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Generalized exceptional points in nonlinear and stochastic dynamics
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We study a class of bifurcations generically occurring in dynamical systems with nonmutual couplings ranging
from models of coupled neurons to predator-prey systems and nonlinear oscillators. In these bifurcations,
extended attractors such as limit cycles, limit tori, and strange attractors merge and split in a similar way as
fixed points in a pitchfork bifurcation. We show that this merging and splitting coincide with the coalescence of
covariant Lyapunov vectors with vanishing Lyapunov exponents, a feature that generalizes the exceptional points
that can exist in families of non-Hermitian matrices or operators. We distinguish two classes of bifurcations
associated with generalized exceptional points, corresponding respectively to continuous and discontinuous
behaviors of the covariant Lyapunov vectors at the transition depending on the presence of a Z, symmetry. We
outline some physical consequences of this class of theories exhibiting generalized exceptional points, including
nonreciprocal responses, the destruction of isochrons, and anomalous noise effects. In particular, we show that
the effective diffusion coefficient on the attractor can stay finite or even diverge when the noise strength vanishes.
We illustrate our results with concrete examples from neuroscience, ecology, and physics.
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I. INTRODUCTION

The dynamics of linear systems is summarized by their
so-called normal modes, and the corresponding oscillation
frequencies and decay rates. These are the eigenmodes and
eigenvalues of the linear operator (dynamical matrix or
Hamiltonian) describing the system. Open systems are often
described by non-Hermitian operators, or in simpler cases
real-valued asymmetric matrices [1-6]. These mathematically
capture dissipation and active driving, as well as the possible
nonmutual (or nonreciprocal) couplings between the relevant
degrees of freedom or fields (i.e., the action of A on B is
different from the action of B on A). Of special interest are
points in parameter space where such operators or matri-
ces become nondiagonalizable and at least two eigenvectors
coalesce—they are technically known as exceptional points
[2,7]. Despite their name, exceptional points are rather com-
mon: a harmonic oscillator at critical damping is a simple
example [[8], Sec. 25]. Exceptional points typically mark
the transition between traveling or oscillatory solutions and
exponentially growing/decaying dynamics. In linear systems,
exceptional points possess distinctive properties [1,4,9-14]
including an enhanced sensitivity to perturbations [10] as well
as chiral mode conversion when dynamically encircling the
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exceptional point [9,15-17]. It is not clear to what extent these
properties extend to nonlinear systems. Indeed, nonlinearities
are often crucial in nonreciprocal systems since the linearized
dynamics of these driven, active or excitable media can be
unstable, leading to phase transitions between time-dependent
states. The study of these transitions is tantamount to in-
vestigating bifurcations of the underlying dynamical system
[18-24].

One of the simplest examples of a bifurcation is an elastic
beam buckling under a load [18,25]. The vertical beam is
straight below a critical load at which it can curve either to
the left or to the right. Mathematically, this phenomenon is
described by a pitchfork bifurcation [Fig. 1(a)]: it describes
the appearance of the left- and right-buckled state of the beam
that bifurcate from the unbuckled state at the critical load. In
the pitchfork bifurcation, the steady states of the system are
fixed points. The unbuckled state is symmetric with respect
to left-right inversion, while the buckled states break this
symmetry, and therefore occur in conjugate pairs that coalesce
at the bifurcation point.

In this article, we analyze certain classes of bifurcations in
which the states coalescing at the bifurcation point are dynam-
ical steady states (called attractors) as opposed to the two fixed
points corresponding to the static shapes of the buckled beam.
These coalescing steady states can be limit cycles [closed
orbits corresponding to a periodic evolution in time; see
Fig. 1(b)], limit tori, or strange attractors [more complicated
structures that generally correspond to a chaotic evolution; see
Fig. 1(c)]. The underlying dynamical systems need not pos-
sess any symmetry besides time-translation invariance, i.e.,
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FIG. 1. Pitchfork bifurcation of attractors and Lyapunov vectors.
In a pitchfork bifurcation (a), a stable fixed point bifurcates into an
unstable fixed point (dashed line) plus two stable fixed points when a
control parameter r reaches a critical value. This can be extended to
generic attractors, such as limit cycles (b), higher-dimensional tori,
or chaotic attractors (c), in which unstable attractors (repellers) are
drawn with a lower opacity.

they need not be equivariant under a continuous symmetry
group, unlike the cases considered in [26] and references
therein. We show that the coalescence of attractors is accom-
panied by a generalized exceptional point defined in terms
of so-called Lyapunov exponents and covariant Lyapunov
vectors [27,28], that serve as generalized normal modes.
The generalized exceptional point we investigate is an exact
tangency of two covariant Lyapunov vectors with vanishing
Lyapunov exponents (see Appendix E for the case of finite
Lyapunov exponents). These mathematical objects capture the
dynamics of perturbations around the attractor, generalizing to
extended attractors of nonlinear systems the notion of excep-
tional points familiar from linear non-Hermitian physics.

This mathematical approach allows one to explore the rich
phenomenology that arises as a result of this coalescence of
attractors across various domains of science. In the remainder
of this paper, we develop a general theory for the coalescence
of dynamical attractors in nonreciprocal dynamical systems
based on the behavior of the covariant Lyapunov vectors at
the bifurcation. Next, we explore consequences of the combi-
nation of generalized exceptional points with noise or external
perturbations. We illustrate this behavior in several differ-
ent physical models describing predator-prey systems, neural
dynamics, coupled Hopf oscillators and chaotic dynamics.
Finally, we highlight how our analysis can be used to explain
existing experimental observations ranging from plankton
dynamics [29] to stochastic rotation reversals of rigid bodies
in convection cells [30].

II. GENERALIZED EXCEPTIONAL POINTS
IN NONLINEAR DYNAMICS

A. Linearized dynamics and exceptional points

Start with a dynamical system
X =f(X) ¢

in which X (¢) € R" is a vector (the dot represents the time
derivative, and f is a function R¥ — R" defining the dy-
namical system). Consider now two nearby states that evolve
by following the same dynamical system. At long times, will
these states be closer or farther away?

Around a fixed point X of the dynamical system, defined
by f(Xp) = 0, the answer is given by the Jacobian

A
X,
evaluated at the fixed point Xj of interest. The difference 6X ()

between the perturbed trajectory and the unperturbed one [31]
evolves according to

Jab 2

58X = J8X. 3

Hence, perturbations along the eigenvector ¢; of J with eigen-
value A; + iw; grows or decays as e*".

To draw this conclusion, we have implicitly assumed that
the Jacobian J can be diagonalized. However, not all matrices
are diagonalizable: a counterexample is the nondiagonalizable

matrix
(0 1

These matrices are somewhat unusual: they typically occur at
codimension-two points in parameter space called exceptional
points [7] (for instance, they would be isolated points in a
two-dimensional parameter space [32]). The particular form
in Eq. (4) is called a Jordan block [33]. Despite occurring
at isolated points, these nondiagonalizable matrices do play
an important role when they appear in the description of a
physical or biological system.

Physically, the main feature of the matrix Eq. (4) is that it
encodes a nonreciprocal interaction between the two degrees
of freedom (i.e., vector components) on which it operates: as
Ji2 = 1, the degree of freedom 2 has an effect on 1, while 1
has no effect on 2 because J,; = 0. Mathematically, a crucial
feature of this matrix is that it is nonnormal [10]. A matrix
M is normal when it is unitarily diagonalizable. In contrast,
nonnormal matrices can have nonorthogonal eigenvectors. In
fact, when one approaches an exceptional point in parameter
space, two eigenvectors of the matrix become more and more
collinear, and end up parallel to each other at the exceptional
point, like ¢; and ¢; in Fig. 2(b) (middle).

In the context of dynamical systems, the nondiagonaliz-
able matrix Eq. (4) appears as (a block in) the Jacobian of
dynamical systems undergoing a so-called Bogdanov-Takens
bifurcation [34]. This is a codimension-two bifurcation that
occurs in systems ranging from fluid mechanics to ecology
and neuroscience [34—37]. It can be seen as the intersection of
a Hopf bifurcation and a saddle-node bifurcation.

Deviations from normality produce striking physical con-
sequences related to transient growths and to an enhanced
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FIG. 2. Coalescence of Lyapunov exponents and covariant vec-
tors at the bifurcation. In panel (a), we provide a schematic picture
of Lyapunov exponents A; and (covariant) Lyapunov vectors ¢;. Con-
sider an initial condition x(0) for a dynamical system x = f(x). It
evolves into x(¢). A slightly perturbed initial condition x(0) 4 €8x
(e <« 1) evolves under the same dynamical system. Decomposing
the perturbation §x over the covariant Lyapunov vectors c;(0), we
can predict whether at long times, the perturbation will grow (A > 0,
red), decay (A < 0O, blue), or stay finite (A = 0, green). In panel
(b), we show the evolution of Lyapunov exponents and covariant
Lyapunov vectors through the bifurcation represented in Fig. 1(a).
One Lyapunov exponent A;, corresponding to the motion along the
attractor c;, always vanishes. At the transition, another Lyapunov
exponent A; goes to zero, while the corresponding Lyapunov vector
c;j becomes parallel to c;.

sensitivity to fluctuations and to boundary conditions
[1,2,4,10,38—40]. For instance, consider an initial perturbation
8X(0) = (58X, 8Xy) evolving according to Eq. (3) with the
Jacobian J = Jgp in Eq. (4). Based on the (vanishing) eigen-
values of Jgp alone, one may expect that the perturbation will
have a constant magnitude. Yet an explicit solution

0 0
5X(1) = (X‘ e ’) 5)
2

shows that §X actually growth with time, until the anoma-
lous polynomial growths 8X;(t) ~ Xyt is stopped by
nonlinearities. When the eigenvalue ) associated to the Jordan
block is finite and negative (J = Jgp 4+ Ald with A < 0), the
polynomial growth observed above still takes place, but it is
eventually stopped by an exponential prefactor e*. In addition

to the polynomial growth, note that a perturbation initially
along the direction X, gradually moves along direction §X].
The converse does not occur: perturbations along 6X; stay
along this direction. This is nonreciprocity in action. Both the
anomalous growth and the nonreciprocal evolution of pertur-
bations arise not only at exceptional points, but also in their
neighborhood, where the Jacobian is strongly nonnormal.

B. Lyapunov exponents and covariant Lyapunov vectors

When the dynamical system has attractors with a spatial
extent in configuration space (like a limit cycle), the Jacobian
at a single point is insufficient to indicate if the system has
the characteristics of an exceptional point [41]. As before,
perturbations §X about an unperturbed trajectory X (#) evolve
according to

§X = J(Xo(1)) 8X. (6)

in which the Jacobian now depends on time through the un-
perturbed trajectory X (7).

Formally, this linear differential equation is solved by
defining the evolution operator as the time-ordered exponen-
tial [42]

t

U(t,tg) =T exp (f J(Xo(r))dt), @)
fo

very much like in quantum mechanics [43,44]. Most of the

time (see next Sec. II C for the exception), the evolution oper-

ator can thus be decomposed as

UG 10) =Y lei(o) eho ™™ (1)) ®)

in which ¢;(¢) are called covariant Lyapunov vectors (CLVs),
Ai(t") are instantaneous growth rates associated to the CLVs,
and ¢; are called dual (or adjoint) CLVs [27,45]. The function
U (t; Xo) (where we have dropped 7y = O to simplify and made
the dependence on X, explicit) satisfies the group relation
Ut+s:X)=U( +s5;P'X)U(s;X) in which &' is the flow
of the dynamical system (1), that propagates an initial con-
dition X (0) = X, to later times as X (t) = ®'X,. This means
that it is a cocycle, known as the Lyapunov-Oseledets cocycle
[46,47]. At long times, the time averages of the instantaneous
growth rates converge towards the Lyapunov exponents

t
A = lim 1 )\i([/)dl‘/. ©)]
t—oo t 0
The decomposition corresponding to (8) is known as an
Oseledets splitting. We emphasize that the CLVs are not nec-
essarily orthogonal to each other [namely, (c;(t), ¢;(t)) # J;;].
The dual CLVs generalize left eigenvectors, while normal
CLVs generalize right eigenvectors, so (&;(¢), ¢;(t)) = §;j.
An arbitrary perturbation §X (0) at time ¢ = 0 then evolves
as [46,48]

8X(t) = U(r,0)8X(0) = Zaiefé M (1) (10)

in which the a; are the coefficients obtained by projecting
the initial perturbation §X (0) on the CLVs ¢;(0). Infinitesimal
perturbations either decay exponential (A; < 0), grow expo-
nentially (A; > 0), or stay constant (A; = 0) at long times, as

043157-3



CHEYNE WEIS et al.

PHYSICAL REVIEW RESEARCH 7, 043157 (2025)

illustrated in Fig. 2(a). Perturbations along the covariant Lya-
punov vector ¢; grow or decay with the Lyapunov exponent A;
[Fig. 2(a)]. The Lyapunov exponents generalize the (real part
of the) eigenvalues of the Jacobian at a fixed point, while the
covariant Lyapunov vectors generalize the eigenvectors [49].
For more details about Lyapunov exponents and covariant
Lyapunov vectors and applications, we refer the readers to
Refs. [27,28,45,47,50-60]. Please note that the CLVs c;(¢)
depend on time, because they have to follow the unperturbed
trajectory. Indeed, most of the complexity of the time evolu-
tion Eq. (6) is crucially packed into the time dependence of
the CLVs.

Although CLVs are generically nonorthogonal, the normal-
ization of the vectors can often be chosen such that (¢;, ¢;) =
8;j. Doing so is almost always possible: the only exception
are generalized exceptional points, that we discuss in the next
section.

C. Generalized exceptional points

Equations (10) and (8) are valid most of the time, but not
always. Indeed, Eq. (7) must encompass the simple example
of a constant nondiagonalizable Jacobian such as Eq. (4), for
which Eqgs. (10) and (8) do not apply as is. This feature can
extend to nonconstant Jacobians. In general, one has to write

Utt,n) = Z lei(@)) Aij(1) (€ (10)] 1D
ij

in which A;;(t) is composed of Jordan blocks, and hence is
not necessarily diagonal [61,62]. This situation is the general-
ization of an exceptional point. It occurs when two Lyapunov
exponents are equal and the corresponding CLVs, say, c;(t)
and ¢, (1), become identical [Fig. 2(b)] [63]. At the singularity,
the evolution operator cannot be diagonalized anymore and
assumes a Jordan block form. In the simplest case of a Jordan

block of size two [64],
Aot )>, (12)

[ A1)
A(”—( 0 A

where A(7) = oM@ Thic can be seen as a generalization
of Eq. (4). Applying a similarity transformation J +— P~'JP
(with an arbitrary invertible matrix P) leaves the matrix J
in Eq. (4) nondiagonalizable. Similarly, the presence of a
generalized exceptional point where two CLVs are parallel
is invariant under a nonlinear change of coordinate of the
dynamical system (see Appendix B of Ref. [53] for how CLVs
transform under such a change of coordinates). Because of the
covariance of the CLVs with respect to the time evolution, two
CLVs that are exactly parallel at one point of the trajectory
remain exactly parallel all along the trajectory [65]. We refer
to [61] for a discussion in terms of the Lyapunov-Oseledets
cocycle.

The case in which two CLVs are almost identical has been
known as near tangencies in the literature [45,66—71]. In this
work, we focus on exact tangencies (i.e., generalized excep-
tional points). It is natural to expect near tangencies in the
neighborhood of generalized tangencies. This is indeed what
we observe in several cases. As we shall see, this does not
always happen: perhaps surprisingly, the behavior of CLVs
can be discontinuous.

1. Generalized EPs with vanishing Lyapunov exponent

The main focus of this work is the case of exact tangencies
(generalized EPs) where the involved CLVs have vanishing
Lyapunov exponents. These tangencies correspond to bifurca-
tions in the underlying dynamical system.

We have implicitly assumed that the dynamical system in
Eqg. (1) is autonomous, namely, that f does not explicitly
depend on time. As a consequence, the dynamical system
Eq. (1) always has a vanishing (local and global) Lyapunov
exponent 1, = 0 corresponding to the CLV ¢, = f tangent to
the trajectory at each point [27]. This can be shown directly by
taking the time derivative of Eq. (1) and using the chain rule,
yielding (d /dt )X =JX@)) X from which one can show that
the corresponding Lyapunov exponent must vanish, provided
that the vector field f is not singular [[27], Sec. 2.5.6]. One
can interpret this fact as a consequence of the time-translation
invariance of the dynamical system, that is spontaneously
broken by the solutions.

2. Generalized EPs with finite Lyapunov exponent

It is also possible to find tangencies between CLVs with
finite Lyapunov exponents that coincide with a change in the
transient behavior of the system rather than a change in the
nature of the attractors. In other words, they do not correspond
to a bifurcation of the dynamical system. A finite Lyapunov
exponent CLV tangency can be demonstrated in a linear sys-
tem x = Ax with a fixed point [72]. When a parameter is tuned
such that two eigenvalues of A coalesce at a finite value to
become a complex conjugate pair, the fixed point will change
from a node to a focus changing the transient dynamics. Other
examples are discussed in Appendix E.

III. COALESCENCE OF ATTRACTORS
AND GENERALIZED EXCEPTIONAL POINTS

A. Parity-breaking bifurcations

As a first example, consider the so-called parity-breaking
bifurcation [73]

é=w, (13a)

w=rw—w. (13b)

The variable ¢ can be seen as an angular variable representing
the motion of a point on a circle of fixed radius, or as a
real variable representing the motion of a point on the line
[74]. The variable w is an additional variable that undergoes
a pitchfork bifurcation when the parameter r changes sign
(neither w nor r are related to the radius of the circle). At
the same time, the full dynamical system (13) undergoes
a parity-breaking bifurcation (also known as drift-pitchfork
bifurcation). This bifurcation occurs in pattern formation
[75-81], fluid dynamics [82,83], excitable media [84,85], cou-
pled lasers [86—88], synchronization [26,89-91], biological
tissues [92], driven-dissipative condensates [93,94], active
matter and other collective phenomena [26,95-98]. When
r < 0, ¢ is constant, so the system simply has a circle of fixed
points corresponding to all the possible values of ¢ (heuristi-
cally, this can be visualized as a limit cycle with a vanishing
frequency of oscillation). When r > 0, a limit cycle appears.
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The frequency +./r has a sign that is determined by the sign
of the initial condition sgn[w(# = 0)]. Hence, the sense of
rotation (clockwise or counterclockwise) of the limit cycle in
the parity-breaking bifurcation is not determined in advance:
it depends on the initial conditions. This is in contrast with
the case of a Hopf bifurcation, in which the sense of rotation
is always the same for a given set of parameters.

Let us compute the Jacobian of the dynamical system de-
fined by Eq. (13). Evaluated at w = 0, it is

0 1
J= (0 r). (14)

This matrix becomes nondiagonalizable at the bifurcation
point » = 0. In other words, the bifurcation occurs at an ex-
ceptional point of the Jacobian [99].

B. Pitchfork of attractors

The parity-breaking bifurcation introduced in the previous
paragraph describes a transition from a stable circle of fixed
points to two limit cycles (plus an unstable circle of fixed
points). In a rotating frame of reference, this is equivalent to
a bifurcation from a single limit cycle to two different limit
cycles (plus an unstable limit cycle). This suggests that a
generalized notion of exceptional point could appear when the
Jacobian is not constant along trajectories, even if it is difficult
or impossible to do the equivalent of rotating the reference
frame. This could occur for limit cycles, but also more com-
plex attractors. In order to analyze this situation, we generalize
Eq. (13) to produce a pitchfork of attractors in which a given
nonlinear attractor splits or merges into attractors of the same
nature.

We start with a dynamical system producing the desired
attractor, of the form

= f(x) (15)

in which x € RM. This dynamical system is controlled by a 1D
system exhibiting a pitchfork bifurcation as follows:

x=f(x)+ gk, w), (16a)
w=rw—w. (16b)

The simplest coupling consists in making the parameters of f
depend on the value of w (a bit like in a parametric oscillator)
[100]. The properties of the attractor described by f are then
tuned through w. Because there are two possible (stable)
values of w on the right of the pitchfork bifurcation, there
are also two different attractors, whose properties gradually
become identical when we approach the pitchfork bifurcation.

C. Pitchfork of limit cycles

Let us illustrate these ideas when f is the normal form of
a Hopf oscillator. In this case, it is convenient to write x =
(x1,x2) as a complex number z = x; + ix;, and the general
form Eq. (16) becomes

2= (a+ Bz z+ yh(w)z, (17a)
W= rw—w, (17b)

where «, 8, y are complex, while r and the arbitrary function
h(w) are real. Here adding the coupling g(z, w) = yh(w)z

is equivalent to replacing the coupling o with o'(w) = « +
yh(w). Let us analyze the dynamical system Eq. (17). First,
Eq. (17b) shows that w =0 when r <0 and w = +./r
when r > 0, irrespective of the value of z. Then, writing
7z =R(@)e?" and o = o, + i (similar for o/, B, and y), we
find that

R =R+ BR,
(1.5 = O(i/ + ,31R2.

Hence, a limit cycle with radius R = ,/—a/(w)/p; and angu-
lar frequency © = o (w) — Bi/Bra,(w) exists when the inside
of the square root is positive (the period of the oscillation is
T = 27 /2). Otherwise, there is a stable fixed point R = 0.
The radius and frequency of the limit cycle depend explicitly
on w. Hence, on the symmetry-breaking side of the pitchfork
bifurcation (r > 0), there are two different limit cycles whose
properties depend on the value of w = 4./r, provided that
h(w) # h(—w). The system mimics a traditional pitchfork
bifurcation, but with stable/unstable fixed points replaced with
stable/unstable limit cycles. Let us tune the parameters of
the Hopf bifurcation so that a stable limit cycle exists [101].
For r < 0, there is a single limit cycle invariant under the
transformation w — —w. For r > 0, there are two stable limit
cycles that are mapped to each other by the transformation
w — —w, plus an unstable cycle that is mapped onto itself.
(We refer to Appendix B for a discussion on symmetries.) At
r = 0, a pitchfork bifurcation of limit cycles occurs (see also
Refs. [34,102-104] and for examples Refs. [105-111]), in
which the two stable limit cycles and the unstable one merge
into one stable cycle, as depicted in Fig. 3(c). In this bifur-
cation, the radius of the limit cycle is irrelevant. Therefore, it
can be ignored to focus on the reduced dynamics

(18a)
(18b)

¢ =wo+ww, (19a)
W=rw—w. (19b)

similar to Eq. (13). As the bifurcation is approached, the limit
cycles are pushed against each other, the distance between
the cycles shrinks. One can expect that this confinement may
constrain the dynamics of small perturbations close to the
attractors to be tangent to the cycles. As we now show, this
expectation can be made precise using Lyapunov exponents
and covariant vectors.

In the case of limit cycles, the Lyapunov exponents and
covariant vectors can be computed using Floquet theory.
More precisely, the real part of the Floquet exponents are
the Lyapunov exponents, while the corresponding Floquet
eigenvectors span the same spaces as the covariant Lyapunov
vectors [55,112]. The dynamical system (17) is simple enough
to do this calculation analytically: this is done in the Methods.
We find that the Lyapunov exponents are 0, r — 3w? and
28.R? with corresponding covariant vectors at time r = T (see
Appendix A for a derivation and for the expression at arbitrary
times)

0 1 0 1
Yr=|1] vr= A —ViRK'(w)| v3=|0 (20)
0 2 2r 0

when o, = 0 and B; = 0, and where N, is a normalization
factor (the general case is similar, but the expressions are
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FIG. 3. Pitchfork of limit cycles. We consider a Hopf oscillator controlled by a pitchfork bifurcation through a coupling function A
(represented by the symbol ;) as in Eq. (17), leading to a pitchfork bifurcation of limit cycles. The Lyapunov exponents and the angles
0;; between the covariant Lyapunov vectors are plotted as a function of the control parameter r, with two choices of the coupling function: (a,
b) A(w) = w and (c, d) h(w) = w>. The angles 6;; (b, d) is the angle between the CLVs ¢; and c; corresponding to A; and A; (a, ). The dashed
gray line indicates the bifurcation point, where the Lyapunov exponents 1, and A, both vanish and the corresponding CLVs align. In panel (b),
the behavior of the CLVs is continuous through the bifucation. In panel (d), in contrast, the angle 6;, (black line) jumps from a finite value to
zero when r — 07. For clarity, we have plotted only 6, in panel (d); the other angles are shown in the inset. We have seta = 1 +1, = —1,

y =14+1iinEq. (17).

longer: see Appendix A). In these expressions, R and w are
shorthands for their value on the current attractor as a function
of the system parameters, and the vectors are written in the
basis of perturbations §X = (8x1, 6xp, Sw); see Appendix A
for details.

Consider first the case in which A(w) = w, so #'(w) =1
[Fig. 3(a) top]. At the bifurcation, ¥, — (0, 1, 0) when r —
0, independent of whether the limit is taken from above or be-
low. Near the bifurcation, we have essentially ¥, ~ (0, 1, 2r),
so the angle between ¥| and i, goes to zero: the two covariant
Lyapunov vectors become parallel.

Consider now the case in which 2(w) = w?/2, so ¥ (w) =
w [Fig. 3(a) bottom]. When we approach the bifurcation
from positive values r — 07, the stable branches of solutions
are w = £./7,50 Y ~ (0, /7, r) = (0, 1, 0). As previously,
the two vectors | and i, become identical. However, when
we approach the bifurcation from negative values (r — 07),
the stable branch is w =0 and v, — (0,0, 1), so the two
covariant Lyapunov vectors do not become parallel in a con-
tinuous way. The coalescence of covariant Lyapunov vectors
still occurs, but there is a discontinuity in the Lyapunov
vectors at the bifurcation. As we shall see in Sec. V, this
analytically tractable toy model exemplifies a situation that
generically occurs in asymmetrically coupled oscillators.

D. Pitchfork of chaotic attractors

To conclude this section, we go beyond limit cycles and
consider the symmetric coalescence of more complex attrac-
tors. As an example, we now discuss a pitchfork bifurcation
of chaotic attractors. (We also refer to Appendix C for a

discussion on limit tori.) To do so, we take f in Eq. (16) to be
a Lorenz attractor, which is a prototypical example of chaos
[113,114]. Accordingly, we consider [115]
x=o0(y—x)+yw,
y=x(p—z2)—y+yw,
z=xy— Bz+yw,

w=rw—w,

2y

where we have chosen a linear coupling g(X¥, w) = y w. Due
to the nonperiodicity of a chaotic attractor, there is no simple
way to select a distinguished point where to compute the CLV
for each choice of r, as we did for limit cycles. Instead, we
compute the average (|0;;|) over the attractor of the angles 6;;
between the CLVs ¢; and c¢;. As the CLVs are covariant with
respect to the dynamics, they are parallel all along the attractor
if they are parallel at one point. Figures 4(a) and 4(b) show that
the CLVs become parallel at the bifurcation point » = O where
the chaotic attractors merge. On one side of the bifurcation,
a single chaotic attractor is present [Fig. 4(c)], while two of
them coexist on the other side [Fig. 4(d)].

E. Generalization beyond pitchfork-like bifurcations

In this paper, we focus on pitchforks of attractors as de-
scribed by Eq. (16). One can also consider a generalization
of Eq. (16) in which the pitchfork bifurcation in Eq. (16b) is
replaced with another bifurcation, such as a saddle-node or
a transcritical bifurcation, in the same way as the so-called
drift-transcritical bifurcation [97,98,119,120] can be obtained
from the drift-pitchfork bifurcation (13). These are likely to

043157-6



GENERALIZED EXCEPTIONAL POINTS IN NONLINEAR ...

PHYSICAL REVIEW RESEARCH 7, 043157 (2025)

2
(a)
’:’ 0-/\
w
-l
o —
=304
& 201
[®)]
C
© 10 _
o — (|623])
U 0 T T T T T T T T T
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 06 0.8
parameterr
(c) (d)

FIG. 4. Pitchfork of chaotic attractors. Following the general
procedure of Eq. (16), we construct a pitchfork of chaotic attractors
by controlling the Lorenz system [113,114] by a pitchfork. The full
dynamical system is given in Eq. (21). The Lyapunov exponents are
plotted with respect to the bifurcation parameter r in panel (a). The
angle between the covariant Lyapunov vectors ¢, and c3, averaged
over the trajectory, is plotted in panel (b). On one side of the bi-
furcation (for r < 0), a single chaotic attractor is present (c). On
the other side (r > 0), two chaotic attractors coexist (d), in addition
to a chaotic repeller [not pictured in panel (d)]. At the bifurcation
(r = 0), the Lyapunov exponents X, and A3 [orange and green curves
in panel (a)] vanish, while the angle between the corresponding
CLVs also vanishes (b). We have set o = 10, 8 =8/3, p =28,
y =5 in Eq. (21). Equation (21) is numerically integrated using
DifferentialEquations.jl [116]. The LEs and CLVs are com-
puted using the algorithms of Refs. [47,51,117,118]. The average
angles are computed by randomly choosing points along the chaotic
attractor. We have set r = —1 (c¢) and » = 100 (d).

occur in situations where the Z, symmetry associated with
the pitchfork bifurcation is broken, making the bifurcation
imperfect [21]. We refer to [34] and references therein for
a discussion on bifurcations of limit cycles. This leads to
other ways of merging/splitting attractors, that can also be
accompanied with generalized exceptional points.

As an example, consider the dynamical system

¢=w (22a)
w=r—w? (22b)

which is similar to Eq. (13), except that w is ruled by the
normal form of a saddle-node bifurcation (rather than a pitch-
fork bifurcation). When ¢ is a phase variable, this equation
describes the merging of a stable limit cycle with an unsta-
ble limit cycle at r = 0, leaving no attractor or repeller in
phase space. As in Sec. Il A, the bifurcation corresponds

to an exceptional point of the Jacobian. In less symmetric
situations, this couldn’t be captured by a time-independent
effective Jacobian and we would need to resort to covariant
Lyapunov vectors.

In addition, we note that the all the bifurcations we con-
sider can arise in spatially extended systems, in which Eq. (16)
(or variants) describes the dynamics on an invariant manifold.
Simple examples can be obtained by adding a diagonal dif-
fusive term to the normal form (16). Other examples include
drifting defects and localized states [97,120—122], or nonre-
ciprocal pattern formation [26].

IV. PHYSICAL CONSEQUENCES

In this section, we discuss the physical consequences of
generalized exceptional points. First, we discuss how a system
close to a generalized EP responds to small perturbations in
Sec. IV A. The key point is that this response is not recip-
rocal (Sec. IV A). This occurs irrespective of the value of
the Lyapunov exponent (finite or not) at the generalized ex-
ceptional point. When the corresponding Lyapunov exponent
vanishes, this mechanism may lead to a pileup of perturbations
along a certain direction in tangent space. This occurs be-
cause the nonreciprocity of the response is combined with the
softening (critical slowing down) typical of criticality near a
bifurcation [123]. In particular, this can lead to the destruction
of isochrons, in which points in the basin of a limit cycle
do not have a well-defined asymptotic phase (Sec. IV B).
We also consider the effect of noise on a system near a
generalized exceptional point (Sec. IV C). We find that the
flatness of the response leads to an increased sensitivity to
noise (Sec. IV C 1). In addition, on one side of the bifurcation,
the presence of multiple attractors with different properties
leads to the generation of telegraph noise from the white noise
to which the full system is submitted (Sec. IV C 2).

A. Generalized EPs as atoms of nonreciprocity

The tangency of two CLVs ¢; and ¢, leads to a nonrecip-
rocal coupling between perturbations about the corresponding
directions. This arises irrespective of whether the correspond-
ing Lyapunov exponents are finite or not. Far away from
tangencies, when ¢; and ¢, are approximately orthogonal, a
perturbation §X initially along ¢,(0) essentially stays along
¢1(t) (the same for ¢,). On the other hand, when ¢, >~ &,, a
nonreciprocal response emerges. To illustrate this, let us con-
sider a situation where a perturbation along the direction ¢;-
orthogonal to the two approximately parallel CLVs ¢; >~ &,
as represented in Fig. 5. In such a case, it will eventually align
with ¢ [Fig. 5(a)]. The converse is not true: a perturbation
along ¢; stays along ¢; [Fig. 5(b)]. In Figs. 5(c) and 5(d),
we compare the fate of infinitesimal perturbations of a tra-
jectory of Eq. (17) in the two cases of Fig. 3, corresponding
to continuous and discontinuous behaviors of the CLVs. As
expected, there is no mode interconversion in the discontin-
uous case, because the CLVs are orthogonal on this side of
the bifurcation. This illustrates that the covariant Lyapunov
vectors, not the Lyapunov exponents [124], are at the origin
of the nonsymmetric mode interconversion.
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FIG. 5. Effect of a generalized exceptional point on perturba-
tions. (a, b) When two CLVs ¢; and &, (in blue) are approximately
parallel, there is a “missing” direction ¢; (in green) in tangent space
(light gray square), approximately orthogonal to ¢; and ¢, [125].
In panels (a) and (b), we sketch the evolution 6X(¢) of a pertur-
bation §X (0) (in red) along the trajectory (black) in this situation.
The relaxation of perturbations is nonreciprocal. In panel (a), the
perturbation initially along ¢; gradually aligns with ¢;. In panel
(b), the perturbation initially along ¢, stays along this direction. The
evolution of the amplitude depends on the Lyapunov exponents. (c,
d) The nonreciprocal relaxation described in panels (a)—(c) relies
on the angles between CLVs. This allows us to distinguish between
the continuous and discontinuous behaviors discussed in Sec. IIIC.
We simulate Eq. (17) for (c) the continuous case i(w) = w [like in
Figs. 3(a) and 3(b)] and (d) the discontinuous case h(w) = w? on
the discontinuous side of the bifurcation [like in Figs. 3(c) and 3(d)].
We compare a trajectory on the limit cycle to a perturbed trajectory: a
perturbation AX (t = 0) ~ € along w is added as an initial condition,
in the limit where ¢ — 0. The nonreciprocal relaxation does not
occur when the CLVs are orthogonal (d). We have taken r = —0.2,
a=1+1i,=—-1,y =1+1i,and e = 0.001.

B. EP-induced destruction of isochrons

Points starting in the basin of attraction of a limit cycle
eventually end up on the limit cycle. One may ask what is
the eventual dephasing between two such points. The an-
swer to this question is provided by the notion of isochrons
[126—134]. Under certain conditions, the notion of isochron
can be extended to transient dynamics such as fixed points
or excitable systems [132,133,135-137], heteroclinic orbits
[138], or chaotic attractors [139-141]. The main idea is that
the n-dimensional basin of attraction of the limit cycle can be
decomposed into slices invariant under one period of evolu-
tion. These slices, called isochrons, essentially consist of all
the points that eventually have a certain asymptotic phase.
In more technical terms, isochrons provide a foliation of the
basin of attraction by a one-parameter family of (n — 1)-
dimensional hypersurfaces parameterized by the asymptotic
phase ¢ € S' and that intersect the attractor transversally.
Isochrons have been used to analyze the response and con-
trollability of oscillators, including their transient dynamics,
excitability, and synchronization [133,136,142]. They are also
important tools to perform model reduction [126,143].

In this section, we show that the presence of a generalized
exceptional point can lead to the destruction of isochrons. As
we have seen in Sec. IIC 1, the CLV &, = X with Lyapunov
exponent A, = 0 associated with time-translation invariance
is, by definition, tangent to the limit cycle. Away from (gener-
alized) exceptional points, it can be shown that the hyperplane
tangent to the isochron at position X forms the eigenspace
spanned by the n — 1 CLVs (or Floquet eigenvectors) with
finite Lyapunov exponents (see, for instance, Ref. [[126],
Sec. 3.4)).

Figures 6(a)-6(c) schematically represents this behavior.
As a CLV with finite exponent (¢, in the figure) tends to
align with ¢, (along the limit cycle, which is drawn in black),
the isochrons (pink lines/hypersurfaces) become more and
more tangent to the limit cycle. At an exceptional point, the
isochrons are not well defined anymore. Equivalently, the
asymptotic phase is not well defined [144]. Figures 6(d)-6(f)
show isochrons computed using the method of Ref. [132]
for the dynamical system defined by Eq. (17). As we ap-
proach the bifurcation at » = 0, the isochrons (colored lines)
make an angle with the limit cycle (black line), which goes
to zero at the bifurcation. This destruction of isochrons at
generalized exceptional points has drastic consequences: even
tiny perturbations lead to unbounded dephasings at long
times [145].

C. Effect of noise

We now show that adding noise near a generalized excep-
tional point can produce striking effects: noise is amplified
with an arbitrarily large factor, and colored noise is generated
from white noise. On one side of the bifurcation, a random
telegraph noise is generated as the system jumps between
the two stable attractors heralded by the generalized EP. We
illustrate these effects in the case of limit cycles.
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FIG. 6. Isochrons and Floquet vectors. In panels (a)-(c), we
schematically show intersections of the isochrons with a cylinder (in
purple) in the normal form Eq. (23) when approaching a general-
ized exceptional point (panels (a)—(c), corresponding to increasing
closeness to the generalized EP). The limit cycle is drawn in black.
The CLV (or Floquet eigenvector) ¢, drawn in red, which has a
finite Lyapunov, coalesces with the CLV ¢, = ¢, (in blue) with zero
Lyapunov exponent that is tangent to the limit cycle (and corresponds
to a dephasing). One entire isochron (a hypersurface of codimension
one) is also represented as a purple plane in panel (a). In panels
(d)—(f), we show slices of the isochrons of the dynamical system in
Eq. (17) computed numerically. The limit cycle located at w = /r
is shown as a thick black line. As the generalized exceptional point
at r = 0 is approached (from (d) to (f)), isochrons tilt towards the
limit cycle. In the limit » — O, the isochrons are not transversal
to the limit cycle anymore and cease to be well-defined. Colors
label different isochrons, and the w axis ranges from /r — 0.1 to
A/r + 0.1. Isochrons are computed using the method of Ref. [132].
Wehaveseta =1+1,8=—1,y =i, h(w) = w,and (d) r = 1, (e)
r=0.05, (f) r = 0.025.

To do so, we now consider a noisy version of the normal

form in Eq. (13) [and Eqgs. (17) and (18)]
W= rw—w’ +1,(1), (23a)

(23b)

¢ =wo+wrw+ns),

in which wy and w; are characteristic frequencies, and 7,
and n, are Gaussian white noises satisfying (n;(¢)) = 0 and
mi(Hn; (")) = 2T;8;;8(t — ') (i, j label w, ¢). We assume
that wg = 0 (the wy # 0 can be reduced to this one by going
in a comoving frame). When w; = 0, the two equations are
decoupled. In this case, the random variable ¢ is the Wiener
process corresponding to 7y, so it has zero mean and its
variance scales as .

Now let us consider the case in which w; # 0. As the
equation for w is fully decoupled from the ¢ equation, we can
proceed in two steps. First, note that the variable w describes a
Brownian particle in the potential V(w) = —[rw?/2 — w*/4].

We consider separately the cases where r < 0 (Sec. IVC 1)
and r > 0 (Sec. IVC2).

1. Enhancement of noise by generalized EPs

We first consider the situation where » < 0. In this case,
the potential has a single minimum at w = 0. In a nutshell, the
noise on w is converted into noise in x with an arbitrarily large
(or small) conversion ratio [for instance, proportional to w;
in Eq. (23)]. Approaching the generalized exceptional point
(r — 0), the potential landscape for w becomes flatter, affect-
ing the properties of the noise. What are the consequences
on fluctuations of the variable of interest ¢? Neglecting the
additional noise 74, a simple calculation (see Appendix F)
shows that (¢)?> = 0 and that in the limit where |r| — 0, the
variance of ¢(¢) at long times is

() ~ Awit 24)

in which A 2~ 0.97499 is a prefactor of order one. By analogy
with particle diffusion, the slope D in the relation (¢?) ~ Dt
is called a phase diffusion coefficient [126]. We have seen
that here D = Aw%. Notably, the effective phase diffusion
coefficient does not depend on 7,,. As a point of comparison,
we find that D = w?(2T,,/r*) when r < 0 is large enough to
neglect the nonlinear term (in this limit, w is an Ornstein-
Uhlenbeck process). Note that the phase diffusion coefficient
can be arbitrarily large in both cases, due to the coefficient w;.
As we show in Appendix F 3, it is even possible to find situa-
tions where the effective diffusion coefficient increases when
noise strength is reduced. Similar results have been obtained
in models of active matter, in which Eq. (23) can represent an
active Brownian particle in a nonlinear potential [146—149].
The fact that the phase diffusion coefficient D is independent
of the strength of the noise 7, may look paradoxical, as it
suggests that a finite D would persist with no noise at all.
The paradox is only apparent: the asymptotic diffusive regime
only takes place after a transient with characteristic time
T, ~ 1//T,,, which diverges as T,, — 0 (see Appendix F)
[150].

2. Integrated telegraphic noise from coalescing attractors

When r > 0, the potential V is a double well. When the
noise is small enough, the particle spends a long period
in each well, separated by quick jumps between the wells.
This intermittent process is approximately described by the
Ahrenius-Kramers-Eyring theory and can be approximated by
a telegraph process [151]. In this approximation, w(t) = %1
for random durations 4+ = t (the double well is symmetric)
following an exponential distribution with probability density
function (pdf)

1 .
pr)=— e/, (25)

where
2 VOV (o6
V() V"(wy)

is given by the Eyring—Kramers-Arrhenius formula in the
limit where T — 0 (see [152-156] and references therein),
in which w* is the position of the barrier (maximum of V') and

t*=E[r] =
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FIG. 7. Telegraph noise from coalescing attractors. Applying a
weak noise produces stochastic jumps between attractors. This is
illustrated in the simple case of Eq. (23). The two stable limit cycles
are labeled by the minima w. of a double potential U (w) (a). The
sojourn times T in each attractor are random variables, approxi-
mately following an exponential distribution (inset) described by
the Ahrenius-Kramers-Eyring theory. As a consequence, w can be
approximated as a random telegraph process (b). The state of the
system then drifts along the attractor at a speed determined by w(t).
In (c), we have shown a schematic of the position ¢ on the attractor
(e.g., the phase of the limit cycle) as a function of time, in the
simple case where the angular velocity is directly proportional to w
[see Eq. (23)]. Schematically, ¢ is obtained by integrating w (d). In
panels (e) and (f) we compare the results of numerical integrations
of Egs. (23) for different realizations of the noise, with w; = 0 (d)
and w; # 0 (e). An arbitrary trajectory has been highlighted in red.
We have set r = 0.22, wp =0, w; = 0.1, T,, = T, = 0.1. We do not
assume that ¢ is periodic.

time 4000

wy is the position of the well (minimum of V); see Fig. 7(a).
Here, with V(w) = —rw2/2 + w4/4, we find

o= T 27)
r

The telegraph noise generated by this process is a non-
Gaussian, colored noise that tends to drive out of equilibrium
the system on which it is applied [157-165]. On both sides
of the bifurcation, the amplitude of the noise is proportional
to the magnitude of the function g in Eq. (16) which can in
principle be arbitrarily large or small.

The fate of ¢ can be understood by first ignoring the noise
ne. In this case, ¢ = wjw. As a consequence, two effects
occur. First, ¢ is composed of branches with positive and
negative slopes w;w., obtained by integrating the random
telegraph signal. The corresponding signal is highly correlated
at short times, becoming diffusive only at long times. Second,
the standard deviation of ¢ is proportional to w;, so it can

be orders of magnitude larger than the standard deviation of
the white noise 7,, acting on the variable w. Both effects can
be directly observed in numerical simulations of the stochas-
tic differential equation (23). In Fig. 7, we compare (i) in
Fig. 7(e) the case where w; = 0 (so there is only a Gaussian
white noise) and (ii) in Fig. 7(f) the case where w; > T, and
(so the telegraphic noise is large compared to the pre-existing
Gaussian noise). In case (i), ¢ is directly a Wiener process
(i.e., a Brownian motion). Therefore, it is scale invariant and
diffusive (as (¢?) o t). Note (¢) = 0. In the case (ii), ¢ ()
is a succession of upward and downward slopes with values
+w. = wy = /7, extending over durations distributed ex-
ponentially, following Eq. (25).

When the measurement time scales are small compared
to the characteristic time t* of reversals, this succession
of upward and downward slopes can be directly observed.
This is, for instance, the case in a recent experiment where
a plate freely rotates in a Rayleigh-Bénard convection cell
[30] (Appendix G). When the measurement timescale is large
compared to T*, the process we described has indirect conse-
quences. This is what happens in the case of coupled lasers,
in which the consequence is a two-color laser characterized
by a power spectrum with two peaks (corresponding to the
two frequencies of oscillation of the two limit cycles), as
it has been experimentally observed in Ref. [86] (see also
Refs. [87,88] and SI Sec. XII of Ref. [26]).

V. EXAMPLES

In the following sections, we provide more realistic exam-
ples of systems with bifurcations associated with generalized
exceptional points gathered from different fields. Each sit-
vation follow a similar scenario as in Fig. 3. Figures 8-11
show that in each system, a bifurcation separates a region
with a single stable attractor and a region with two stable
attractors and an unstable one. The numerical computation
of the Lyapunov exponent and covariant vectors demonstrate
that two Lyapunov exponents become degenerate at the bifur-
cation, where the corresponding vectors align at least on one
side.

A. Coupled nonlinear oscillators

We first show that coupling two nonlinear oscillators in a
nonreciprocal way typically leads to a pitchfork bifurcation of
limit cycles. To do so, we consider the dynamical system

m _ [(a +iw) + bz an 2] [zl] 8)
22 ay (a+iw) + b|zo| 22

consisting of two copies of the normal form of a Hopf bifur-
cation (Hopf oscillators) for the complex variables z,, coupled
by the terms aj» and a;. Depending on the value of a, =
[aiz + ax1]1/2 and a_ = [a;p — a»1]/2, the Hopf oscillators
can be in an aligned, antialigned, or chiral state. When the
coupling of the oscillators is sufficiently nonreciprocal, the
aligned/antialigned state transitions to the chiral state, and a
bifurcation occurs such that the steady state of the dynam-
ical system will have a finite angle between the oscillators,
which approaches 90° as a_ becomes large. There are two
such steady states, one where z; chases zp as the system
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FIG. 8. Coupled nonlinear oscillators. We simulate the coupled nonlinear oscillators given in Eq. (28). Depending on the value of the
parameter a_, we observe different behavior illustrated by the time series in panels (a)—(c). When a_ < a® = (0.22625, the two oscillators

exhibit synchronized oscillations corresponding to a single limit cycle (a). When a_ > a°,

the two oscillators become out of phase (b), (c).

Depending on the initial condition, the phase difference A¢ between the oscillators z;(¢) and z,(¢) can either be positive (c) or negative (d).
Hence, there are two stable limit cycles. The phase difference is plotted as a function of a_ in panel (d). At the bifurcation point a_ = a¢, a
generalized exceptional point occurs, as shown in panels (e) and (f). In panel (e), the largest Lyapunov exponents A; and A, are plotted. We

always have 1, = 0 because the dynamical system is autonomous. At the bifurcation point a_ = a*,

the second Lyapunov exponent A, also

vanishes. At the same time, the angle 6,, between the CLVs ¢, and ¢, vanishes (f), showing that a generalized exceptional point occurs. The
CLVs are continuous across the bifurcation. We have set a = w = —b = 1, a,. = 0.05. In panel (a), a_ is varied from 0.05 to 0.375. In panel

(a), a— = 0.3. In panels (b) and (c), a_ = 0.

oscillates, and one where z, chases z;. The symmetry of
the system is spontaneously broken, determining which Hopf
oscillator leads and which follows. The transition from the
aligned to chiral state occurs at an exceptional point, where
one Lyapunov exponent becomes zero at the bifurcation, and
the corresponding Lyapunov vectors become parallel at all
points on the limit cycle, as shown in Fig. 2. The behavior
of the model (28) is phenomenologically similar to the pitch-
fork of limit cycles with A(w) = w analyzed in the previous
section [compare Figs. 3(a) and 3(b) with Figs. 8(e) and 8(f)].

Writing 7z, = r,e'%" in polar form, performing an adiabatic
elimination of 7, (see, e.g., Ref. [166]) assuming a. < a, we
end up with

& AP =2(ay —a* Jacos Ap)sin Ag,
0¢ = w+a_sin Ap

(29a)
(29b)

in which A¢ = ¢» — ¢; and ¢ = [¢; + ¢P2]/2. A series ex-
pansion for small A¢ and a rescaling leads to the normal
form (19). Crucially, this allows us to identify the control
variable w in the normal form Eq. (19) to the dephasing A¢
between the oscillators (namely, w o< A¢). The two symmet-
ric nonzero solutions A¢. of 3, A¢ = 0 correspond to the two
limit cycles that emerge at the bifurcation. This is a generic
feature, which we will find in other examples of coupled
oscillators (Secs. VB and V C).

B. Wilson-Cowan neurons

We next consider a simplified model of neural network
dynamics, the Wilson-Cowan model [167,168]. The model
describes the dynamics of the average firing rates x; of coupled
neurons, which evolve according to

X; = —x; + tanh ZAUXJ‘ +h ), (30)
J

where the indices i, j = 1, ..., N label neurons, 4; is an ex-
ternal forcing, and A;; contains the couplings between the
neurons. It is assumed that each neuron j is either excitatory,
in which case it increases the firing rates of the neurons it
influences (A;; > 0 for all i) or inhibitory, in which case
it decreases it (A;; < 0 for all 7). The coupling between an
excitatory neuron and an inhibitory neuron is therefore nonre-
ciprocal: more precisely, A;; and A ;; have opposite signs. Here
we consider the case of one excitatory plus two inhibitory
Wilson-Cowan neurons and choose to use the coupling A|; =
¢ as the bifurcation parameter. Here the angle between CLVs
generally depends on the position on the limit cycle, because it
is not a circle, except if the angle is zero (i.e., if two CLVs are
parallel). To obtain comparable quantities for different values
of the parameters, we arbitrarily select a particular point on
the cycle (the one that maximizes one of the coordinates) for
each value of ¢. The three limit cycles coalesce at a critical
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FIG. 9. Wilson-Cowan model. Panels (a)—(c) show time series of the Wilson-Cowan model in Eq. (30) for one excitatory neuron (i = 1)
coupled to two inhibitory neurons (i = 2, 3). When ¢ > ¢. & 10.786, the firing rates of the two inhibitory neurons are in-phase oscillations
corresponding to a limit cycle (a). When ¢ < ¢, the two inhibitory neurons become out of phase (b), (c), and the phase difference A¢ depends
on the initial condition, as there are two stable limit cycles. The phase difference is plotted as a function of ¢ in panel (d). The two limit cycles
correspond to phase advance (adv, purple) or delay (dly, pink). In panel (e), the largest Lyapunov exponents 1; and A, are plotted (A, =0
because the dynamical system is autonomous). At the bifurcation ¢ = ¢, the second Lyapunov exponent A, and the angle 6;, between the
CLVs ¢; and ¢; vanish (f). This is a generalized exceptional point. The angle 6, is discontinuous through the transition: it stays constant when
¢ — ¢ from the right. We have set A;; = ¢, Ay = A3; = 8 in which ¢ > 0 can vary (for the excitatory neuron j = 1), Aj; = —4.5, A5 =0,
Az = —4,and A3 = —7.5, A3 = —4, A33 = 0 (for the inhibitory neurons j = 2, 3) and /; = 0 for all neurons. In panel (a), ¢ = 11. In panels

(b) and (c), ¢ = 9. Times are normalized by the period T at &..

value ¢. where a bifurcation occurs. The bifurcation is marked
in Fig. 9 by a dotted line, where two Lyapunov exponents
combine, while the angle between the corresponding CLVs
goes to zero. The behavior of the Wilson-Cowan model (30)
is phenomenologically similar to the pitchfork of limit cycles
with A(w) = w? analyzed in the previous section [compare
Figs. 3(c) and 3(d) with Figs. 9(e) and 9(f)]. This suggests that
a slow manifold reduction of Eq. (30) would produce Eq. (17)
near the bifurcation.

The merging and splitting of limit cycles has been sug-
gested as a toy model of perceptual bistability for temporally
periodic stimuli [168—170]. A simple example consists in a
sequence of tones A and B with different frequencies repeated
in ABA ... patterns: the same sound can be heard as two
separate sequences A-A-A-... and B-B-B- ... with different
periods, or as a single ABA-ABA- ... sequence, and one can
switch from one perception to the other and back. You can
hear a demonstration in Ref. [171]. There is only one signal,
but our brains can interpret it in different ways. These two
different perceptions are distinguished by whether the tones
are perceived to be synchronized or not. This information can
be encoded in the in-phase and out-of-phase states of two
coupled oscillators, which could therefore provide a mech-
anism for perceptual bistability [168]. In this context, the
coalescence of two attractors corresponds to the confusion

between two percepts, that become indistinguishable at the
bifurcation.

C. Rosenzweig-MacArthur prey-predator model

The notion of nonreciprocity is perhaps nowhere as striking
as in ecology: predators eat prey, but prey rarely eat predators.
Based on the results of Sec. V A, we expect that a nonrecipro-
cal coupling may affect the phase coordination of the species.
This phase coordination is believed to influence biodiver-
sity in prey-predator and other consumer-resource models
[172-175]. Essentially, the idea is that in-phase synchro-
nization of, say, two predators opens a periodic opportunity
for a third one to enter the system. However, the invading
species may modify the phase coordination of the two original
species, potentially breaking the conditions for invasion [172].
This motivates a precise analysis of the phase coordination
before any invasion.

Here we consider two coupled versions of a minimal but re-
alistic predator-prey model called the Rosenzweig-MacArthur
model [20,176-178]. In our toy model, two kinds of prey
and two kinds of predators are present. The prey are kind
and hence they collaborate with each other and increase their
respective populations in a mutualistic way. In contrast, the
predators are unkind, so they compete and kill each other. This
is summarized by the graph on the left side of Fig. 10. This
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FIG. 10. Rosenzweig-MacArthur prey-predator model. We simulate the Rosenzweig-MacArthur model in Eq. (31), with two prey and two
predators. The size of the populations of prey and predators evolve periodically in time (a)—(c). When o > a. =~ 0.00423, the prey are in
phase with each other, and the predators in phase with each other (a). When o < «., there is a dephasing A¢ between the two prey (and the
two predators), positive or negative depending on the initial condition: two stable attractors are present. Panel (d) shows the phase difference
between the two prey as a function of « (black line for the in-phase state of panel (a); purple and pink lines for the out-of-phase states of
panels (b) and (c), respectively phase advance (adv) or delay (dly). At ¢ = o, (gray dashed lines), a generalized exceptional point occurs. At
the bifurcation, both the Lyapunov exponent A, (e) and the angle 6, between the CLVs ¢; and ¢, (f) vanish. The angle 0;, is discontinuous
at .. We have set s = 12, r = 12, k = 15.6, uy = 8, € = 0.1, and « is varied from 0.0027 to 0.0054. In panels (a)—(c) the initial conditions
are X(0) = (u1(0), v1(0), u2(0), v12(0)) = 2.8, 16.2,4.9, 14.7, and X¥(0) = 4.9, 14.7, 2.8, 16. In panel (a), « = 0.0054. In panels (b) and (c),

a = 0.0024.

model is described by the coupled differential equations

R ujvg
uy =r(ug —upuy — k + er(up — uz)u,
1+I/t1
. ujvg
v =k — SV — aVyVy,
1+M1
o 3D
) 202
uy = r(ug — up)uy — k——— +er(ug — upuy,
14+u
. Uz
v =k — SUy — oV Vy,
14+u,

where u; and u, are the numbers (or concentrations) of prey,
while v and v, are the numbers of predators. The coefficient
r measures the natural growth of prey (uo sets the capacity
of the environment), s measures the natural decline of preda-
tors, and k measures predation, which reduces the number
of prey while increasing the number of predators. Finally,
€ measures the collaboration between prey and o measures
the direct competition between predators. Again, we observe
that the Lyapunov vectors become parallel at the bifurcation.
The behavior of the Rosenzweig-MacArthur model (31) is
phenomenologically similar to the pitchfork of limit cycles
with #(w) = w? analyzed in the previous section [compare
Figs. 3(c) and 3(d) with Figs. 10(e) and 10(f)].

Before the bifurcation [right side in Figs. 10(d)-10(f)],
the two species of prey are synchronized together (and the
two kinds of predators are synchronized together). After
the bifurcation [left side in Figs. 10(d)-10(f)], this is not the
case, and the two different limit cycles correspond to different

sequences of the local maxima of the different populations
(e.g., uy, uy, vy, vy Versus up, uy, vz, v1). Again, the splitting
of the limit cycle leads to a finite phase delay between the
two populations, that are neither in phase nor in antiphase.
In the steady state, the dephasing takes two possible values
corresponding to the two stable limit cycles, depending on
which populations is in advance.

While our model is a simplified version of what could take
place in realistic situations, we expect this phenomenon to
occur in nature. For instance, nontrivial phase delays (neither
zero nor 1) have been observed in a laboratory experiment
probing the food web structure of a plankton community
isolated from the Baltic Sea [29,175]. In this case, the preys
are phytoplankton species (picocyanobacteria and nanoflag-
ellates), while the predators are zooplankton (rotifers and
calanoid copepods). In Ref. [175], this situation is modeled
using coupled Rosenzweig-MacArthur-like equations with
more realistic couplings [175,179,180]. Figure 11 summarizes
the model (see Appendix F 4 for the equations) containing two
preys species and two predator species (with a different inter-
action network compared to the model of Fig. 10). We now
show that this model also exhibits a generalized exceptional
point marking the bifurcation between a single limit cycle
with populations in antiphase, and two stable limit cycles with
a nontrivial phase delay. Figures 11(a)-11(h) show numerical
simulations of the model before the bifurcation where there
is a single stable limit cycle [Figs. 11(a)-11(c)] and after
the bifurcation, where there are two stable limit cycles [Figs.
11(d)-11(f) and 11(g)-11(i)]. These are distinguished by a
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FIG. 11. Model of plankton food web. We simulate a set of coupled Rosenzweig-MacArthur-like equations given by Eq. (F27) and used
in Ref. [175] to model laboratory experiments on a plankton food web isolated from the Baltic Sea [29]. This model describes the population
densities of prey u;(t) and of predators v (¢), and involves a parameter § that quantifies the coupling through predation of the two coupled
prey-predator systems. Below a critical value . >~ 0.02275, a single limit cycle exists (a)—(c). Two stable limit cycles exist above the critical
value, as shown in panels (d)—(f) and (g)—(i), respectively. At the bifurcation, both the Lyapunov exponent A, (j) and the angle 6;, between the
CLVs ¢; and ¢, (k) vanish. The angle 6, is discontinuous from the left at S.. Parameter values and initial conditions are given in Appendix

F4, after Eq. (F27).

dephasing A¢ between the species [in gray in Figs. 11(a),
11(b), 11(d), 11(e), 11(g), and 11(h)] that exhibits a pitch-
fork shape as the bifurcation parameter § is changed [Fig.
11(31)]. At the same time, the two largest Lyapunov exponents
become degenerate [Fig. 11(j)] and the angle between covari-
ant Lyapunov vectors vanishes [continuously from one side,
discontinuously from the other; see Fig. 11(k)]. Our analysis
of the model of Ref. [175] suggests the existence of two dif-
ferent limit cycles. The nontrivial dephasings observed in the
experiment is indirect evidence supporting this statement. In
principle, it could be directly verified experimentally. We note
that it would have consequences on the correlations between
species’ abundances. In particular, two different results could
be obtained for the same values of the couplings. In Sec. IV
we show that the proximity to a generalized exceptional point
typically leads to an increased effect of noise: it is therefore
intriguing to ask what would be the consequences of stochas-
tic fluctuations [181] on the ecological model.

VI. CONCLUSION AND PERSPECTIVES

In this article, we have shown that the tangency of covariant
Lyapunov vectors provides a generalization of exceptional
points to arbitrary nonlinear systems. Such an exact tangency
occurs for the covariant Lyapunov vectors associated with
vanishing Lyapunov exponents in a class of bifurcations de-
scribing the splitting and merging of extended invariant sets,

creating a Jordan blocks in their Lyapunov-Oseledets cocycle.
This suggests intriguing parallels between classical dynamical
systems [66,67] and quantum many-body systems [182]. In
the case of limit cycles, we have shown generalized excep-
tional points can occur both continuously and discontinuously,
depending on time-dependent symmetries of the cycles. By
analyzing the effect of noise and perturbations in systems with
generalized exceptional points, we find these systems exhibit
an enhanced sensitivity to noise to small perturbations in
addition to displaying a nonreciprocal response. For instance,
in the case of limit cycles, isochrons become tangent to the
limit cycle and are ill-defined at the bifurcation, and the effec-
tive diffusion coefficient on the attractor exhibits anomalous
temperature dependence.
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APPENDIX A: COMPUTATION OF THE LYAPUNOV
EXPONENTS AND VECTORS USING FLOQUET THEORY

In this appendix, we compute analytically the Lyapunov
exponents and covariant Lyapunov vectors (also known as
Floquet vectors) for the very simple system (17) using Flo-
quet theory [184—186]. To do that, we harness the rotational
symmetry of the system to evaluate the evolution operator in
Eq. (7) directly by diagonalizing the Jacobian in a rotating
frame.

1. Floquet theory

In this section, we recall basics of Floquet theory
[184—186]. In the main text, we have introduced the evolution
operator U (¢, ty) in Eq. (7), defined as the unique solution of
the Cauchy problem Eq. (6) with U (%, tp) = Id, where Id is
the identity matrix. In the case of periodic orbits, one can show

that
Ut+T,to+T)=Ul(t,ty). (A1)

J

al + B(3x* +y?) — Bi2xy
o + Bi(3x% 4+ %) + B 2xy
0

JX) =

in which ' = dh/dw.

In order to keep notations simple, we now set the origin
of times so that 7y = 0 and write U(t) = U (t,tp = 0). As a
consequence of the property U(t + T,t0 +T) = U (t, tp), we
have

Ut +nT)=U®IUMD)] (A2)

for integer n. This suggests that the long-time evolution of
the system is mainly controlled by the matrix U(T), called
the Floquet operator or monodromy matrix. This can be made
precise by writing

U@)=V@)er (A3)

in which F = (1/T)logU(T) and V(¢t) = U(t)e™'F satisfies
V(t+T)=V(t). This decomposes the evolution operator
in a periodic part V(t) = V(t +T) and a nonperiodic part
related to U (T'). The eigenvalues p; of U(T) are called Flo-
quet multipliers, and we also defined the Floquet exponents s;
such that u; = % (the exponents are related to the eigenvalues
of F by a factor T').

In the case of a periodic orbit, the Lyapunov exponents
A; are given by X; = log|u;| = Re(s;), while the covariant
Lyapunov vectors are directly the eigenvectors of U(T) (in
case of degeneracies, the Floquet eigenvectors at least span
the same spaces as the covariant Lyapunov vectors) [55,112].

2. Floquet analysis of the Hopf-pitchfork system

We start from Eq. (17) and compute the Jacobian (2). The
variables are X; = Re(z) =x, X; =Im(z) =y, and X3 = w.
Matrices and vectors follow the ordering (X;, X», X3). Pertur-
bations 6X satisfy

8X = J(X(1))8X. (A4)
A direct computation shows that the Jacobian is
—0f + fi2xy — Bi(x* +3y7)  [yex — yylH
o + Bi2xy + B +3y°)  [yix + yyl (AS5)
0 r—3w?

Evaluating the Jacobian on the limit cycle solutions with radius R and angular frequency 2 (the expression of which is given

as a function of the parameters in the main text), we find
2R*[Bic? — Bics]
Q + 2R?[Bic? + Bres]
0

J@)=J(X (1)) =

where we have temporarily set ¢ = cos(£2¢) and s = sin(€2t),
and in which R and Q are functions of the parameters of the
system.

We then perform a time-dependent unitary change of basis

XX =Vi)X (A7)
with
cos(2t) sin(2r) 0
V=|—sin(Q2) cos(2t) O (A8)
0 0 1

—Q+ 2R*[—Bis* + Bres]  R(yec — pis)
2R?[Bes® + PBics] R(yic + e’ |, (A6)
0 r—3w?

(

to go to the frame rotating at the frequency €2 about the w axis.
In the rotating frame, perturbations §X’ = V (¢)8X follow

8X ' =V8X +VSX = (Vv + VIV hHsx’ (A9)
so the Jacobian transforms as
J&)—>J@&)=vvi4+vivl (A10)
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Here this expression reduces to

2R*B, 0 Ryl
J =|2R*8 0 Ryl (A11)
0 0 r—3w?

As J’ does not depend on time, the solution of Eq. (A9) is

§X'(t) = €' 5X'(0). (A12)
Hence, going back to the original reference frame,
8X (1) = U(1)8X(0) (A13)
in which
Ut)=V'0)e’'v). (A14)

As V(T)=1, we find that the Floquet operator is
U(T) = e"’". Hence, the eigenvectors of U(T') are identical
to those of J', and the eigenvalues p; of U (T') (Floquet multi-
pliers) are obtained from the eigenvalues ¢; of J' as p; = e’
A direct calculation gives

0
=11,
0
| Ry, (r — 3w?)
Vo = N R R(yir + 2R*(Biv: — Brvi) — 3nw?) |,
2 (r — 2B:R* — 3w?)(r — 3w?)
1 Br
V3 = Bi (A15)

B+ B2\ 0

in which N, is a normalization factor. The corresponding
eigenvalues are

€ =0, € =r—3uw? €3 =2R’B..  (Al6)

Please note that the ¥, in Eq. (A15) are the CLVs evaluated
att =0,T,... [namely, c,(0) = v,]. The CLVs at arbitrary
time c,(¢t) o U(t)y, are obtained by applying the evolution
operator. In the case of periodic orbits, it is convenient to
choose the phase to obtained time-periodic CLVs c,(t) =
e U (1) = calt +T).

We now look for the limits of i; when r — 0. We have
w = +/r when r — 0" (from above), while w = 0 when
r — 0~ (from below). The eigenvectors ¥ and 13 do not
depend on r, so we focus on ;.

First case. Assume h'(0) # 0. In this case, we find that as
r — 0 (from above or below), iy, — (0, 1, 0) provided that
Bivi — Brvi # 0. [When this last condition is not met, ¥, —
(1, W' (0)Ry;, —2B:R*) /N> ]

Second case. When I/ (w) = w*, the situation is more sub-
tle. For r < 0, we always have /' =0, so ¥, — (0,0, 1) as
r— 0".Forr >0,k =r*%and

r“/zR)/r(—Zr)

1
Yo = o r*2R(yir + 2R*(Bivy — Bevi) — 3yir)
: 4r(r + BR?)
C, a2+
1 2
~—| ¢ (A17)
N Cir + 4r?

in which C; are constants, N, ensures that the vector
is normalized, and we have retained only the most im-
portant terms as r — 0. In particular, C> = 2R3(Biy; —
B:rvi) (we assume that this does not vanish) and C; =
—2B,R>. Whenao < 2, y» — (0,1,0). When o = 2 and C3 #
0, lﬂg — (0, C2,C3)/N2. When o > 2 and C3 ;ﬁ O, 1//2 —
(0,0,1). When C; =0, we have ¢, — (0,1,0) for o <
4, Y, — (0,C5,4)/N, for « =4, and ¥, — (0,0,1) for
o > 4.

The conclusion of this calculation is that, except in higher-
codimension submanifolds, we have v, — (0,1,0) = vy
(i.e., the Floquet vectors become parallel at the bifurcation)
as r — 0% provided that h(w) ~ w**! with 0 < « < 2. Be-
sides, Yo — (0, 1,0) = ¢y asr — 0~ when #/(0) # 0. In this
case, the Floquet vectors become parallel from both sides,
while in the other cases their behavior at the bifurcation is
discontinuous.

APPENDIX B: Z, SYMMETRIES

While no continuous symmetry is required for the tangency
of covariant Lyapunov vector to happen (besides time transla-
tion invariance), some of the systems discussed in the main
text have a discrete Z, symmetry that interchanges the two
stable attractors and leaves the unstable attractor (repellers)
unchanged. In some cases, these symmetries are expressed as
a time-dependent transformation. In this appendix, we discuss
the general structure of these symmetries, and show how they
emerge in the systems analyzed in the main text.

1. Standard and time-dependent symmetries

Consider a dynamical system

X = f(X) B1)
in which X(¢) € RY and a group G equipped with a group
action p: G x RY — R", We use the shorthand g-X =
p(g, X) to refer to the action of a group element g € G on
a vector X € RY. The dynamical system is said to be equiv-
ariant with respect to the group G (more precisely, the group
action p) when f(g-X) =g - f(X)forallg e Gand X € RV,
This guarantees that the equation of motion for the trans-
formed variables ¥ = g- X are identical to the equations of
motion for the original variables X. (In this Appendix, all
tilded variables are transformed variables.) Namely, Eq. (B1)
implies that X = f(X).

Consider now a time-dependent “group action,” so that
the transformed variable is now X (¢) = p(¢, g X)) =g()-
X (). As an example, let us take a state X € R? represented
(for convenience) as a complex number z = X; +iX, and
the transformation z(¢) — %(t) = e?'z*(¢) (the star denotes
complex conjugation). Applying this transformation two
times is gives back z(7), so we can interpret it as defining a
(time-dependent) representation of the group Z, [187].

2. Systems analyzed in the main text

The pitchfork bifurcation (of fixed points) w = rw — w?

has a Z, symmetry where the transformation is simply @ =
—w. Several of the systems analyzed in the main text have
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a similar Z, symmetry that either maps a steady state of the
system to itself or interchanges two steady states:

The pitchfork of attractors Eq. (16b) is invariant under the
transformation w — W = —w when g(x, w) is even in w [i.e.,
gx, —w) = g(x, w)], with x left invariant by the transforma-
tion (i.e. ¥ = x).

The Wilson-Cowan Eq. (30) is invariant under ¥; = —x;
when h; = 0.

The predator-prey model in Eq. (31) is invariant under the
transformation ity = u,, Uy = vy, i, = uy, Vo = v; (because
we have chosen identical parameters for the two prey-predator
subsystems).

In all of these systems, the symmetry acts as a reflection
interchanging the stable states, and leaving the unstable state
invariant.

Other systems do not posses such a simple symmetry, but
do exhibit a time-dependent Z, symmetry.

Consider the pitchfork of limit cycles (17). When h(w) =
w, the frequency of the limit cycle depends on w, making
a simple reflection (i = —w, Z = z) insufficient: this trans-
formation is not a symmetry, as it can be verified explicitly.
Nevertheless, Eq. (17) has a time-dependent symmetry under
certain conditions on the parameters. Consider the transfor-
mation

> 7= eiZIm(a)lZ*’
(B2)

W W= —w.

As in the case of a single pitchfork, the equation of motion
for w is equivalent to the @ equation of motion. Let us now
consider the other equation of motion. From the definition
(B2) of Z, we get

Z = (& +1i2Im(er)z*)em @), (B3)

We start with the equation of motion (17) for z and complex
conjugate it to obtain

where we have used that 2(w) € R. Hence,

Z=[(a"+ B zI*) 2" + y*h(w)* + i2Im(a)z*]e ™"

(B5)
= [(a* + B* 1z1*) + y*h(w) + i2Im(a)]Z (B6)
= [(* + B*IZ1*) £ y*h(d) + i2Im(a)]Z, (B7)

where we have replaced A(w) by £h() = £h(—w) = h(w),
where the + depends on whether /4 is odd or even (cases where
h is neither odd nor even are not considered). We have also
used that |7|> = |z|>. Assuming in addition that 8 € R and that
+y* =y, we end up with
Z=[@" +i2lm(a) + B 21) + yh(@)]z  (BY)
= [(@ + B2 + yh(@)]z. (B9)
Hence, we have shown that the equation of motion for (Z, @)
is identical to the equation of motion for (z, w) provided that
B € Rand y*h(w) = yh(—w).
Similarly, Egs. (28) describing coupled nonlinear oscilla-
tors are invariant under the transformation

2| _ ner| 2]

Jl=e b

22 Zz
First, we have

2| gi2er| &7 Fi20027
5 5+ 207

Complex conjugating Eq. (28) yields

] _ [(a—iw) + blz|? an Z
ki—[ o (@—io) + bl [z P

where we have assumed that a, w, b, ay», a; are real. The

(B10)

(B11)

= (a* + B 21 2* + v h(w)z", (B4a)  two previous equations combine to give
J
G L [@—io+i20)+ bz an zf (a+iw)+ bz an Z
. =€ = .
o) any ((1 —iw+ 120)) + b|22|2 Z; an (a + 10)) + b|22|2 2

Therefore, the equations of motion are equivalent in both
the 7 and Z coordinate systems: Eq. (B10) is a time-dependent
symmetry of Eq. (28) [when a, w, b, aj», ap; € R].

The time-dependent symmetry transformations can be
understood as the systems being invariant under complex con-
jugation in the rotating frame. The bifurcations of limit cycles
analyzed in the main text fall in two classes:

(1) Systems with a time-independent Z, symmetry
(Wilson-Cowan model, Rosenzweig-MacArthur model), for
which the CLVs are discontinuous at the bifurcation like
Eq. (17) with h(w) = w?,

(2) Systems with a time-dependent Z, symmetry (coupled
Hopf oscillators), for which the CLVs are continuous at the
bifurcation, like Eq. (17) with h(w) = w.

(B13)

It is not yet known whether the relation between the two
classes of symmetry and the behaviors of the CLVs is general.

APPENDIX C: PITCHFORK OF TORI AND
HIGHER-ORDER GENERALIZED EXCEPTIONAL POINTS

Higher-order generalized exceptional points and general-
ized exceptional points of limit tori can be constructed by
modifying Eq. (17) to include additional Hopf oscillators
and pitchfork bifurcations. We consider N Hopf oscilla-
tors indexed by i =1, ..., N and M pitchforks indexed by
j=1,...,M. The Hopf oscillators are controlled by the
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FIG. 12. Coalescence of CLVs in limit tori. In the main text, we
have discussed the coalescence of CLVs in limit cycles (periodic
evolutions). It is also possible to have a coalescence of CLVs in
limit tori (a limit torus corresponds to a quasiperiodic evolution).
This is illustrated using Eq. (C1) with parameters M = 1, N = 2,
a=0+i1/2+ir), B=(=1,-1), # =(i,0), T = 1. The two
highest Lyapunov exponents always vanish (A, = A, = 0, in red and
orange in the top panel). At the critical value r = 0 of the control
parameter, a third Lyapunov exponent A3 (in green) vanishes. The
angle between the corresponding CLV c¢3 and the two-dimensional
vector space spanned by the CLVs ¢; and ¢4 vanishes at » =0
(bottom panel).

pitchforks as described by the dynamical system
& = (o + B [zl 2 + v h(w),
(CI)

Y P . PR— 3
TjW; = riw; wj,

where y;; is the matrix of couplings of each oscillator to each
pitchfork, and an implicit sum over k is taken. When M =
N =1, the system reduces to Eq. (17). When M =1, N > 1
(i.e., we add additional Hopf oscillators) and at least one Hopf
oscillator is adequately coupled to the pitchfork, the system
will undergo a generalized exceptional point at the bifurcation
of N-tori (under the conditions derived in Appendix A); see
Fig. 12. As r approaches zero, the CLV corresponding to the
pitchfork will approach a vector in the degenerate vector space
spanned by the zero modes of each Hopf oscillator dependent
on the exact choice of couplings. For the system in Eq. (C1),
CLVs can be calculated by decomposing the system into
Floquet problems for each Hopf oscillator, because the Hopf
oscillators are decoupled from each other. By tuning multiple
parameters, high-order generalized exceptional points can be
found, where three or more CLVs align at once [188]. When
M > 1and N = 1 in Eq. (C1), if each pitchfork is adequately
coupled to the Hopf oscillator and each r; is simultaneously
tuned to zero, then the CLV corresponding to each pitchfork
will simultaneously align with the zero CLV of the Hopf
oscillator producing an order-M generalized exceptional point
(Fig. 13). While these examples are obtained by merely con-
sidering a product of independent dynamics, we expect that
they occur at (relatively high codimension) bifurcations in
generic dynamical systems.
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FIG. 13. Higher-order degeneracies. It is possible to have three
(or more) covariant Lyapunov vectors becoming parallel at the same
time. This generalizes higher-order exceptional point (an nth-order
EP corresponds to n vectors becoming parallel, and to a Jordan block
of size n). Here c, ¢, and c3 all become parallel at r = 0. Equa-
tion (C1) with parameters M =2, N =1l,a=1+i,=-1,y; =
(i, 2i), T; = (1, 2) causes three CLVs to merge at r = 0.

APPENDIX D: HYSTERESIS

In this appendix, we show that a nonlinear effect superfi-
cially similar to the dynamical encircling of exceptional points
occurs when the symmetry between the attractors is explicitly
broken. This may provide a mechanism for memory formation
[189] in which the memory is stored in a dynamical state (a
limit cycle, or a more complex attractor).

Consider encircling a generalized exceptional point in one
of the systems analyzed in the main text. To do so, we may add
aterm bw? to Eq. (16b), so the pitchfork bifurcation becomes
imperfect (like a paramagnetic/ferromagnetic transition under
an external magnetic field). In this case, an effect superfi-
cially similar to the dynamical encircling of exceptional points
occurs: the coalescence of attractors exhibits hysteresis. The
effect is, however, fundamentally different: while the chiral
mode conversion in linear systems is a purely dynamical
effect, the number of steady-state solutions changes in a pitch-
fork of attractors when the parameters are varied.

In Fig. 14 we show that hysteresis emerges in the Wilson-
Cowan system by varying the parameters in a closed loop
around the bifurcation point, clockwise and counterclockwise.
The external fields &; break the Z, symmetry of the Wilson-
Cowan equations (see Appendix B).

APPENDIX E: GENERALIZED EXCEPTIONAL POINTS
WITH NONZERO LYAPUNOV EXPONENTS

In the main text, we focus on generalized exceptional
points (EP) with a vanishing Lyapunov exponent. In this
appendix, we discuss generalized EP that have a nonzero Lya-
punov exponent. As an example, Fig. 15 shows the Lyapunov
exponents [Fig. 15(a)] and the angles between the correspond-
ing covariant Lyapunov vectors [Fig. 15(b)] for the system of
coupled nonlinear oscillators described by Eq. (28) and Fig. 8.
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FIG. 14. Hysteresis. Hysteresis can be observed by adiabatically
tuning the parameters around the exceptional point. We consider
the Wilson-Cowan system with the same parameters as in Fig. 9.
We set 1 =h(1,—1,1) and choose the path encircling the EP
(¢, h) = (10.786 + 2 cos(#), 0.5 sin(0)). We then let 6 evolve either
the clockwise (forward) or counterclockwise (backward) direction,
and monitor the state of the system through the period 7 of the
limit cycle. The paths coincide for part of the circle (black curves),
but there is a region between 6 ~ 2.75 where the trajectories of the
system on the forward (red) and backward (blue) path are different,
signaling hysteresis.

(a)

100 { (b)

CLV angles 6;
ul ~
o (6]

N
6]
1

o

03 04 05 06 07 08 09 10 11
parameter a

FIG. 15. Generalized exceptional point with a finite Lyapunov
exponent. We simulate the coupled nonlinear oscillators given in
Eq. (28). At the point a_ = a' = 0.9872 (dark gray dashed line), a
nonzero Lyapunov exponent exceptional point occurs. In panel (a),
the three smallest Lyapunov exponents are plotted. The angle 0,3
between the CLVs ¢, and c; transitions from being aligned to being
in a degenerate space. 0, is the angle from the CLV corresponding to
A to the plane that contains the CLVs of A and X, in the oscillatory
region. We have set a = w = —b =1, a, = 0.1. In panel (a), a_ is
varied from 0.2 to 1.1.

We use the same parameters as in Figs. 8(e) and 8(f), with an
extended range for the parameter a_. As shown in Fig. 15,
there is a generalized exceptional point with Lyapunov expo-
nent A ~ —1 ata’ ~ 0.9872.

In the case of limit cycles, insights about the effect of these
generalized exceptional points can be gained using Floquet
theory, see Appendix A 1. For a_ > a', the two relevant
Floquet exponents form a complex conjugate pair. Therefore,
the CLVs form a degenerate subspace corresponding to the
same Lyapunov exponents. For a_ < af, the Floquet expo-
nents have different magnitudes, so the Lyapunov exponents
are different (the degeneracy is lifted). The generalized EP
at a” marks a change in the transient behavior of the system
similar to the transition from overdamped to underdamped
oscillations towards a fixed point. In the case of a periodic
orbit, Floquet theory allows us to decompose the evolution of
a perturbation X (0) into two parts by writing U (¢) = V (¢)e'F
where V(t + T) = V(¢); see Appendix A 1. The periodic part
corresponds to V (), while the nonperiodic part corresponds to
F (the eigenvalues of which are the Floquet exponents), and
can be measured by performing stroboscopic measurements
of §X(¢) (i.e., measuring it every period). This nonperiodic
part of the evolution describes the overall relaxation towards
the limit cycle, which can be monotonic or oscillatory.

APPENDIX F: ESTIMATION OF THE PHASE
DIFFUSION CONSTANT

In this appendix, we provide details about the effect of
noise in the solvable model discussed in the main text. We es-
timate the phase diffusion constant in for Ornstein-Uhlenbeck
noise (away from the generalized exceptional point) in Sec.
F1, a quartic potential using results from Ref. [190] in Sec.
F2, and higher dimensional analogues of the quartic potential
in Sec. F3.

1. Integrated Ornstein-Uhlenbeck process

We consider the set of coupled stochastic differential
equations

dx; = —ax, dt + o dW,,
dy, = wy x; dt

(Fla)
(F1b)

in which W, is a standard Wiener process and o = /2T . With
x ~w and y ~ ¢, they correspond to a version of Egs. (23)
of the main text where the nonlinear term w? has been re-
moved and wy = 0. (This gives a rough idea of the behavior
of the system when r is large enough for the nonlinear term
to be mostly negligible, which is far from the generalized
exceptional point.) Our goal is to evaluate the variance of the
integral y, of the Ornstein-Uhlenbeck process x; = x(¢).

The stationary distribution associated with the SDE
above is

px) = Ne VOIT, (F2)

where V (x) = ax?/2 and NV is a normalization factor such that
p integrates to unity. In addition, the mean and covariance of
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the stationary (unconditioned) process are
IE['xf] = 07
cov(xs, x) = E[(xs — E[x,])(x — E[x])]

0.2
= Elxx] = %e*“'f*s‘. (F3)

In particuliar the variance of x; is % =
We now estimate the variance of y,. Integrating the SDE,
we find

r
T

V= a)I/ x(s)ds. (F4)
0

Therefore, we have

Ely] = o / E[x(s)lds = 0 (F5)
0

] [ o) [ )

— / dr / dSELx(r)x(s)]
0 0

and

2 2
o° 2 , O

_ 2 —at ~ .
_a)lzg(at—ke —1) Cl)l a2t (F6)

J

in which we have used the expression of the covariance
Eq. (F3) and the property

t t 2 2
f dr / dse™ "™ = —(at + e = 1) ~ =t (F)
0 0 o ar>1 o
with @ = a. From Eq. (F6), we obtain the effective diffusion
coefficient quoted in the main text for a process y, submitted
to an Ornstein-Uhlenbeck noise x;.

2. Integrated quartic-potential noise

We now consider the situation in which the quartic po-
tential of the Ornstein-Uhlenbeck process is replaced with
a quartic potential. This occurs in Eq. (23) as we approach
the generalized exceptional point. The stochastic differential
equations are

dx, = (— ax; — bx?)dl +odW, = =V'(x,)dr + odW,,
(F8a)

dy, = w x, dt (F8b)

with o = /2T . Again, our goal is to evaluate the variance of
v;. These equations correspond to Eqgs. (23) with x ~ w and
y ~ ¢ (and wy = 0). In contrast with the previous section, we
did not remove the nonlinear term (w? or x*). The potential in
Eq. (F8) is

V(x) = 1ax® + 1bx*. (F9)

Here, we consider the case where the quartic potential has a single minimum (i.e., it is not a double-well potential) that
corresponds on one side of the bifurcation (the handle side of the pitchfork). Similar calculations can be performed on the
other side of the bifurcation [190]. The stationary distribution is

_ T [la] & a2 a a?
= Ne VIt h N=" e | Lyl == | — =Ll == F10
pe)=Ne Where 2V 8ot ) T el A\ 8T (F10)
in which I,(z) is the modified Bessel function of the first kind of order n [[191], Sec. 10.25].
Computing the moments yields the mean and the variance
T {2?Usa(%/4) — Lya(% /4 2 a2 /4) — 221y 4(2P /4
E[x] =0 and  Varly] = {27 [ls/4(z°/4) — B3ya(z /2 N+ +2) 1/4(22/ ) =271 14(z7/ )}’ F11)
2|al [U_1/4(z*/4) — (a/la])]14(z*/4)]
[
where we have defined z = a/+/2bT . expression [190]
We will be interested in the limit ¢ — 0, and it is enough I
for our purposes to consider the case a = 0F. Computing the (rxs) = a7 Je ™" (F13)

limit yields
Y in which T is the correlation time (defined as the area under
the curve of the normalized autocorrelation function), that can
i be approximated as
T JATr2(3/4 in turn )
Varlria =0t ={?) = |/ w (F12) )
el —

1
T.(q) = 7 2 (7w Jq +2'7V9),

(F14)

in which T is the Euler gamma function [[191], Sec. 5.2].
Chapter 6 of Ref. [190] gives an analytic expression
for the correlation function. Combined with the variance in
Eq. (F12), this gives the covariance of x;, from which we T r2(1/4)
will obtain the variance of y,. For small enough a (i.e., small ce__ /7
7) the covariance is reasonably approximated by the simple 70 4427

where ¢ = z2/2 and 19 = 1/4/2bT. When a =0 (i.e.. =0
and ¢ = 0), one has

[ —2log(v/2 + 1)] ~ 1.01989.... (F15)
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FIG. 16. Diffusion at a third-order generalized exceptional point in a nonlinear potential. We demonstrate diffusion for Eq. (F18) with
a, =0, oy =0, and all remaining unspecified constants set equal to one. The left and middle panels show an ensemble of y, trajectories at
T =0.01 and T = 1, respectively, with an example trajectory highlighted in red. The rightmost panel plots the variance of y, over time at

various temperatures.

Hence, we get in the limit @ = 0" and when ¢ is large com-
pared to T,

Varly,] = E[y/] = o} / dr / ds (x(r)x(s))

[2F2(3/4)][ j| 5 1
~ | Y| = |t -t
> T, T b

using Eq. (F12) and Eq. (F7) with o = 1/T¢. In the limit
a — 0, the quantity T./7y is given in Eq. (F15). This gives
the effective diffusion coefficient quoted in the main text
(Sec. IVC1).

At arbitrary a, the variance is given by

(F16)

Varly,] = E[y/] = o} / dr f ds (x(r)x(s))
0 0

Té 2 2/.2
H Vprentlr

For a < 0, the diffusion coefficient monotonically decreases
in temperature until the critical temperature scale T,.; ~
a®/4b, implying the system diffuses more slowly with greater
noise intensity. While unintuitive, this can be understood as
follows: In the telegraph noise regime, the y variable behaves
as a one-dimensional active particle undergoing diffusion
with mean free path length ~ t*w;+/a/b where t* is given
by Eq. (27). Lower temperatures lead to longer mean-free
paths and faster diffusion. Diffusion at the exceptional point
arises as the marginal behavior between active and Brownian
diffusion.

(F17)

3. A higher-dimensional example

Consider the coupled stochastic differential equations

dy; = wx,dt, (F18a)
dv, = (ayw, — b1x; )dt + 01dW?, (F18b)
dw; = (agx, byw; )dt + 0 dW,", (F18¢)

where we assume b; > 0 and b, > O for stability. In higher
dimensional examples at exceptional points of order > 3, we
find the system still diffuses more slowly with greater noise
intensity even though the system is unistable, which precludes
an explanation in terms of telegraph noise. In Fig. 16 we show
numerical simulations of Eq. (F18) that exhibit a diffusion
coefficient scaling inversely with temperature.

The diffusion at the third-order exceptional point ex-
hibits similar scaling with temperature in the situation where
a; = ay < 0 (we call a their common value), which admits
similar telegraph noise as above. The equations become

dy, = wx,dt, (F19a)
dx, = —9,Vdt + odW, (F19b)
dw, = —9,,Vdt + cdW,”, (F19¢)
where
V(x,w) = 1bix* + axw + thyw'. (F20)
The stationary distribution is given by
p(x) = Ne /T ywhere
N = 7lal [1/4( ) + 1/4<—a2 >2}
22bib, AT \/biby 4T /b1by
F21)

in which I,(z) is the modified Bessel function of the first kind
of order n [[191], Sec. 10.25].

From this, we find the variance of x; with respect to the
steady state distribution to be

1 \/_7.[’1"621 I)lh

Varpy] = - Y0
N b,

(F22)

a2
Importantly, the equation contains the factor e*’v*1”2 which
is nonanalytic in T, by, b, and therefore inaccessible through
perturbation theory. We again use the approximate time cor-
relation expression (F13), but due to the system now being
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two-dimensional, there is no identical exact solution for the
correlation time. Instead we use the approximation found
in [190]
C,(0
7:: ~ _L
G (0)
in  which C,(0)= Var[xg] and C.(0)=E[x%]=
E[xo(awy — blxg )]. Taking the expectation with the steady
state distribution, we find

E[xo(awo — blxg)] =-T,

(F23)

(F24)
and finally, the diffusion of y, is found to be
Varly,] = E[y/]

12 t
2 2122 ¢

= d d ~ 2 — (F25

) A r/o s {(x(r)x(s)) .t on (xl) T (F25)

a2

~ 320w}, BTe t
I a 2 a 212
Tra [1—1/4(4T./b1b2) +11/4<4T«/b1b2> ]
4r(3)'et
—F 1.

7T2b1
The diffusion constant (F26) is monotonically decreasing in
temperature for a < 0 towards a finite value equal to the in-

tegrated quartic-potential diffusion constant up to a numerical
coefficient.

(F26)

T—o0

4. Analysis of the plankton food web model

In this appendix, we analyze a set of coupled Rosenzweig-
MacArthur-like equations used in Ref. [175] to model
laboratory experiments on a plankton food web isolated from
the Baltic Sea [29]. Following these references, we consider
Nprea consumers (predators) feeding on Ny resources (prey).
The populations u;(¢) of resources and vi(¢) of consumers
evolve according to

Nore Nore
du; T U0 " 8kuivi Bik
E:riui 1-— K _ZNprey—’
=1 o1 2ot wiBik + Hi
(F27a)
Nove
d grve( Do uiBin
v _ son( 25 wibi) —_— (F27b)

a5 Npre
de 3T uiB + Hi

Here we take Npreq = Nprey = 2 (so the state of the system
is described by X = (u,up, v, v2)), and r =r =1,
Ki=K=1, m=m=m=>~0.12, g =g =gx~1.5,
H1 :H2 =H ~ 1.1, o1l = Oy = 1, Oip =0 =0 = 1.2,
Bi1 = P =1, B1a = P21 = B. The parameter B quantifies
the coupling through predation and is taken as a bifurcation
parameter. For these values, we find that a bifurcation takes
place at B. >~ 0.02275. We have slightly modified the numeri-
cal values used in Ref. [175] without crossing any bifurcation
in order to make the system less stiff, and the calculations
of the LEs and CLVs easier. We take as initial conditions
X (0) = (u1(0), u2(0), v1(0), v12(0)) = (0.5,0.1, 0.5, 0.5) and
(0.1, 0.5, 0.5, 0.5). For the parameters considered, these are
in the basin of attraction of the only limit cycle below the

bifurcation [Figs. 11(a)-11(c)], and in the respective basins of
attractions of the two stable limit cycles above the bifurcation
[Figs. 11(d)-11(i)].

A direct integration of Eqgs. (F27) is performed using a
LSODA approach with automatic switching between a nons-
tiff Adams method and a stiff BDF method as implemented in
Mathematica NDSolve. The numerical integration is carried
out for a long number of periods (of the order of 5000 pe-
riods) in order to obtain a good approximation X (¢) of the
limit cycle. A precise estimation of the period T is obtained
by tracking the extrema of u;(¢) using a Brent-Dekker root-
finding method as implemented by Mathematica WhenEvent.
We then solve

SU =JX@)U (F28)

with initial condition U(0) = Id (Id is the identity matrix)
from t =0 to t =T, in which the Jacobian of the vector
field defined by the right-hand side of Eqs. (F27) is computed
analytically. Evaluating the solution U(¢) at the final time
gives the Floquet operator U (T).

Diagonalizing the Floquet operator U (T") produces eigen-
values w; and eigenvectors w;. The LEs are identified as
A; = log ||, while the CLVs at time t = 0 (modulo a period)
are ¢;(0) = wj;, perhaps up to a normalization. We then apply
the evolution operator U (¢) to find ¢;(t) = U (¢)c;(0). Finally,
we compute the angles 6;;(t) between the CLVs, that satisfy
cos 0;(1) = ci(t) - &;@)/LIIci®)]l |€;(@)]l]. We emphasize that
these angles depend on time. In order to quantify how align
are the CLVs, we compute the average of [sin 6;; (¢ )]? over one
period.

Typical trajectories are shown in Figs. 11(a)-11(i). We
observe that below a critical value 8. >~ 0.02275 of the param-
eter B describing coupling through predation, a single limit
cycle exists, with the two predators in antiphase (as well as
the prey); see Figs. 11(a)-11(c). As shown in Fig. 11(c), the
projections of the cycle in the (1, v;) and (u,, vy) planes are
identical. For 8 > B, two limit cycles are present, with the
two predators oscillating with a dephasing §¢ that is neither
zero nor 7 [Figs. 11(d)-11(@)]. Figures 11(f) and 11(i) show
that the projections of each cycle on the (u;, vi) and (u2, v2)
planes are now different, and the roles of both populations
are exchanged between the two limit cycles. We plot as a
function of S the two Lyapunov exponent closest to zero
(A1 =0 and A,) in Fig. 11(j) and the average angle between
the corresponding covariant vectors in Fig. 11(k) (more pre-
cisely, we plot the average (sin’(f1,)) over one period, in
which 6y, is the angle between the CLV ¢&; (i = 1, 2), because
only the directions corresponding to the CLVs are physically
meaningful, so £¢; are equivalent). We find that the Lyapunov
exponents vanish at the bifurcation. The angle ), between the
CLVs also vanishes, and its behavior is discontinuous from the
left through the bifurcation. Figure 11(1) shows the dephasing
between the predator densities. Finally, Fig. 11(m) shows the
instantaneous quantity sin” 6}, (¢) over one period for different
values of 8. We observe that the angle between the CLVs
depends on the location on the periodic orbit. Even away from
the generalized EP, small values of the angles may occur at
some points of the limit cycle. For 8 — B, the instantaneous
angle 61, (¢) becomes arbitrarily small all along the limit cycle
(black curve).
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FIG. 17. Free rotation of a solid body in Rayleigh-Bénard convection. We reproduce from Ref. [30] figures summarizing their experimental
results. (a) Description of the system: a temperature gradient AT is applied to a cylindrical convection cell containing a solid body freely
rotating about the axis of the cylinder. The angular position 6 of the body with respect to a fixed axis is recorded. (b) When AT is increased,
the system bifurcates from a state with no average rotation to a state with finite average rotation speed. The magnitude of the rotation speed
is determined by AT (it is approximately a square root of the distance to threshold) but its sign is random. (c) Observation of time series
of the angle 6 in the high-AT regime shows that there are frequent reversals of the rotation: the system switches between clockwise and
counterclockwise motion. (d) The distribution of sojour times in the (counter)clockwise states is approximately exponential, as evidenced by
the tail distribution [F(t) is the cumulative distribution; the probability density function is p(t) = F’(t)]. Dashed lines are fits by F(t) =

1 —exp(—1/7*). Panels (b)—(d) are adapted from [30].

APPENDIX G: EXPERIMENTAL EXAMPLE: FREE
ROTATION OF A SOLID BODY IN A CONVECTION CELL

As an illustration of the integrated telegraphic noise dis-
cussed in Sec. IVC2, we now compare in Fig. 17 the
predictions of the normal form Eq. (23) to experimental re-
sults from Ref. [30]. In this work, a plate is immersed in a
cylindrical convection cell. The plate can freely rotate about
the axis of the cylinder. A temperature gradient AT is im-
posed between the top and bottom of the cell, leading to
Rayleigh-Bénard convection. The rotation of the plate due
to its interaction with the fluctuating flow is then monitored
through its angle 6 with a fixed axis. At low temperature gra-

dients, the average rotation rate (10]) vanishes. As AT passes
a critical value AT, the average rotation rate (|0|) becomes
finite. In this regime, reversals in the sign of the rotation rate
are observed, and are reported to follow a Poisson process.

Rather than performing a first-principles model of this ex-
perimental situation and trying to reduce it, we make a guess
and directly identify » = (AT — AT.)/AT. in Eq. (23). Our
simple model then reproduces the experimentally observed
(1) square-root-like behavior of (|6|) with AT, (ii) the two
classes of behavior in time of 6 (compare panels (e) and (f) of
Fig. 7 with the two regimes [in blue and red, respectively] in
panel (c) of Fig. 17) and (iii) the Poissonian distribution of the
reversal times.
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