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Caldeira-Leggett quantum time crystal: Periodic revival of quantum
coherence by a sub-Ohmic environment
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We propose the Caldeira-Leggett quantum time crystal in which the interaction between a quantum system
and a viscoelastic sub-Ohmic environment leads to periodic revivals of quantum coherence. Using the Caldeira-
Leggett model of quantum decoherence with a sub-Ohmic environment characterized by the spectral function
J(w) x o (0 < s < 1), we discover that decreasing the sub-Ohmic parameter s enhances the coherence lifetime
of Gaussian wave packets, with the purity (i.e. coherence) decaying as ¢ ~*/> throughout the regime 0 < s < 1.

A revival oscillation of the purity with lifetime >/

occurs in the deep sub-Ohmic regime (s < 0.1), which we

call the Caldeira-Leggett quantum time crystal. We reveal that such oscillations originate from the fact that an
environment in the deep sub-Ohmic regime behaves as a gel-like fractal medium with viscosity and elasticity,
suggesting the significance of fractal gel-like environments in vivo and in information processing.

DOI: 10.1103/k1q6-1r6x

I. INTRODUCTION

Quantum decoherence is the process by which quantum
systems lose their coherence and behave more classically due
to interactions with their environment. Decoherence plays a
central role in the foundation of quantum mechanics [1-3],
quantum information [4], and quantum biology [5-12]. Al-
though thermal fluctuations were long thought to suppress
quantum effects in biological systems, this view has been re-
cently reconsidered in terms of open quantum systems [5—12],
which show that the persistence of coherence depends on
the details of system—environment coupling. Recent studies
have also shown that specific environment properties can give
rise to novel quantum phenomena. In particular, in the case
of quantum time crystals by decoherence, quantum oscilla-
tions that are averaged out due to strong quantum fluctuations
emerge during the process of decoherence [13]. Similarly, a
mechanism for persistent generation of dynamic entanglement
even in a hot environment has been considered [14]. These
results suggest that decoherence-based quantum algorithms
might be used in systems where decoherence is likely to occur.
Motivated by these insights, we investigate decoherence in
terms of the nature of the environment, demonstrating that
specific properties of the environment can give rise to novel
quantum phenomena. To quantify this effect, we consider the
Caldeira-Leggett model.

The Caldeira-Leggett model explains quantum decoher-
ence through the entanglement of a quantum system and its
environment. Decoherence in this model occurs by tracing
out the environmental degrees of freedom. Then, it is evident
that decoherence depends on the nature of the environment.
For instance, anomalous diffusion has been observed in living
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cells [15,16], which appears due to the high-density gel-like
environment that can be characterized by fractal Brownian
motion [17-21]. When the spectral density of the environment
is expressed as J(w) «x ® (with @ the angular frequency), it
is suggested that nonintegral values of s may be relevant for
fractal environments [22].

Decoherence can lead to new dynamics in quantum
systems. The term “time crystal” originally refers to the
self-organized oscillations and rhythms in biological systems
[23]. Since 2012, time crystals have been actively studied
as dynamical quantum-mechanical ground states [24-31], but
whether or not such ground states can be realized is still
under investigation. On the other hand, it was shown that time
crystal oscillation can emerge in finite-size systems during the
process of decoherence [13]. Very recently, time crystalline
dynamics was also suggested in fractional Langevin systems
[32]. Here, by investigating the nature of the environment in
detail, we show that the interaction of a quantum system with
its environment can lead to a periodic oscillation between co-
herence and decoherence, i.e., a periodic oscillation between
quantum and classical, which we call the Caldeira-Leggett
quantum time crystal.

This article reveals the s dependence of quantum deco-
herence in the sub-Ohmic regime, where s describes the
power-law exponent of the environment spectral function
J(w) x o® (Fig. 1). We extend the Caldeira-Leggett model
to the case of sub-Ohmic environments and study the pu-
rity p of Gaussian wave packets. Here, p is a measure of
quantum coherence, with p = 1 for an isolated quantum sys-
tem, and the value of p decreases as the system becomes
more classical due to decoherence. We discover that the
smaller s is, the longer the coherence lifetime of the quantum
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Scenario of the Caldeira-Leggett quantum time crystal and time glass obtained from this study. The nonintegral value of s represents

a fractal environment with a fractal dimension D =2 — s/2. Velocity-dependent dissipation occurs in the Ohmic regime s ~ 1, while a
particle in the deep sub-Ohmic regime s =~ 0 is localized in space due to the high-density fractal environment, leading to a position-dependent
oscillatory behavior. We classify dynamical regimes in terms of the autocorrelation function G(1) = Re (R(1)£(0)) / (£(0)?) which is directly
related to the time evolution of the purity p(¢). For 0.5 < s < 1 we obtain a time-liquid regime in which G(¢) decays monotonically without
revivals. Revival of G(z) (and hence revival of coherence) occurs for 0.1 < s < 0.5 due to the long-lived memory of interaction, which is in
turn due to the suppression of high-frequency environment modes. This revival with rapid decay corresponds to the time-glass regime. Periodic
revival of coherence appears in the deep sub-Ohmic regime s < 0.1, which we refer to as the Caldeira-Leggett quantum time crystal regime.

system becomes. Specifically, the purity behaves like r=*/2
over the entire sub-Ohmic regime, which originates from
the suppression of thermal fluctuations due to fractality. The
purity decreases monotonically in the regime 0.5 < s < 1,
which corresponds to the time-liquid regime. Revival of co-
herence occurs for 0.1 < s < 0.5, which corresponds to the
time-glass regime. Then, in the deep sub-Ohmic regime with
s < 0.1, there is a periodic revival of coherence, which we
refer to as the Caldeira-Leggett quantum time crystal regime.
The revival and oscillatory behavior of the purity can be ex-
plained by the dynamics of the environment: we discover that
an environment in the sub-Ohmic regime behaves as a gel-like
fractal medium with viscosity and elasticity, where the viscos-
ity is associated with the loss tangent tan § ~ sin(ws/2). At
s = 0, the viscosity of the elastic environment vanishes, and
the purity oscillates with a finite frequency without damping.

II. RESULTS

A. Purity of a Gaussian state

The Robertson-Schrédinger uncertainty relation between

position £ and momentum p which satisfy [X, p] = ifi is given
by [33,34]
hZ
2 2 4
axxapp O-xp = Z’ (D

where we have used the notation o,,(t)> =

() /2 —

(a@)o(r) + o)
(a(t)) (0(z)). A weaker form of Eq. (1) is the more

famous uncertainty relation o,.0,, > #/2. However, the rea-
son that we consider the stronger form (1) is that it has a clear
geometric interpretation. Suppose that the density matrix for
a system (S) of interest is given by the Gaussian state

ot y) = | eV P00
T

1 _
202 b=
covariance matrix

2

2
W and c = T‘ Then, defining the
\"(

2 2
2 Oy pr
=1 2 |’

Opx Opp

the Wigner function—the wave function in phase space
(position-momentum space)—of this Gaussian state can be

written as
Y\ —ipy/i
= e
2)

with a =

3)

1
Ws(x, p) = 7T dyps<x+§,x—
1 ez

= , €]
2 +/deto?

where Z = [x p]” is the phase-space coordinate. Then, it is
clear that
D = Vdeto? = /002, — 0}, ()

is the area of a Gaussian state in phase space, hence Eq. (1)
means that the lower bound of the phase-space area is 71/2.
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The purity is a measure of quantum coherence, which has the
well-known form in the case of a Gaussian state [35]

i
2D(t)
(6)

where ps(t) = Trg p(¢) is the reduced density matrix of
the system, p(¢f) is the density matrix for the system
plus environment, and Trs and Trg are the trace oper-
ation with respect to the system and environment de-
grees of freedom, respectively. For a free Gaussian wave
packet with the Hamiltonian H = p?>/2M, one can show
that 0y.(1)? = 0% + h*t?/(4M>6?), 0,,,(t)* = */(40?), and
0.p(t)? = It /(4Mo?), which saturates the inequality (1), i.e.
deta(1)> = 1*/4, hence the purity attains its maximum value
p(t) = 1. On the other hand, the purity decreases if the system
is no longer isolated and couples to its environment, where the
uncertainty in (1) increases. Therefore, the phase-space area
D(t) of a Gaussian state is directly related to the coherence of
the system, but the explicit time dependence of D(¢) heavily
depends on the nature of the environment as we show below.

p(t) = Trg s (1] = 27h / dxdpWs(x, p)® =

B. Suppression of decoherence in the sub-Ohmic environment
and the Caldeira-Leggett quantum time crystal

The Caldeira-Leggett model is given by the following
Hamiltonian [36]

1 1| B
Ae— RS2l bk —02], @
L +;2|:mj+/c,(, X)} (M

where the interaction between the system S (variables X and p)
and its surrounding environment E (variables (R ;} and {Pj})
is modeled by springs with coefficients «;. The equation of
motion obtained from the Hamiltonian (7) is the generalized
Langevin equation [37]

M&é(r)+M%/ dry(t — 1)R(1) = Fy(1), 8)
0

which is similar to the Langevin equation that describes
Brownian motion under a “stochastic” force Fy(t), except that
the memory of past interaction with the environment is given
by the memory function y (¢) which is often assumed to have
the following form [22]

20,5(1),
y() = L2 —5p,
T(—s) Y5

s=1

0<s<1 ©)

with I'(-) the gamma function. Equation (9) has been de-
rived using the spectral density J(w) = %Z’;’:l wikjé(w —
w;) with the power-law form J(w) o< @* assumed in the con-
tinuum limit (see Appendixes A and B for detail). One can
see from Eq. (9) that the memory of interactions is lost instan-
taneously in the Ohmic case (s = 1), while the memory of
past interactions remains for a longer time in the sub-Ohmic
case (s < 1). The solution of the system with the assumption
Eq. (9) is given by (see Ref. [13] and Appendix B for detail)

G@)

£@t) = G(1)2(0) + —p(O) + — / dr Gt — 1)Fy(7),

(10)
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FIG. 2. Fundamental solutions of the system (a) G(t) and
(b) G(r). The solution at s = 1 is that of a particle with friction,
while the solution for s < 0.5 is similar to that of a damped oscillator,
which implies that a sub-Ohmic environment behaves as a viscoelas-
tic medium.

with the fundamental solution given by

(1 —e), s=1
G(t) = {tEysol—(0)*™], O0<s<1. (11
wlo sin[wot], s=0
where  E, g(x) = thio —F(a’;{: ) is the generalized

Mittag-Leffler function, which generalizes the exponential
and trigonometric functions [38]. G(¢) and G(t) are shown in
Figs. 2(a) and 2(b), respectively [46].

The solution at s =1 is that of a particle with friction,
while the solution for s < 0.5 is similar to that of a damped
oscillator, the latter being a result of long-lived memory of
interaction.

One can show that (see Appendix D)

Re FOEO))
e—————.
(x(0)?)
so the temporal autocorrelation of the system is given by
G(t). This autocorrelation rapidly decreases in the regime
0.5 < s < 1, reappears in the regime s < 0.5, and reappears
periodically in the regime s < 0.1. These results can be under-
stood as time liquid, time glass, and time crystal. The authors
of Refs. [32,39] classify the regime s < 0.1 as a time-glass
phase. However, in the present work we use the term “time
glass” for s < 0.5 because the first revival of the autocorrela-

tion already appears at that value.

The Caldeira-Leggett model considers the case s =1,
where decoherence is a result of the dissipation of the sys-
tem’s energy into the environment. Therefore, we focus on the
sub-Ohmic regime (s < 1) and investigate how the resulting
oscillatory dynamics influence decoherence. Assuming that
the system at + = 0 is given by a Gaussian state with width

G(t) = (12)
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FIG. 3. (a) Plot of '} (¢) and (b) plot of ', (¢) with MkgT /hi =
1. s = 1 corresponds to the normal Brownian motion with the ther-
mally generated variance increasing as 'y, ~f. s < 1 correspond
to the fractal Brownian motion with I',, ~ #°, meaning that thermal
fluctuation is reduced in fractal environments.

o, the time-dependent covariance matrix of the system can be
calculated from the solution Eq. (10) and we obtain

ot =aot) +ort), (13)

where <7Q(t)2 is the quantum covariance matrix that is given
by

Gy

O'Q(Z)Z =0’ .
MG@)G(t)

i G(1)?
+— .
AM202 | MG(t)G(t)

MGH)G(t)
M2G(1)?
MG(@)G(@t)
. 14
M2G(1)? } )

and o7 (¢)? is the classical thermally generated covariance

matrix
h (2
or(t)y = —[ “

MT (1) s
M2 MU, (1) ‘ (1>

M?T (1)

In the high-temperature limit kg7 >> A2, where 2 is the
ultraviolet cutoff frequency of the environment, we obtain (see
Appendix E)

.(t) = kBZM (2/ dt G(t) — G(t)2>, (16)
0

ksTM

To(t) = Dy(t) = [G(t) — Gt)G(1)], (17)

ksTM

Ty(t) = [1—G@), (18)

which are shown in Fig. 3.

For instance, I'y,(#), which is equivalent to the classical
thermally generated variance (x()?)cjussical Of @ Pparticle, be-
haves as I'y,(¢) ~ ¢ in the Ohmic case as in the Brownian
motion. For the sub-Ohmic case s < 1, we observe that I',,.(¢)
increases as t* while I',,(¢) is bounded by a constant value.
Moreover, for s < 0.1, I'y,(¢) and I",,,,(¢) oscillate periodically
with angular frequency wy. The oscillatory behavior of I, (¢)
in the sub-Ohmic regime was also discovered in previous
studies [32,39] in a different context.

Using the following identity for two 2 x 2 matrices A
and B,

det(A + B) = det(A) + det(B) + tr(A)tr(B) — tr(AB),
(19)

we obtain
D(t) = /deto (1 ?
= |Jdet (62) + det (03) + tr(03)tr(0}) — tr(ch03).
(20)

Therefore, coupling to the environment introduces the ther-
mally generated covariance o7 that increases the total
phase-space area D(t) of the Gaussian state, thereby lowering
its purity.

The result of purity for various s values is shown in
Fig. 4(a). First, we observe that the purity decreases as

plt) ~ 172, 1)

which originates from the fact that I'y,(¢) increases as #* and
D(t) increases as t*/>. The purity at s = 0 oscillates period-
ically around a constant value, as shown in Fig. 4(b). This
oscillation represents a periodic revival of quantum coher-
ence, namely the Caldeira-Leggett quantum time crystal. The
amplitude of oscillation is characterized by the following ratio
of characteristic length scales and energy scales:

_ ZMGZkBT -4 o? _ EelaslicEthermal’ (22)

r T—
"2 A2 EZ

where A7 is the thermal de Broglie wavelength, Eejasic =
M wfcrz /2 is the elastic energy of the system, Eermal = kT
is the thermal energy, and Egs = hw,/2 is the ground-state
energy of the system. For other values of s, which are shown in
Fig. 4(c), the coherence-decoherence oscillation remains with
a finite lifetime of the order of ¢%/* which can be derived from
Eq. 21).

C. Fractality and viscoelasticity of the sub-Ohmic environment

The oscillatory behavior of the purity appears due to
the long-lived memory of interaction with the environment.
Therefore, such oscillations should be understood by analyz-
ing the environment on an equal footing as the system. It was
shown recently that the generalized Langevin equation (8)
with the assumption Eq. (9) can be rewritten as a fractional
differential equation [39]

d’x(t)

R ONE
dt? Soodrs

= Mﬁo<r), (23)
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FIG. 4. Purity at the high-temperature limit kg7 >> h€2. (a) The
purity behaved like ~*/? over the entire sub-Ohmic regime, which
originates from the suppression of thermal fluctuations due to frac-
tality. (b) Periodic coherence-decoherence oscillation, namely the
Caldeira-Leggett quantum time crystal, is obtained at s = 0. (c) For
s < 0.1, the Caldeira-Leggett crystal has a finite lifetime of the order
of e*/*.

with the Riemann-Liouville fractional derivative which is de-
fined as [38]

T o s [ e
s Td—sya ), TV 7Y 1

Our interpretation of the fractional derivative is that a particle
moving in a fractal environment, the fractal dimension of
which is larger than the spatial dimension, takes a longer
time to move a unit length per unit time [40]. Specifically,
the sub-Ohmic parameter s leads to the fractal dimension
D =2 — s/2 [41]. A particle in an Ohmic environment moves
in a more or less straight path with fluctuations, as shown
in Fig. 1. For this reason, interaction with the environment
leads to velocity-dependent friction, which is reasonable since
the faster the particle moves, the more frequently it interacts
with the environmental degrees of freedom, and its energy
dissipates faster. On the other hand, a particle at s = 0 ef-
fectively moves along a two-dimensional space-filling curve,
like the Peano curve, and hence localizes in space. In this

case, interaction with the environment is independent of the
velocity of the particle and depends on its position, leading to
an oscillatory potential.

The power-law behavior of the purity can be interpreted as
follows. In normal Brownian motion, the classical variance of
a particle due to thermal fluctuations increases linearly like
oy ~ t. Adding thermal fluctuations to quantum fluctuations
increases the determinant of the covariance matrix and lowers
the purity, in agreement with the Caldeira-Leggett model [36].
On the other hand, for fractal Brownian motion, the classical
variance deviates from linear increase as o, ~ t2 [42]. If
H < 1/2, then the increments of the Wiener process are neg-
atively correlated, meaning that future increments tend to be
smaller. Assuming that the thermally generated variance is the
same as the classical variance in fractal Brownian motion, we
obtain s = 2H. In other words, the effect of thermal fluctua-
tion is small if the environment is fractal, and the coherence
lifetime increases.

The sub-Ohmic environment being fractal means that this
environment must be treated as a gel-like system with elas-
ticity and viscosity. In fact, one can use Fourier transform
to solve Eq. (23) and obtain the following particular solution
of x(1):

N 23 .
M) = Ai/[ DA <ﬁj(0) cos[w;t — 8;1+ F;(0) sinfaw;t + 5])’

= m; ]
(25)
with
A — 1
T 1 2—s5,,5—2 7s)2 25, §—2 i TS 2’
wjy/ (1 — @20 cos B)° 4 (025w} ? sin TY)
(26)

(ws/wj )2~ gin % . o7

tand; = -
= (wy/wj)* S cos B

The nonzero value of §; means that the system responds to
the environmental force with a delay, which indicates the
presence of a viscosity. In addition, we obtain §; = 0 ats = 0,
which means that viscosity vanishes and the environment
behaves as an elastic medium.

The oscillatory behavior can also be understood by ex-
amining the Hamiltonian (7). The system is connected by
springs in parallel with the environmental coordinates, so the
solution of the system is a linear superposition of oscillation
due to each environmental degree of freedom R;. In the Ohmic
regime, the system responds to the system with a delay given
by Eq. (27), which is interpreted as the viscosity of the en-
vironment, that is, the environment moves together with the
system. In the deep sub-Ohmic regime, the system responds
immediately to the environment, meaning that the viscosity
vanishes and the environment is an elastic medium. In this
case, the environment can be considered as being fixed in
space and the system oscillates with the angular frequency
ws ~ /¥ (0).

III. DISCUSSION

In this article, we showed that a sub-Ohmic environ-
ment should be understood as a gel-like fractal system with
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viscosity and elasticity. Consequently, the purity of a quan-
tum system coupled to a sub-Ohmic environment behaves as
t~%/2, meaning that coherence time becomes longer in the sub-
Ohmic regime. In the deep sub-Ohmic regime, we obtained a
periodic oscillation of the purity, namely the Caldeira-Leggett
quantum time crystal. The persistence and revival of quan-
tum coherences have also been reported in the sub-Ohmic
spin-boson model (see, for instance, Ref. [43] and references
therein), which, however, was not attributed to intrinsic dy-
namics of the environment. The fact that two very different
systems (two-level system and free boson) produce the same
qualitative behavior strongly suggests that coherence revival
is a universal hallmark of a deep sub-Ohmic environment.

We now compare our results with previous studies on time
crystals. First, time crystals are usually discussed as phases
that spontaneously break time-translation symmetry in the
thermodynamic limit, where an infinitesimal interaction with
the environment (the detail of which is irrelevant) results
in spontaneous temporal oscillation of a physical observable
[24,44]. In the present work we focus on the nature of the
environment itself and show that the environment is an active
ingredient that controls both the emergence and the lifetime of
coherent oscillations. Second, time crystalline dynamics was
also suggested in fractional Langevin systems with two envi-
ronments [32]. However, this study analyzed mean-squared
displacements in a semiclassical framework, and quantum
coherence was not considered. In contrast, our study reveals
that long-lived quantum time crystals with coherence can be
obtained by decreasing s. Our results demonstrate that coher-
ence revival is a genuinely quantum effect that is absent in
purely classical observables. Third, our work may be extended
to other models of time crystals, where the periodic revival of
coherence appears as a “superlattice” of a time crystal, which
should be discussed in future studies.

Our results indicate that quantum decoherence can be
reduced using a gel-like medium, and decoherence-based dy-
namics appear in the deep sub-Ohmic regime, which has
potential application in quantum information and quantum
biology. To the best of our knowledge, the physical properties
of the environment are currently not actively considered in
discussions of decoherence, but decoherence should be recon-
sidered from the perspective of solid-state properties of the
environment, such as elasticity and viscosity.

In particular, the intracellular environment, such as cytosol
composed of gel-like substances, contains many mysteries
about its nature. This high-density gel-like protein environ-
ment can be characterized by its fractal nature, resulting in
a sub-Ohmic spectral function [17-21]. In fact, recent stud-
ies suggest that the non-Markovianity of this environment,
the non-Ohmicity in our case, improves quantum coherence
in vivo [8,9]. Could living systems have evolved by choosing
an environment with smaller s to use quantum effects more
efficiently? The use of sub-Ohmicity may be a vital principle
to be investigated in future studies.
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APPENDIX A: EQUATIONS OF MOTION

Let A(1) = ef!/"Ae=H1/" denote the Heisenberg time evo-
Iution of an operator A. Then, the Heisenberg equations of
motion obtained from the Hamiltonian (7) are given by

ds 1 dp A -
O _ 1o, ZY) =3 GRi ) = > ik ),
j=1 j=!

dt M
(A1)
Rty _ 1 5 b0 _ s 4
pran ijj(t), pra KiR;(t) + «jX().
(A2)

Suppose that the system and the environment start to interact
att = 0, then Eq. (A2) has the following solution:
R A ~ sin[w;t]
R;(t) = Rjcos[w;t] + Pj———
m;w;j

—i-a)j/ dtsin[w;(t — 7)[&(7) (A3)
0

where w; = ,/k;j/mj, and insert Eq. (A3) into Eq. (Al) to
obtain

d2R(1) o od [ ;
M — :_;KJE/O dz cos[w;(t — 1)]%(7)

N .
A ~ SInjw it
+§ Kj(RjCOS[a)jl]—FPj%) (A4)
j=1 Uhed

which can be written as the generalized Langevin equation

5w | d ftd (-0 = ~Fo0),  (AS)
— Tyt —1)i(r) = — ,
dr? dr J, v * M’
where y (f — 1) is the memory function defined as
N
t—1)=Y -Z (t — 1)1, A6
y(t—1) ; 77 Coslo;(t = 7)] (A6)
and Fy(7) is given by
al sin[wt]
F()(t) = ZK.,' (I,é] cos[a)jt] ~|—ﬁ]—j) (A7)
st J@j

APPENDIX B: SOLUTION
_ Equation (AS) can be solved using Laplace transform
f@=Lof =[5 e ft)dr:
(1) = 2Gy(1) + ﬁG(t)—ir : /td Gi(t — ©)Fy(t)
X@t)==x — — T — T)Fy(7),
2 u! M ), 1 0
(BI)
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A~ _ 1 2 _ z
where G(z) = Pt and G,(z) = Tt One needs an

explicit form of #(z) to calculate the inverse Laplace trans-

such that the memory function can be rewritten as

(w)

2 < J
y(it—1)= —/ dow——= cos[w(t — 1)]. (B3)
Mr 0

form of G, (z) and G,(z), which can be achieved by defining >

the spectral function
The power-law spectrum J(w) = Mg,w*® with an ultraviolet

& cutoff frequency 2y is often assumed in the continuum limit.
J(w) = b} Z wjkid(w — w)), (B2) Then, the memory function can be written as
j:1 |
Zgl Sil’llﬂguit;‘[)] , s = 1

ve—m) =1, 1 . )1 202 (B4)

%IFZ(%;E,l—i—%;—Z(t—t)QU), 0<s<l1

2w18(t — 1), s=1

~ B5
—F(ll_x)a)sz_slt —7|7%, O0<s<l (B3)

where ,F,(ai, ..., a,;b1, ..., by 2) is the generalized hyper-
geometric function, I'(-) is the gamma function, the limit
Qu — oo is taken in the last line, and we define w; =
(Sif—é)l/ (2=9)_ The divergence of w; at s = 0 is a consequence

APPENDIX C: GENERALIZED LANGEVIN EQUATION
AS A FRACTIONAL DIFFERENTIAL EQUATION

One can also insert Eq. (BS) into Eq. (A5) to obtain

of infrared divergence, which can be removed by introducing d*x(t) dx(t) 1
an infrared cutoff frequency €, yielding v} = y(0)|s=0 = a2 T T
% log(2y /€2r) as we explain later. The Laplace transform of
the memory function is then given by the approximate value

Fot), (s=1  (CD

A5ty A% 1,
dl‘z w.v F = MF()([), (0 < s < 1) (CZ)

w1, s=1

(B6) &R 1 d

13 oA . .
= = 1_(173)5[0 dt(t — t)~*%(7) is the Riemann-
Liouville fractional derivative.

where

r@ L)XZXZSI, 0<s<1’
which implies G;(t) = G(¢) and G,(t) = G(t), hence we

obtain

APPENDIX D: AUTOCORRELATIONS

From the solutions (A3), (B7), and (B8) we can obtain
various expectation values and correlations. Assuming that
the environment at ¢ = 0 is given by a Gaussian state with
(Rj) = (P;) = 0, we obtain (Fy(t)) = 0. We also obtain vari-
ous autocorrelations

: 3 1 [ R
2(t)=£G(t)+%G(t)+A7fo dtG(t — 1)Fy(t), (B7)

pt) = Mch(t)+13G(t)+/ dtG(t — 0)fy(t), (BS)
0

where the second equation follows from G(0) = 0.

J

e e GG . GG .. GG . i ,
(FORN) = GOGE) (&) + — 7 {p) + —— (PN) + — 5— (") + 35Dt 1),
L. . . GGt A
GNP = MGOEW) () + GOGE) &) + GOGE) (%) + % () + 1T,
o e . o e G()G(t") - h ,
(PO) = MEOGE) () + GOGE) (89) + GOGE) (p%) + —— = (P) + 7 Tualt, 1),

(POp)) = M*G()G(t') (&%) + MG()G(t') (2p) + MGGt (pR) + G()G(') (P*) + AT (2, 1),

where we define

T, 1) = %fotdt /Ol/dt/G(t — ) (Fy(0)F(t)) G’ — 1)), (D1)
T, t) = %/Otdt fotldr/G(t — ) (Fo(t)Ep (1)) G(t' — ©'), (D2)
T, 1) = %/Otdt /Ot,dr/G'(t — ) (Fo(t)E (1)) G(t' — '), (D3)
[yt 1) = %/Otdt /Ot,dr/G(t — ) (B () Gt —1). (D4)
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The correlation (Fo(t)ﬁo(t’)) can be calculated using standard methods: Defining the creation operators a; = v %(1@ i+
P

--=P;) and the annihilation operator &} = v =z (R; — ;-—P;), one can rewrite the environment Hamiltonian as Hg =
fhad'] fhad]

Z how; (&T& ; + 1/2) and the density matrix of the environment at temperature 7 is given by pg = e PHE /Tr[e‘f”qﬁ] where 8 =
1/ksT. Then, using Fo(t) = Y kv 50— (@;e™" + aj ™), (a;ac) = (@la)) =0, (@) = 8 (n;) and (a;a7) = 8;(1 +

2mjw;
(nj)), where (n;) = 1/(e"®i — 1), one can show that

(Fo(r)Fy(t)) = hlor(t — ') + ion(t — '), (D5)
where
, e , hﬁ .
ar—1t)=-Y ‘”fz"f sinfw;(z — ), (D7)

j
which can also be written using the spectral function Eq. (B2):
Y , hBw
oar(t — 1) = — J(w) cos[w(t — t)] coth 5 dw, (D8)
b4
0 .
af(t — 1) = —— / J(w)sin[o(t — 1) ]dw. (DY)
7 Jo

Att = t’ the equal-time thermal correlations are defined as follows:

Fxx(t) =T (@, t), va(t) = qu(t9 t)’ va(t) = va(tv t)9 Fvv(t) = [y(t, t)~ (Dl())

APPENDIX E: LAPLACE TRANSFORM OF THERMAL CORRELATIONS

The integrals in Egs. (D1)—(D4) can be calculated explicitly using double Laplace transform as in Ref. [45]. For instance,
we have

oo 0 t t
L L [Te(t, 1] =f dtf dt’/ dr/ dt'e e "Gt — )a(t — )G — 7). (E1)
0 0 0
Using [,°dt [y dv = [;°dt [ dt and introducing new variables u =t — 7,4’ =1’ — v/, 0 = 7 — 7/, we obtain
L.[L[Tylt, z)]_/ dr/ dt’ / a’u/ di'e e e e T Gu)a(t — T)GW) (E2)
= G(z)/ dr/ dt'e e a(r — )G, (E3)
=G() / dt’ f doe e "4 (0)G(Z) (E4)
0 0
~ o0 0 ! ’ ~
+G(2) / dt’ / doe e 7 5(0)G(Z) (E5)
- @)+ a@) -
=G———— G, (E6)

where integration by parts has been used in the last line. Similarly, one can show that

LALAT (1, )] = Gz )%Ex ) E7)

LALoAT st 0] = G0y T YD ) (E8)
Z+2z

AL = G0 YT XD 50y (E9)
Z+2z
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Note that the Laplace components ¥ (z) and @r(z) are related by the fluctuation-dissipation theorem [22]

. M hz .
() = 5 zcot (W)V(Z)' (E10)
For the high-temperature limit kg7 > /2 we have
_ ksTM _
ar(z) = 7 7 (@, (E11)

which implies

keTM - 7(z)+ ?(Z’)G

L‘z[‘cz’[rxx(tv t/)]] = 7 G(Z) i+ 7 (Z/). (E12)

Now, using the relations —zG(z)f/(z) = zé(z) — 1 we obtain

‘Cz[ﬁz’[rxx(ta t,)]] =

ksTM (zlé(z’) +77'6(2)

5 P — G(2)G(z )). (E13)

The inverse Laplace transform gives

[, 1) = ke TM </0r dt [G(1) — G(t —1)O(t —1)] /Ot, dt'[G(t') — G(x' =)0 —1)] — G(t)G(t’)), (E14)
Tt 1) = kBgM (Gt —1)O@r — 1)+ G(t') — G’ — O —1t) — G(1)G(1)], (E15)

Tt 1) = kBgM [G(t) — Gt — 1O —1') + G’ — )OO — 1) — GG, (E16)

[yt 1) = I#[G(r -t —t)+ G —1)OF —1) — G)GE)]. (E17)

Att =t’ we obtain Egs. (16)—(18).

APPENDIX F: INFRARED RENORMALIZATION AT s =0

Using the spectral function and the power-law spectrum J(w) = M g,@* with an ultraviolet cutoff frequency 2y, we obtain

8s |t_7:|_s
sinZE (1 —s)’

285
yit—1)= g
T

Qu
/ dow* ™' cos[w(t — )] ~ (F1)
0

This integral diverges as s — 0, which is a result of infrared divergence due to zero-frequency modes. Therefore, we introduce
an infrared cutoff frequency €2; and obtain the following result:

2gs S s—1 2gs _, s . .
y(i)=— dow’™ coswt = —1t°Rel{i [y (s, iQut) — y (s, i21)]} (F2)
T Q T

1

where y (s, a) = fa * z5~le~ is the incomplete gamma function, which should be distinguished from the memory function y (t),
and at = 0 we obtain

28, [ 28, Q) — Q4
(0) = j / dow'™" = j L) (F3)
Q
2 2 2 Q
»(0) = % / doo® = % log Q—U (s = 0). (F4)
Q 1

The factor log %—’I’ is typically of the order of 10.
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