Alfven waves. The condition of zeroth-order
resonance, μw ¼ 0, indicates that it is closely related
to the 90-degree barrier problem.

We employ 1D and 2D MHD-PIC simulations to verify
the analytical dispersion relations. These simulations cover
a wide range of βð0.02 − 50Þ and θ (for 1D, 0.1–1.2; for
2D, 0 − π=2). In all cases, we measure the growth rate on a
k-by-k basis, and find that our simulations well reproduce
the analytical expectations.

FIG. 15. Two typical reflection events for particles with p ¼ 0.18p0 (left) and p ¼ 3.66p0 (right). For each event, the four panels
show the time evolution of the particle position, the field strength together with By and Bz experienced by the particle, its pitch angle
cosine, and its magnetic moment.

2For these particles, rc becomes a less effective metric for
determining whether or not they undergo mirrorlike reflections,
because previously it was defined based on Bi, μi at the initial
(fixed) time step, not the actual time step when the mirrorlike
mechanism starts to dominate.
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We further study the quasilinear evolution of the CRSI,
during which the distribution function in the wave frame is
gradually isotropized through QLD. In the saturated stage
of our 2D simulations, the field lines wiggle but remain
nearly parallel, with no obvious sign of magnetic mirror/
bottle configuration. Oblique Alfven and magnetosonic
waves propagate across the entire domain, interfere with
each other, and form weak oblique shocks. A particularly
important finding is the better isotropization of low-energy
ðp < p0Þ particles in 2D simulations. By tracing a sub-
sample of particles, we find that these low-energy particles
mainly undergo mirrorlike reflection, and the stronger field
strength perturbations generated by oblique waves enable
more efficient reflection. For higher energy ðp > p0Þ
particles, they experience abrupt changes in By and Bz

upon reflection, which is likely related to the rotational
discontinuities.
The saturated wave energy is lower at β ¼ 2 compared to

β ¼ 0.02 and β ¼ 50, consistent with the lower isotropiza-
tion level and lower efficiency of crossing the 90-degree
barrier. In Fig. 2, we note that although both fast and slow
waves can grow at β ¼ 2, their growth is slower than the
dominant magnetosonic mode at other βs. It is natural to
expect that this slower growth may lead to lower saturated
amplitudes. Since magnetosonic waves play an important
role in helping reflect particles, their lower saturated
amplitudes reduce the crossing efficiency. However, we
found that at β ¼ 2, the Alfven wave energy and the
magnetosonic wave energy start to fall below those at other
β values at the same time, t ≈ 3500Ω−1

c . This suggests that
the lower energy level at β ¼ 2 cannot be fully explained by
linear theory, where the growth of Alfven waves should not
be affected by β, though a more thorough investigation is
beyond the scope of this work.
As a first step in the study of multidimensional effects in

the CRSI, the theoretical derivations and simulations in this
paper are limited to the framework of ideal MHD, without
considering any wave-damping effects, which can be
kinetic or fluid in nature, depending on the environment.
These include ion-neutral damping [14], nonlinear Landau
damping [47], turbulent damping [48,49], TTD for oblique
waves [50], etc. It can be expected that incorporating these
damping mechanisms into the analysis would yield more
realistic results. Additionally, all simulations in this paper
employ periodic boundary conditions, which can be
extended in future work with more realistic ones, such
as the “streaming box” framework employed in [34] to
drive CR streaming under an imposed CR pressure gra-
dient. This would allow us to offer a precise calibration of
the CR scattering rates in the self-confinement regime.
Among all the damping mechanisms mentioned above,

TTD is of particular interest, since it is a linear mechanism
and can be very strong, especially in high-β plasmas. TTD
is the magnetic analog of Landau damping in which
fluctuations in magnetic field strength caused by oblique

magnetosonic waves resonantly interact with magnetic-
moment-conserving particles. In low-β plasmas, Alfven
waves do not generate longitudinal electric or magnetic
field perturbation, and thus are not subject to Landau
damping or TTD. Assuming that electrons and ions are in
thermal equilibrium, it is straightforward to show that
electrons make the main contribution to the TTD of fast
waves due to their higher thermal velocities. For simplicity,
let us assume all ions are protons, then the damping rate is
given by Eq. (13),

ΓTTD ¼ −
1

2
cos2α

�
vA
c

�
2

χTTDyy;I ω

¼ −
ffiffiffi
π

p

2
ffiffiffi
2

p ffiffiffi
β

p k2⊥vA
kk

ffiffiffiffiffiffiffi
me

mp

r
exp

�
−
2me

mp

1

βcos2θ

�
: ð31Þ

In the above, we have used cos2 α ≈ 1 and ωf ¼ kvA in the
β ≪ 1 limit. The contribution of TTD to the imaginary part
of χyy, χTTDyy;I , has been calculated in [37] for Maxwellian
distributions. According to Eq. (20), the growth rate of
CRSI of fast waves is

ΓCRSI
f ≈

�
vd cos θ

vA
− 1

�
nCR
ni

Ωc: ð32Þ

This leads to

jΓTTDj
ΓCRSI
f

≈ 300

�
vA=c

2 × 10−5

��
ni=nCR
109

�
·

tan θ sin θ
ðvd cos θ=vA − 1Þ

ffiffiffi
β

p
exp

�
−

10−3

β cos2 θ

�
; ð33Þ

where we have used kvA=Ωc ∼ vA=ðrLΩcÞ ∼ vA=c. For the
typical values in the ISM, i.e., B ∼ 3 μG and ni ∼ 1 cm−3,
vA=c ∼ 2 × 10−5. Assuming that ðvd cos θ=vA − 1Þ ∼ 1 and
ni=nCR ∼ 109, for β ¼ 0.01, jΓTTDj=ΓCRSI

f ≤ 1 yields
θ ≤ 0.2 rad ¼ 11 deg; for θ ¼ π=4, jΓTTDj=ΓCRSI

f ≤ 1

yields β ≤ 1 × 10−3.
In high-β plasmas, both Alfven waves and magnetosonic

waves (slow waves in our context) are damped, and their
damping rates have been calculated in detail in [50]. Unlike
in low-β plasma, where the eigenvector of the Alfven mode
is simply Ex and that of the fast mode is simply Ey, the
eigenvectors of the Alfven and slow modes in high-β
plasmas become a mixture of Ex and Ey. This mixing
arises because the off-diagonal term of the susceptibility
tensor, χxy, becomes non-negligible due to the thermal
motion of the ions. Consequently, since the eigenvector of
the Alfven mode has a nonzero Ey component, it undergoes
damping. Since there are many thermal particles moving at
the wave phase speed in a hot plasma, the exponential term
in Eq. (31) no longer exists, and the damping is generally
strong. For θ ≪ 1 and kri < vA=vi, the damping rate of
both modes can be approximated as
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ΓTTD ≈ −
ffiffiffi
π

p
4

kvi tan2 θ; ð34Þ

where vi is the ion thermal velocity and ri is the thermal ion
gyroradius [1,50]. In the β ≫ 1 limit, the growth rate of
CRSI of both Alfven and slow waves may be approximated
as ΓCRSI

a;s ≈ ðvd=vA − 1ÞðnCR=niÞΩc, and

jΓTTDj
ΓCRSI
a;s

≈
ffiffiffi
π

p
4

1

vd=vA − 1

vi
c

ni
nCR

tan2 θ; ð35Þ

which is beyond order unity except for near-parallel waves
under typical conditions.
Overall, we see that in low-β plasmas, oblique Alfven

waves are not subject to Landau damping or TTD, whereas
oblique fast waves can grow only in plasmas with β ≲ 10−3

under typical conditions. In high-β plasmas, nearly all
oblique waves are strongly damped unless under excep-
tional conditions (e.g., very high nCR=ni). Therefore,
oblique waves are in general expected to be important
primarily in low-β plasmas.
Finally, we note that multidimensional simulations in

principle enable the measurement of perpendicular dif-
fusion from the CRSI. We attempted to do so by turning
off phase randomization and tracking the perpendicular
displacements ðδyÞ of a subsample of particles from
t ¼ 8 × 104Ω−1

c to t ¼ 10 × 104Ω−1
c . For CRs with

momenta around p0, we found that the mean square
displacement, hðδyÞ2i, grew in the first 20Ω−1

c , and then
remained constant. The running perpendicular diffusion
coefficient at the end of our tracking is

DyyðΔt¼ 2× 104Ω−1
c Þ ¼ hðδyÞ2i

2Δt
≤ 4.4× 10−7r2LΩc; ð36Þ

where rL ¼ p0=mΩc ¼ 300di, and the “≤” comes from
the uncertainty of the origin of perpendicular displace-
ments. In comparison, the parallel diffusion coefficient
may be estimated as

Dxx ≈
1

3

�
B0

δB

�
2

r2LΩc ≈ 3.3 × 102r2LΩc: ð37Þ

This suggests that perpendicular diffusion is weak in the
quasilinear regime, but it is also likely that our current
setup, particularly the limited box size with periodic
boundary condition, is not well suited for studying
perpendicular diffusion. Thus, we leave the investigation
of perpendicular diffusion for future work.

ACKNOWLEDGMENTS

We thank the referee and Brian Reville for helpful
comments and suggestions on the manuscript. S. Z. thanks
Xinle Cheng and Xihui Zhao for insightful discussions.
This work is supported by National Science Foundation of

China under Grants No. 12325304, No. 12342501. X. S.
acknowledges the support from Multimessenger Plasma
Physics Center (MPPC, NSF Grant No. PHY-2206607).
Numerical simulations are conducted in the Orion cluster
at Department of Astronomy, Tsinghua University, and the
Zaratan cluster which is supported by the Division of
Information Technology at the University of Maryland.

DATA AVAILABILITY

Some of the data that support the findings of this article
are openly available [40,41]. Raw simulation data are not
publicly available upon publication because it is not
technically feasible and/or the cost of preparing, depositing,
and hosting the data would be prohibitive within the terms
of this research project. The data are available from the
authors upon reasonable request.

APPENDIX A: GENERAL ANALYSIS
OF THE EIGENMODES

The full linearized CR modified MHD equations read,

∂ρ

∂t
þ ρ0∇ · u ¼ 0 ðA1Þ

ρ0
∂u
∂t

¼ 1

4π
ð∇ × BÞ × B0 −

1

c
jCR;0 × B

−
1

c
jCR;1 × B0 − enCRE −∇P ðA2Þ

∂B
∂t

¼ ∇ × ðu × B0Þ ðA3Þ

δP ¼ c2sδρ: ðA4Þ

Again consider perturbations of the form expðiðk · r − ωtÞÞ,
then the mass, momentum, and induction equations
become

−iωδρþ ρ0ik · u ¼ 0 ðA5Þ

−iωu ¼ i
4πρ0

ðk × δBÞ × B0 −
1

ρ0c
jCR;0 × δB

−
1

ρ0c
jCR;1 × B0 −

enCR
ρ0

E −
i
ρ0

kδP; ðA6Þ

−iωδB ¼ ik × ðu × B0Þ: ðA7Þ

Using E ¼ −u × B0=c and δP ¼ c2sδρ ¼ c2sρ0k · u=ω, the
momentum equation can be rewritten as
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−iωu¼−
i

4πρ0

�
k×

�
k
ω
× ðu×B0Þ

��
×B0

þ 1

ρ0c
jCR;0×

1

ω
½k× ðu×B0Þ�−

enCR
ρ0c

ðB0×uÞ

−
1

ρ0c
B0×

�
iω
4π

χCR ·
1

c
ðB0×uÞ

�
−
ic2s
ω

kðk ·uÞ: ðA8Þ

This is a linear equation of u and we rewrite it into the
matrix form

T · u ¼ 0: ðA9Þ

After some algebra, we can get the explicit form of T

Txx ¼
v2Ak

2

ω
−
v2Aω
c2

χCRyy þ c2sk2⊥
ω

− ω; ðA10Þ

Txy ¼ −i
jCR;0B0kk
ρ0cω

þ v2Aω
c2

χCRyx þ ienCRB0

ρ0c
; ðA11Þ

Txz ¼ Tzx ¼
c2s
ω
k⊥kk; ðA12Þ

Tyx ¼ i
jCR;0B0kk
ρ0cω

þ v2Aω
c2

χCRxy −
ienCRB0

ρ0c
; ðA13Þ

Tyy ¼
v2Ak

2
k

ω
−
v2Aω
c2

χCRxx − ω; ðA14Þ

Tyz ¼ Tzy ¼ 0; ðA15Þ

Tzz ¼
c2sk2k
ω

− ω: ðA16Þ

The dispersion relation is given by detT ¼ 0, and eigenm-
odes are solutions of the degenerate equations.
Now let us consider the nCR=ni ≪ 1 limit and keep CR

terms to the first order. Expanding the determinant along
the second row or column, it is straightforward to verify
that the term associated with Tyx is second order, while only
the term associated with Tyy is first order. Therefore

detT ¼
�v2Ak2k

ω
−
v2Aω
c2

χCRxx − ω

�
·

��
v2Ak

2

ω
−
v2Aω
c2

χCRyy þ c2sk2⊥
ω

− ω

�
×

�
c2s
ω
k2k − ω

�
−
c4s
ω2

k2⊥k2k
�

ðA17Þ

Further assuming Γi ≪ ω and expanding Eq. (A17) to the
first order of Γ, we get

Γi¼−
ω

2

�
vA
c

�
2

8>>>>>><>>>>>>:

χCRxx;I

1
2

�
1þ 1−βcosð2θÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þβ=2Þ2−2βcos2θ
p

�
χCRyy;I

1
2

�
1− 1−βcosð2θÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þβ=2Þ2−2βcos2θ
p

�
χCRyy;I

9>>>>>>=>>>>>>;
: ðA18Þ

It is straightforward to show that

cos2 α ¼ 1

2

�
1þ 1 − β cosð2θÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ β=2Þ2 − 2β cos2 θ
p �

; ðA19Þ

sin2 α ¼ 1

2

�
1 −

1 − β cosð2θÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ β=2Þ2 − 2β cos2 θ

p �
; ðA20Þ

and Eqs. (A18) and (13) are identical.

APPENDIX B: EFFECT OF THE
DISCONTINUITY OF TRUNCATED POWER

LAW DISTRIBUTION

In this appendix, we show that the artificial discontinuity
of truncated power law distribution could lead to spurious
growth rates when θ is large. For simplicity, we take Alfven
mode as an example below.
The truncated power law distribution reads,

FðpÞ ∝ p−ð4þαÞηðp − p0Þ; ðB1Þ

where η is the step function. Derivative of this
distribution is

dF
dp

∝ ½−ð4þ αÞp−ð5þαÞηðp − p0Þ þ p−ð4þαÞδðp − p0Þ�:

ðB2Þ

In the above equation, the appearance of the δ-function is
due to the discontinuity of the distribution function, and we
could investigate its effect by comparing the growth
rates including it or not. The results are shown in
Fig. 16, where we also plot the growth rates of κ
distribution for comparison.
From this figure, it is clear that when θ is large, the

discontinuity leads to significant oscillations in growth
rates in the high-k regime. When excluding the δ-function
term, the resulting growth rates of the power law distribu-
tion are similar to those of the κ distribution. Therefore, we
consider the κ distribution as a more reasonable and
realistic one and adopt it in this work.
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APPENDIX C: EIGENVECTORS AND
MODE DECOMPOSITION

In this appendix, we provide the explicit form of the
eigenvalues and eigenvectors of our system, and the method
of wave decomposition. The former part largely follows
Appendix A of [51]. As a general discussion, we consider
homogeneous gas with drift velocity vd ¼ ðvx0; vy0; vz0)
and magnetic field B0 ¼ ðBx0; By0; Bz0Þ. For perturbations
along x axis, the linearized equation of motion reads

∂W1

∂t
þ Λ

∂W1

∂x
¼ 0; ðC1Þ

where W1 is a vector composed of the perturbed primitive
variables (hereafter the subscript 1 means perturbed
fields) and Λ is a matrix. The eigenvectors of Λ are the
wave modes of this system while the eigenvalues are
the corresponding wave speeds. For isothermal MHD,
W1 ¼ ðρ1; ux1; uy1; uz1; by1 ≡ By1=

ffiffiffiffiffiffi
4π

p
; bz1 ≡ Bz1=

ffiffiffiffiffiffi
4π

p Þ,

Λ¼

2666666664

vx0 ρ0 0 0 0 0

c2s=ρ0 vx0 0 0 by0=ρ0 bz0=ρ0
0 0 vx0 0 −bx0=ρ0 0

0 0 0 vx0 0 −bx0=ρ0
0 by0 −bx0 0 vx0 0

0 bz0 0 −bx0 0 vx0

3777777775
: ðC2Þ

The six eigenvalues of this matrix in ascending order are

λ ¼ ðvx0 − vf; vx0 − vAx; vx0 − vs; vx0 þ vs; vx0

þ vAx; vx0 þ vfÞ; ðC3Þ

where

vf;s ¼
1

2

h
ðc2s þ v2A �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2s þ v2AÞ2 − 4c2sv2Ax

q i
;

v2Ax ¼ b2x0=ρ0: ðC4Þ

The eigenvectors of Λ are the columns of the following
matrix,

R¼

26666666664

ρ0χf 0 ρ0χs ρ0χs 0 ρ0χf

−Cff 0 −Css Css 0 Cff

Qsβy −βzvA −Qfβy Qfβy βzvA −Qsβy

Qsβz βyvA −Qfβz Qfβz −βyvA −Qsβz

Asβy −βzSb0 −Afβy −Afβy −βzSb0 Asβy

Asβz βySb0 −Afβz −Afβz βySb0 Asβz

37777777775
;

ðC5Þ

where S ¼ sgnðbxÞ, and

Cff ¼ vfχf; Css ¼ vsχs;

Qf ¼ vfχfS; Qs ¼ vsχsS;

Af ¼ csχf
ffiffiffiffiffi
ρ0

p
; As ¼ csχs

ffiffiffiffiffi
ρ0

p
;

χ2f ¼
c2s − v2s
v2f − v2s

v2A
c2s

; χ2s ¼
v2f − c2s
v2f − v2s

v2A
c2s

;

βy ¼
by0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2y0 þ b2z0
q ; βz ¼

bz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2y0 þ b2z0

q : ðC6Þ

FIG. 16. The growth rates of truncated power law distribution
with and without the contribution of the discontinuity at the
boundaries. For comparison, we also plot the growth rates of κ
distribution.
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In the above, we normalize all eigenvectors such that
u21 ≡ u2x1 þ u2y1 þ u2z1 ¼ v2A. With this choice, energy den-
sity of a single wave is simply ϵ ¼ ρ0v2AA

2=2, where A is its
amplitude, and independent of the isothermal sound speed
cs we choose in simulations.
In postprocessing, we need to decompose the pertur-

bation fields W1 into a combination of the above
eigenmodes, i.e.,

W1 ¼ Ra; ðC7Þ

where a is the vector composed of the amplitudes of
different wave modes. Given that the eigenvectors are
independent, R is reversible and the decomposition can
be done by

a ¼ R−1W1: ðC8Þ

In our simulations, by setting B0 in the x-z plane, we
have βy ¼ 0 and βz ¼ 1. We further reorganize W1 as
W1 ¼ ðWa;WfsÞ≡ ððvy1; by1Þ; ðρ1; vx1; vy1; bz1ÞÞ, then R
become a block diagonal matrix,

R ¼
�
Ra 0

0 Rms

�
; ðC9Þ

where

Ra¼
� −vA vA
−Sb0 −Sb0

�
; Rms¼

26664
ρ0χf ρ0χs ρ0χs ρ0χf

−Cff −Css Css Cff

Qs −Qf Qf −Qs

As −Af −Af As

37775:
ðC10Þ

It is clear that Wa and Ra correspond to the Alfven mode
whileWms andRms correspond to the magnetosonic modes.
In this way, Eq. (C8) can be simplified as

ai ¼ R−1
i Wi; ðC11Þ

where i can be a or ms.
For 1D simulations, since the waves are set along x̂0, the

aforementioned method can be applied directly. For 2D
simulations, since there are waves propagating along all
directions, we first apply a Fourier transform to W1,
W 1ðkÞ ¼ F ½W1ðrÞ�. The resulting W 1ðkÞ represents the
perturbations propagating along k, and thus can be decom-
posed into different wave modes using the above logic.
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