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Nanoscale self-localized topological spin textures, such as domain walls and skyrmions, are of interest for
the fundamental physics of magnets and spintronics applications. Ferrimagnets (FiMs), in the region close to
the angular momentum compensation point, are promising materials because of their ultrafast spin dynamics at
nonzero magnetization. In this work, we study specific features of the FiM domain wall (DW) dynamics, which
are absent in both ferromagnets (FM) and antiferromagnets (AFM). In low-damping FMs and AFMs («¢ <« 1),
the nonstationary forced motion of DWs is characterized by slow (z4 o 1/a) changes of the DW’s velocity
and internal structure for all accepted values of the DW energy E and its linear momentum P—a consequence
of the stability of DWs for any value of P. In contrast, the dispersion law of FiIM DWs has specific points,
P =P, and E, = E(P,), such that stable DWs are only present for P < P, i.e., P, and E,, act as endpoints
in the E(P) dependence. We show that when a field-like torque driven DW reaches this endpoint, it falls into a
highly-nonequilibrium state with the excitation of fast (f < #4i5s) and highly-nonlinear intrawall magnetization
dynamics, covering a wide frequency range up until the frequencies of propagating spin waves. The domain
wall finally throws off an “excessive” energy by a short “burst” of the propagating spin waves and returns to the

stationary state; the full picture of the forced motion is a periodic repetition of such “explosive” events.

DOI: 10.1103/m5zv-1bgl

I. INTRODUCTION

Domain walls (DWs) in magnetically ordered materials
are transition regions of nanometer width that connect wide
domains with different orientations of spins. They possess a
number of interesting features, such as topological stability
and the possibility of controlled manipulation, including im-
plementing high-speed motion. DWs are of great interest for
the fundamental physics of magnets, as well as for various
applications, such as high-density information storage [1,2]
and logic [3,4] devices. For these applications, the forced
motion of a DW under the action of a relatively weak driving
force (applied magnetic field [5] or spin torque [6]) is of the
main interest. From the viewpoint of fundamental physics of
magnetism, these spin textures can be treated as magnetic soli-
tons, important objects in the context of highly nonlinear spin
dynamics. Solitonic characteristics of the DW moving with
the velocity v, in particular, its structure and the maximum
value of its velocity v, are usually treated for dissipation-free
limit [7]. Here, the important characteristics are the dependen-
cies of the DW integrals of motion, its energy E, and its linear
momentum P, on the DW velocity.
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The results obtained in the dissipation-free limit, allow
the construction of a simple and universal description of the
forced motion of the DW for the case of interest, weak dissi-
pation, when the dissipative constant o < 1 is small (usually
o < 1072), and, accordingly, nonsmall velocity of the DW till
v, can be reached at the small value of the driving force, pro-
portional to «. This approximate description is based on the
perturbation theory for solitons using the collective variables
approach [8-13].

Within this approach, for nonstationary motion of the DW,
the rate of change of its parameters (energy, velocity, etc.) is
again of the order of «. If these conditions are met, the change
in momentum is described by the following equation,

b F F 1

dt = Lfr + F, ( )
where Fy, and F are the viscous friction and driving forces,
respectively. Usually, the friction force is proportional to
avE(v). For nonstationary motion, the DW’s momentum
changes according to the Eq. (1), and all DW’s parame-
ters, the energy and the velocity v = dE(P)/dP, follow the
dependence E(P) (the DW’s dispersion law) found in the
dissipation-free limit.

The velocity of the stationary motion d, P = 0 can be found
from the balance of forces, F; + F = 0. However, for many
magnets, the energy of the DW moving with any possible
DW velocity v < v,, and, consequently, the frictional force, is
limited from above. If the driving force exceeds this maximal
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FIG. 1. Different DW dispersion laws depending on the spin
imbalance parameter of a FiM. Solid and dashed lines represent
stable and unstable branches, respectively. Below, the illustration of
a GdFeCo FiM sample is depicted, where a scaled strip shows the
Néel vectors’ orientation (red arrows) forming a DW. The external
magnetic field is applied along the easy axis of the FiM, creating a
driving force for the DW. X and ¢ show DW collective coordinates,
the position of its center, and the rotational plane angle inside, respec-
tively. The inset shows the magnetic configuration of the GdFeCo
cell at the AMCP.

value of frictional force, the DW momentum increases without
limit, and the driven DW motion manifests nontrivial features
determined exclusively by its dispersion relation, which is
extremely different for different magnets.

In antiferromagnets (AFMs), DW dynamics is governed
by a “Lorentz-invariant” dispersion relation, which implies
the absence of a maximal frictional force. In contrast, ferro-
magnetic (FM) DWs exhibit a periodic dispersion with the
function E (P) limited from above, resulting in nonmonotonic
yet stable dynamics at F > Fy,x, a phenomenon known as
“Walker breakdown”. Ferrimagnets (FiMs) can realize both
the FM and AFM limits and, uniquely, exhibit a terminal dis-
persion characterized by an endpoint at a critical momentum
P.; and corresponding energy E.. = E(P,;). Beyond this point,
stable DWs no longer exist - stability is maintained only for
P < P, see Fig. 1, where all possible types of dispersion laws
for FiM DW are shown. The latter scenario is the central focus
of this paper, as it reveals a fundamentally distinct dynamical
regime arising in FiM. However, let us first discuss each of
these cases in more detail.

II. DW DYNAMICS IN MAGNETIC MATERIALS

In FMs, the spin dynamics is described by the fa-
mous Landau-Lifshitz equation [14] for magnetization M
or, equivalently, the spin density S, which are related as
M = —gupS, M| = M,, where g is the Landé factor (g-
factor), and wp is the Bohr magneton. This equation is
determined by the Lagrangian that contains a nonanalytic term
A0S/0r with the singular vector function, vector-potential
of the Dirac monopole field A(S) (see, e.g., the mono-
graph [15]). As a consequence, the dependence E(P) is
periodic [16,17], Epm(P + 2P0,FM) = Egpm(P) with the uni-
versal period 2Py pm = 2My/y = 2w hS per one atomic chain,
perpendicular to the DW plane, where 7 is Planck’s constant,
and y = gup/h is the gyromagnetic ratio.

The limit velocity of free motion of an FM DW, v, gy,
is proportional to some relativistic constants, the magnetic
in-plane anisotropy, or the magnetic dipole interaction; v. pm
vanishes in the exchange approximation. The DW energy and
the value of the friction force are limited from above, F;, < F.
If the driving force for the FM DW exceeds this maximal
value, a nontrivial effect appears: a nonmonotonic motion in
response to a constant driving field, the so-called “Walker
breakdown”, which has been well known for decades [18].
This effect is a direct consequence of the E(P) periodicity,
which is formally common to that for Bloch electrons, and,
despite the different physical origins of the periodicity, the ef-
fect on DWs can be treated as an analogy of Bloch oscillations
for electrons moving in a crystal under an action of a strong
electric field.

For AFMs, the character of spin dynamics is entirely
different. For a two-sublattice AFM the spin dynamics can
be described by a closed equation, the so-called o-model
equation, for the single dynamical variable, the normalized
Néel vector 1 = (S; — S,)/2S, where S is the spin density of
one of the sublattices. Here, the singularities present in the
equations for S; » cancel each other, and the o-model equa-
tion possesses formal “Lorentz” invariance with the chosen
speed ¢, which equals the minimal phase velocity of magnons
and is determined by exchange interaction only, see, e.g.,
[7,19]. This value has a sense of the limiting velocity of
moving DWs. The dependencies of the freely moving DW
on its velocity or momentum are the same as for the usual
particle in relativistic mechanics, Eapv(v) = Ep/+/1 — v2/c?
or Expm(P) = VEZ + ¢*P?, where Ej is the “rest energy” of
a DW. Thus, for AFM DW, the energy and, consequently, the
friction force grow infinitely as v — c. For this reason, the
velocity of the steady-state motion of the AFM DW driven by
a constant force monotonously increases with the increasing
force, approaching the limit value c, that was demonstrated
experimentally for many AFMs, e.g., orthoferrites [19]. The
value of ¢ is quite large, typically tens of km/s (20 km/s
for orthoferrites), making AFM DWs suitable for high-speed
spintronic applications [20-23].

A more common class of magnetic materials includes
ferrimagnets (FiMs), which have magnetic sublattices with
AFM exchange coupling and antiparallel orientation of the
sublattice spins in the ground state. Contrary to AFMs,
the sublattices are not equivalent, in particular, they can
have nonequal spin densities S} # Sz, (S1.2 = |S1.2]), different
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g-factors, etc., see, e.g., Ref. [24] . For a significant difference
of sublattice spins, the spin dynamics in FiMs is the same as
for standard FMs; otherwise, for the case of the exact balance
of sublattice spins, §; = S, FiMs resemble AFMs. As has
been mentioned above, the nontrivial feature—the presence
of an endpoint in the dispersion law of the DW—is unique for
FiMs and has no analogs for FMs or AFMs [25].

Let us compare the properties of FiMs and AFMs in more
detail. The principal difference between FiMs and AFMs is
that magnetic sublattices of a FiM consist of nonequivalent
magnetic ions (or identical ions but in different crystallo-
graphic positions); as a consequence, they generally have
nonequal spin densities S; # S> (S; = |S;]) and can have dis-
tinct g-factors. The temperature dependencies of S;, S, can
also be different, allowing two compensation points in the
ground state: the magnetization compensation point, where
the net magnetization is zero, M; + M, = 0, and the angular
momentum compensation point (AMCP), characterized by a
zero net spin density S; + S; = 0. At the AMCP, where the
spin densities of sublattices coincide, the spin dynamics of
FiMs is, in fact, antiferromagnetic, and all AFM features, in-
cluding the aforementioned exchange enhancement of the DW
limiting velocity and Lorentz-invariance of the DW dynamics,
are manifested [24]. Thus, by adjusting the spin compensation
of two sublattices either by the temperature [26,27] or the
material composition [28,29], the limiting velocity of DWs
can be substantially increased [30—40]. FiM thin films are
also more easily fabricated than crystalline AFMs; even amor-
phous alloys like the famous Gd,(FeCo),_, can have FiM
ordering with the AMCP about x = 0.25. In addition, due to
the aforementioned difference in g-factors, FiMs can have a
nonzero magnetization at the AMCP, simplifying the control
of DWs by a magnetic field. It is, therefore, not surprising
that much attention has been paid to these materials in recent
years. Far from the AMCP, the spin dynamics is practically
the same as those of FMs. However, it turns out that in the
most interesting region of close vicinity to the AMCP, where
S1 # S, butv = (851 — $2)/(81 + $2) < 1, the dynamic prop-
erties of the DWs are much more intriguing than for both
limit cases, FMs or AFMs. The analysis of the DW dispersion
law for a simple model demonstrates the presence of quite a
nontrivial element, the so-called endpoint at some finite value
of the momentum [25]. Such behavior should manifest itself
in the unique characteristics of the forced motion of the DWs
in nearly-compensated FiMs, which is absent for both FMs
and AFMs. In particular, as we demonstrate below, FiM DW
develops “explosive” instability once reaching the endpoint,
resulting in a sudden release of accumulated energy in the
form of propagating spin-wave bursts.

III. ANALYTICAL FRAMEWORK

The nonlinear spin dynamics of a two-sublattices FiM
not far from AMCP can be described in the way, common
to AFMs, in terms of the AFM Néel vector 1 and normal-
ized net angular momentum vector s = (S| + S)/Siot- The
vectors 1 and s satisfy the relations s-1=1v and s> + 1> =
1 4+ v2, where v = (S, — $2)/(S1 + S>) defines the value of
spin imbalance. In close proximity to the AMCP v « 1, the
quantities v and s = |s| are small, and the vector 1 can be

treated as unit. Within this approach, s plays the role of
a slave variable; it can be expressed through 1 and 9l/9z.
Finally, the ferrimagnetic spin dynamics can be described by
an equation that contains only the Néel vector 1, the so-called
generalized o-model equation [24]. Since [l| =1, it is con-
venient to write down the Néel vector in angular variables
1 = {sin 6 cos ¢, sin O sin ¢, cos 6}.

This generalized sigma-model equation can be written
by variation of the Lagrangian L = [ drL[l] and dissipation
function Q. For the dissipation function, we will choose the
simplest Gilbert form Q = a/S;/2 f(al/at)zdr.

The Lagrangian density may be decomposed as L[I] =
T 4+ G —W. The kinetic part has the same form as for
“pure” AFMs, T = (A/2¢2)(3,1)%, where ¢ = /Awe: /ASy: is
the characteristic speed, which coincides with the minimal
phase velocity of spin waves at the AMCP v = 0, w,, = Yy H,,
is the frequency defined by the exchange field H,,, and A is
the constant of nonuniform exchange [24].

The gyroscopic term GIl], linear over first time deriva-
tive of the vector 1, has the same structure as the dynamical
term for the Landau-Lifshitz equation, G = —A(S; — S2)Ad,],
where A = A(l) is singular vector function, vector-potential
of the Dirac monopole field with a unit magnetic charge,
royjA = 1; it differs from that for FM by replacing S — S§; —
S, [24].

Finally, W[l] = (A/2)(VD)? + w,(]) is the static energy
density of the FiM, written through the vector 1 only and
including the nonuniform exchange energy with the constant
A and anisotropy energy w,.

The knowledge of the Lagrangian allows us to write down
the expressions for the energy and linear momentum of
the DW

E = /dr(T + W), (2a)

P= /dr[h(S] —S)A - VI— A/ @BV, (2b)

A qualitative analysis of the DW dispersion law can be done
using a general traveling wave ansatz 1 =1(¢), £ = x — vr.
The analysis for a FiIM with nonzero spin imbalance, in this
case, can be carried out on the basis of the known FM solution
by substituting & — &/+/1 — v2/c? and reassigning the coef-
ficients of the gyroscopic term, which is valid for an arbitrary
form of anisotropy energy, see Ref. [41] for more details. In
the following, however, we consider the peculiarities arising
for the FiM, limiting ourselves to the simplest form of the
biaxial anisotropy energy, which in the angular variables reads
w, = 1K sin> O(1 + psin® ¢), 3)
where K > 0 is the constant of the easy-axis anisotropy (ex-
pressed below through characteristic frequency hiw, = K/Si)
and the parameter p determines the anisotropy in the basal
plane K;, = pK. Here, the axis z is chosen to be the easy axis
of the FiM so that the ground state corresponds to 8 = 0, 7.
For this model, an exact analytical solution for an FM
DW, in the form of ¢ = const and 6 = 6(£), was con-
structed by Walker [42]. The corresponding generalization
to the FiM case—suitable for describing DW dynamics near
the AMCP—is obtained by the aforementioned relativistic
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rescaling of the DW coordinate & and replacing the FM
gyrotropic prefactor. This generalized Walker solution then

reads [43]
cos® = tanh [i},
lo(v)
A [ 1=/
w0 =T s o
v __ p~AK singcosd (4b)

V1 —1v%/c? TV ASw V1 ~|—,osin2¢'

Here, Iy has the meaning of the DW width, and the v-
dependence of ¢ is determined by Eq. (4b). For the DW in
the rest v = 0, the values of ¢ are 0, 7 /2, =, etc., and the
characteristic scale [ is determined by the interplay between
constants of nonuniform exchange A and anisotropy K. If the
vector 1 inside the wall turns in the energetically favorable
plane zx, i.e., ¢pp = 0, 7w, such a DW is referred to as a Bloch
wall. Otherwise, for nonfavorable plane zy (the angle ¢y =
/2 or 31 /2), the DW is called a Néel wall. The singularity
in Eq. (4b) at v = 0 indicates that velocity v and angle ¢ are
decoupled exactly at the AMCP, where ¢ = ¢p or ¢y for any
velocity v < c.

The expressions for energy and momentum of the moving
FiM DW with the use of Egs. (2) were obtained in Ref. [25] :

V14 psin®¢

E(v.¢)=E , 5
(v, 9) 0 m (5a)
P(v, ¢) = 20ASwd + %E(v, ). (5b)

Dependencies E(P) constructed using Eq. (4b) are shown
above in Fig. 1 for different values of spin imbalance. DW
momentum P is the sum of two terms, which are characteristic
of the FM and relativistic AFM contributions, respectively.
Considering only the first term, the energy is a periodic func-
tion of the momentum, which is typical for FMs. This property
is based on Walker’s result, which states that spatial rotation of
the parameter order within the DW occurs as a planar rotation
(i.e., within a plane defined by ¢ = const) at all velocities. In
fact, even for more general models where this is not the case
and ¢ = ¢ (&), the periodicity holds for angles corresponding
to the minimum and maximum of anisotropy energy with re-
spect to ¢. In the biaxial case, these angles are ¢ = 0, 7 /2, 7,
and so on. Since 0 and m are equivalent, this result remains
valid for arbitrary biaxial anisotropy energy; for more details,
see Ref. [41] .

Considering both terms in the DW momentum, which is
a feature of FiMs, makes the analysis more complicated. It
turns out that while the formal periodicity of E(P) is pre-
served, at a small but finite imbalance v = v, = /pw,/Wey,
the form of dispersion law changes qualitatively. The change
in momentum is nonmonotonic when v < v, and a separate
branch in the dispersion law is formed, which has been shown
to be unstable [25]; therefore, the spectrum of stable DW
motion has an endpoint. This endpoint can be reached when
the DW is forced to move in a nonstationary regime. Indeed,
the friction force derived from the given dissipation function
can be written using the energy of the moving DW, as well as

its velocity [44]:

liSior
A

For any nonzero spin imbalance, the wall energy is limited
from above since Eq. (4b) implies a maximum velocity v, that
is less than c¢. As a result, the friction force is also limited
Fiax = apK/v. When the driving force exceeds the maximum
value of the friction force, the wall momentum should in-
crease monotonically according to Eq. (1), and following the
characteristic dispersion law, the wall should “fly off” from
it. When dissipation is small ¢ < 1, the maximum friction
force F.x 1s also small. However, once the DW reaches the
endpoint, a sudden change in dynamic parameters is expected,
violating the approximation of the soliton perturbation theory
approach [8].

Fr(v) = —«a vE(v). 6)

IV. RESULTS OF MICROMAGNETIC SIMULATIONS

To examine the DW dynamics when it reaches the regions
of instability, we resort to micromagnetic simulations using
the MuMax3 program [45] (see Supplemental Material [46]).
The selected FiM corresponds to a Gdys(FeCo)7s alloy with
c =5.4km/s, we /2w =5THz, K = 100kI/m> (w,/27 =
2.8GHz), p =1/2, and @ = 1073, The cases of the AMCP
and imbalances of 0.4, 0.9, and 2.0 relative to the critical value
v, are inspected. With the help of micromagnetic simulations,
it is also informative to visually inspect the changes, or lack
thereof, that occur when a DW moves. For a better under-
standing, we provide supplementary videos [46] showing the
spatiotemporal evolution of the Néel vector during the DW
motion. The cases of stationary motion and nonstationary
regime for the FM-like scenario are shown in Supple-
mental Material S1-3 and described in the Supplemental
Material [46].

The cases of interest are considered for the spin imbal-
ances of 0.9v.; and 0.4v.., chosen based on the characteristic
placement of stable branch endpoints. At v = 0.9v,,, the mo-
mentum value at which the DW enters the instability region
P.; remains smaller than the period Py, P, < Py. In Sup-
plemental Material S4 [46], the result of simulations with
an applied force of 2F,x is presented. Initially, the wall

1.0

o
(&l

N

Velocity v/c
o
(=)

| S aoona®®
PN, V4
1 \\
-05 N4
| Vivee e 0.0 AFM-like o 0.4 (At=0.2ps) 0.9 (At=0.5ps) e 2.0 FM-like (At=10ps)
-1.0 L
¢s (N [ [N ¢s

FIG. 2. Results of micromagnetic simulations. DW velocity vs.
angle ¢ over time. Circles show the results of micromagnetic sim-
ulations, while lines are built according to analytical dependence
(4b), where dashed segments indicate unstable regions found from
the analysis of the dispersion laws. The applied force equals 2F;,x
for a given imbalance value, and therefore, the results are absent for
the AFM-like case in which the nonstationary motion is not realized.
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FIG. 3. Spin waves emission after the DW “explosion”. (a) Shows the spatiotemporal evolution of the magnetization along the film. The
white lines show the propagation with the maximum speed ¢ drawn from the points at which the angle ¢ inside the wall reaches the critical
value. The solid black line follows the trajectory of the DW center, while the dashed black lines are 50 nm away. Dependencies on the driving
force of the power spectral density calculated for the Néel vector following these trajectories are shown in (b), (c), and (d). The dots show the
peaks of the spectra above the background. Horizontal black lines indicate resonance frequencies.

appears stable, resembling a ferromagnetic case, and the con-
nection v(¢) given by Eq. (4b) is maintained, see Fig. 2.
However, when the endpoint is reached, the angle inside the
wall increases rapidly. Although the wall experiences neg-
ative velocities for some time, the motion is described by
fast oscillations around the analytical dependence v(¢) that
eventually dampen. The wall manages to return to a stable
configuration before the next critical point, after which the
process repeats. The rapid passage of the instability region
leads to high-frequency excitations that change the structure
of the wall and can spread beyond its boundaries, see Fig. 3(a).
To analyze them, we computed the fast Fourier transform of
the Néel vector at different places in a frame of reference
moving along with the wall. Figures 3(b)-3(d) show that the
spectrum at the DW center resembles a frequency comb in a
wide frequency range. Those excitations below the resonance
frequencies quickly decay in evanescent modes, but those with
higher frequencies propagate as spin waves far away from
the DW center.

It is important to emphasize that, despite the presence of a
gapped “wall-torsion” mode due to basal-plane anisotropy, the
observed high-frequency emission is not a direct excitation
of this mode alone. Rather, it results from the pronounced
dynamic restructuring of the entire DW configuration. Thus,
the “explosive” events drive even higher-frequency spin-wave
modes, characterized by shorter wavelengths and greater
group velocities, allowing them to escape from the DW
region faster.

Moreover, there is a notable asymmetry in the excitations
on opposite sides of the moving DW. At -50 nm behind the
DW center, the spectral peaks occur at frequencies above the
bulk spin-wave threshold, indicative of genuine propagating
spin waves. The detailed spatial profile of these propagating
waves, shown in Fig. 4, reveals wavelengths approximately
in the range of 30-80 nm. Conversely, at +50 nm ahead
of the DW, the maxima in the power spectral density ap-
pear predominantly at frequencies below the resonance. Thus,
in this forward region, the primary contribution arises from
evanescent modes manifesting as gradually decaying “tails”
of the DW profile, whereas the amplitudes of propagating spin
waves are substantially reduced.

As the imbalance further decreases, the energy and mo-
mentum of the DW inside the instability region are much
higher, e.g., the value of P, can even overcome the period FPp;

see respective dispersion law in Fig. 1. The simulations with
v = 0.4v,, show that the wall initially behaves similarly to the
previous case, but after the “jump”, the wall is not captured by
the first stable region. The features of the wall movement are
stochastic; the dynamics of the angle ¢ may not be attracted
to the stable part of v(¢) at all, see Fig. 2. In Supplemental
Material S5 [46], it is evident that the wall only experiences
a slowdown during the “explosions”; the moments when it
moves back are barely noticeable.

V. DISCUSSION AND CONCLUSION

In conclusion, we have demonstrated that the forced mo-
tion of the DW in FiM near the AMCP exhibits a unique
behavior that is absent for FMs or AFMs. In particular, the
nonstationary DW motion is accompanied by a “splash of
excess energy” when it reaches the endpoints of its disper-
sion law. Such periodic “explosions” are described by the
excitation of fast intrawall dynamics leading to the emission
of propagating spin waves. This emission relaxes the DW
back to the stable branch if the period between falling into
the highly nonequilibrium state is long enough. Unlike the
three-dimensional Bloch-point “jet propulsion” mechanism
reported by Tejo et al. [47], this instability arises solely from
the soliton dispersion endpoint and involves no topological
singularities. To our knowledge, this specific scenario has not
been studied before.

0.1
0.05

- o

-0.05

-0.1

~100 0 100 200 300
Coordinate x (nm)

FIG. 4. Spatial profile of the DW and emitted spin waves. The
components of the Néel vector at a snapshot taken at r = 0.1 ns, see
Fig. 3(a), after the wall reaches the dispersion endpoint (v = 0.9v,,,
F = 2F,,,). Dashed lines mark £50 nm from the wall center—the
two positions used for the FFT analysis in the comoving frame in
Figs. 3(b) and 3(d).
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