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We demonstrate that conventional artificial deep neural networks operating near the phase boundary of the sig-
nal propagation dynamics—also known as the edge of chaos—exhibit universal scaling laws of absorbing phase
transitions in nonequilibrium statistical mechanics. We exploit the fully deterministic nature of the propagation
dynamics to elucidate an analogy between a signal collapse in the neural networks and an absorbing state (a state
that the system can enter but cannot escape from). Our numerical results indicate that the multilayer perceptrons
and the convolutional neural networks belong to the mean-field and the directed percolation universality classes,
respectively. Also, the finite-size scaling is successfully applied, suggesting a potential connection to the
depth-width trade-off in deep learning. Furthermore, our analysis of the training dynamics under the gradient
descent reveals that hyperparameter tuning to the phase boundary is necessary but insufficient for achieving
optimal generalization in deep networks. Remarkably, nonuniversal metric factors associated with the scaling
laws are shown to play a significant role in concretizing the above observations. These findings highlight the
usefulness of the notion of criticality for analyzing the behavior of artificial deep neural networks and offer new
insights toward a unified understanding of the essential relationship between criticality and intelligence.
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I. INTRODUCTION

Critical phenomena at second-order phase transitions have
long been hypothesized to be the key to the extraordinary
computational power of living systems [1–3]. The idea behind
the hypothesis is that information cannot propagate through
ordered states of matter, and it rapidly decays to random noise
in the disordered states due to the overly enhanced capability
of the medium to convey disturbance [2]. Notably, the no-
tion of phases of matter lies at the core of the hypothesis;
this viewpoint focuses on collective aspects of the systems,
complementary to more traditional reductionist ones [4,5].
Despite the experimental and theoretical challenges stem-
ming from the many-body nature of the problem, pursuing
the computation at the criticality hypothesis has proven to
be a fruitful research direction [3,6]. In particular, brain dy-
namics has been intensively discussed [7,8] in the context
of absorbing phase transitions [9,10] due to the theoretical
relation [11] to self-organized criticality [12,13], not to men-
tion the straightforward correspondence between death and an
absorbing state.

The rapid progress in applying deep learning techniques
[14–16] motivates us to ask whether artificial deep neural
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networks also utilize criticality for their performance. Recent
theoretical studies on infinitely wide networks suggest this is
the case. Under a specific setup (see also Sec. II), the sig-
nal propagation dynamics in untrained deep neural networks
can be classified into two phases: the ordered phase and the
chaotic phase, depending on the hyperparameters used for
initialization [17,18]; see also Fig. 1. The network with suf-
ficiently many hidden layers returns almost the same outputs
for any inputs in the ordered phase, whereas decorrelated
outputs in the chaotic phase. In either case, the network cannot
remember the degree of similarity between different inputs,
which limits the performance as a learning agent. As such, the
network at the ordered phase suffers from vanishing gradient
and untrainability, while at the chaotic phase from explod-
ing gradient and ungeneralizability [18,19]. Consequently, the
phase boundary, often called the edge of chaos, attracts con-
siderable interest in deep learning research, even though some
studies indicate that initialization at the edge alone does not
necessarily lead to good generalization [20,21]. Remarkably,
the characteristic depth of the network dynamics is suggested
to diverge at the edge of chaos [18], highly reminiscent of crit-
ical phenomena at second-order phase transitions. Subsequent
works extend similar results to various activation functions
[22,23] and network architectures [24,25].

From a statistical mechanics viewpoint, universal scal-
ing laws, if any, are relevant for characterizing the critical
phenomena at the edge of chaos in deep neural networks.
Even though the mean-field theory in a suitable limit [17,24]
and its perturbative expansion [26,27] are available in simple
cases, the scaling laws may provide complementary, flexi-
ble, and powerful insight into the network dynamics; thanks
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FIG. 1. The phase diagram of the signal propagation in the mul-
tilayer perceptions (1). The solid curve indicates the phase boundary
in the case of tanh activation function. The dashed line indicates
σb = 0.3, where the maximum Lyapunov exponent λ1 [see Eq. (3)]
and the order parameter ρ (l ) [see Eq. (21)] are studied in Fig. 2 and
Fig. 3(a), respectively.

to the universality of the critical phenomena, intuitive phe-
nomenological considerations may result in at least partially
quantitative predictions. Also, theoretical tools such as finite-
size [28] or short-time [29] scaling shed further light on the
dynamics beyond the limiting cases. Besides the benefits for
our understanding of deep neural networks, embedding them
better in statistical mechanics may provide clues for studying
how living systems perform intellectual tasks.

Below, we demonstrate the connection between deep neu-
ral network dynamics at the edge of chaos and absorbing
phase transitions [9,10]. After some preliminaries (Sec. II),
we establish a correspondence between the ordered state of
deep neural networks and an absorbing state by studying the
linear stability of the former (Sec. III). Next, in the case of the
multilayer perceptrons, we thoroughly investigate the scaling
properties of the phase transition in the thermodynamic limit
(Secs. IV A and IV B). Remarkably, the scaling properties of
the neural tangent kernel (NTK) [30] provide a novel insight
into the curse of depth reported in the literature [21]. The
investigation is then extended to finite width and different
architectures (Sec. IV C), although we content ourselves only
with front propagation dynamics in these cases. In particular,
we provide numerical evidence of the directed percolation
universality in convolutional neural networks. We conclude
the paper with a brief discussion on possible directions for
future work (Sec. V).

II. PRELIMINARIES

To illustrate our view with a simple setup, we exclu-
sively consider the multilayer perceptrons with the NTK
parametrization [30] until Sec. IV B. Formally, the recurrence
relation for the preactivation z(l ) at the lth hidden layer (l =
1, 2, . . . , L, where L is the depth of the network) and the

TABLE I. Glossary of the symbols associated with the neural
networks. If accompanied by the superscript “(l ),” then the symbol
indicates the corresponding quantity at the lth hidden layer.

Symbol Meaning

x Input vectors.
W Weight matrices.
b Bias vectors.
σw, σb Hyperparameters associated with the network,

corresponding to standard deviation of the weight/bias.
nin The number of the elements of the input.
n Width of the network.
L Depth of the network.
z Preactivation: the signal vector just before

applying the activation function.
h Activation function.
q Preactivation variance in the mean-field theory.
C Preactivation covariance in the mean-field theory.

output y, assumed to be of a single element for simplicity, are
written as follows:

z(l+1)
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σw√
nin

∑
j

W (l+1)
i j x j + σbb(l+1)

i l = 0;

σw√
n

∑
j

W (l+1)
i j h

(
z(l )

j

) + σbb(l+1)
i 1 � l < L,

(1)

y = σw√
n

∑
j

W (L+1)
1 j h

(
z(L)

j

) + σbb(L+1). (2)

Here x is the input with nin elements; W (l ) and b(l ) the weight
matrix and the bias vector at the lth hidden layer, respectively;
σw, σb the associated hyperparameters; and n the width of the
hidden layers. The meanings of the symbols associated with
the neural networks are also summarized in Table I for conve-
nience. Every element of the weight and the bias is initialized
according to the standard normal distribution N (0, 1). This
parametrization differs slightly from the one commonly used
in practice [31], but the difference is not essential for our study
[32]. The activation function h is assumed to be in the K∗ = 0
universality class in the sense of Roberts et al. [23], a few ex-
amples being tanh, erf, and sin, but not the rectifier linear unit
(ReLU). Note, however, that similar observations can be made
also for ReLU-like activation functions; see Appendix B.

Since the forward dynamics (1) is fully deterministic after
initialization, a pair of signals may end up with a collapse:
Once the two signals z(l )

1 , z(l )
2 become identical at one hidden

layer, they never deviate from each other again at deeper
hidden layers. Interpreting the network depth as a temporal
degree of freedom, the ordered state z(l )

1 = z(l )
2 can be re-

garded as an absorbing state of the dynamics. Even though
the exact order rarely occurs in practice because it requires an
accidentally degenerate weight matrix, the difference between
two signals can decay exponentially in some cases, especially
when the network is narrow. Meanwhile, with sufficient width
and a suitable choice of the hyperparameters (σw, σb), one can
observe the opposite: magnification of the difference, even if
initially tiny. In this case, the difference no longer converges
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FIG. 2. The maximum Lyapunov exponent λ1 [see Eq. (3)] as a
function of the weight parameter σw for various widths n, estimated
from the convergence of the finite counterpart of Eq. (3) at l = 105.
The bias parameter σb was fixed to be 0.3, and tanh activation func-
tion was used. The vertical line indicates the position of the critical
point (σw;c ∼ 1.39558). The black curve is the result expected in the
limit of n → ∞, namely λC/2 [see Eq. (17)].

to a unique l → ∞ limit but instead fluctuates randomly.
Thus, the networks seem to exhibit a phase transition between
a unique absorbing (ordered) phase and a fluctuating active
(chaotic) phase. As we will see shortly, the transition can
be further formalized by studying the linear stability of the
exactly ordered state.

III. ABSORBING PROPERTY OF THE ORDERED STATE

To address the issue of the linear stability of the ordered
state, we study (with a slight abuse of language) the maximum
Lyapunov exponent for the front propagation dynamics (1):

λ1 := lim
l→∞

1

l
log

‖J (l+1)(z(l ) ) · · · J (2)(z(1) )u0‖2

‖u0‖2
, (3)

where u0 ∈ Rn is an arbitrary nonzero vector and J (l ) is the
layerwise input-output Jacobian

J (l )(z) = σw√
n

⎛
⎜⎝J (l )

11 (z) · · · J (l )
1n (z)

...
. . .

...

J (l )
n1 (z) · · · J (l )

nn (z)

⎞
⎟⎠ (4)

with [33]

J (l )
i j (z) := W (l )

i j h′(z j ). (5)

By doing so, we can directly see how the notion of the
order-to-chaos transition emerges as a many-body effect in
the neural networks. For instance, λ1 as a function of σw for
tanh activation function is shown in Fig. 2. In this case, λ1

is negative in the entire domain for small width n, which
suggests that the ordered state is always stable against in-
finitesimal discrepancy. However, λ1 increases as n becomes
larger, and eventually, λ1 changes its sign at some σw for large
n, indicating loss of linear stability. Naturally, the position of

the onset of the linear instability is very close to that of the
critical point predicted from the mean-field theory [17] when
n is large and is expected to coincide with the limit of n → ∞.
One can also empirically see that the loss of the stability of
the ordered state at some σw for sufficiently large n is a robust
feature of the neural networks under the current consideration,
although how λ1 as a function of σw behaves for small n is
somewhat more sensitive to the choice of h.

Thus, the maximum Lyapunov exponent λ1 successfully
captures the well-defined transition from the ordered phase
to the chaotic phase, even for finite networks. In the ordered
phase, once a pair of preactivations (z1, z2) reach reasonably
close to the ordered state, they are hard to escape from it.
Meanwhile, in the chaotic phase, a pair of preactivations are
allowed to get away from the vicinity of the ordered state,
although the ordered state itself is still absorbing. This sce-
nario, a transition from a nonfluctuating absorbing phase to a
fluctuating active phase, is highly reminiscent of an absorbing
phase transition in statistical mechanics.

IV. UNIVERSAL SCALING AROUND
THE ORDER-TO-CHAOS TRANSITION

Having seen that the order-to-chaos transition is at least
conceptually analogous to absorbing phase transitions, the
next step is to seek a deeper connection between these two
by further quantitative characterization.

A. Mean-field theory of signal propagation

The phase transition between the ordered and the chaotic
phases can be quantitatively studied in the limit of wide net-
works. In this limit, the neural network becomes equivalent
to a Gaussian process [34–37]. That is, the preactivations
(z(l )

i (x1), z(l )
i (x2)) on a same neuron for different inputs x1, x2

follows a multivariate normal distribution

(
z(l )

i (x1), z(l )
i (x2)

) ∼ N (0, �) with � :=
(

q(l )
1 C(l )

C(l ) q(l )
2

)
, (6)

where q(l )
i (i = 1, 2) and C(l ) for each hidden layer can be

recursively described by the mean-field theory [17]:

q(l+1)
i = σ 2

w

∫
Dz h2

(√
q(l )

i z
) + σ 2

b ; (7)

C(l+1) = σ 2
w

∫
Dz1

∫
Dz2 h

(
u(l )

1

)
h
(
u(l )

2

) + σ 2
b ; (8)

u(l )
1 :=

√
q(l )

1 z1;

u(l )
2 :=

√
q(l )

2

(
c(l )z1 +

√
1 − (c(l ) )2z2

)
,

(9)

with the initial conditions

q(1)
i = σ 2

w

‖xi‖2
2

nin
+ σ 2

b , C(1) = σ 2
w

x1 · x2

nin
+ σ 2

b . (10)

Here,

c(l ) := C(l )√
q(l )

1 q(l )
2

(11)
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is the Pearson correlation coefficient and∫
Dz :=

∫ ∞

−∞
dz

1√
2π

e− z2

2 . (12)

Let us recall some basic results of this theory. One can see
that q(l ) rapidly converges to a fixed point q∗ := liml→∞ q(l )

as the depth l tends to infinity [17,18], generally without a
sign of a phase transition (unless σb = 0, where q∗ vanishes at
the ordered phase). By substituting q(l )

1 = q(l )
2 = q∗ to Eqs. (8)

and (9) and observing Eq. (11), we obtain an approximate
closed-form description for c(l ) also known as the iterative
C-map, valid for large l:

c(l+1) = 1

q∗

[
σ 2

w

∫
Dz1

∫
Dz2 h

(
u∗(l )

1

)
h
(
u∗(l )

2

) + σ 2
b

]
, (13)

where u∗(l )
1 := √

q∗z1, u∗(l )
2 := √

q∗(c(l )z1 +
√

1 − (c(l ) )2z2).
Linear stability of the trivial fixed point c(l ) = c(l+1) = 1 of
Eq. (13) determines the phase for a given pair of hyperpa-
rameters (σw, σb), as depicted in Fig. 1: stable at the ordered
phase, whereas unstable at the chaotic phase. It can be shown
that, for a fixed σb, the discrepancy from the fixed point c∗
asymptotically decays exponentially with a suitable correla-
tion depth ξ‖ [18]:

lim
l→∞

log |c(l ) − c∗|
l

= − 1

ξ‖
(14)

with ξ‖ given by the following:

e
− 1

ξ‖ =

⎧⎪⎪⎨
⎪⎪⎩

σ 2
w

∫
Dz h′2(

√
q∗z) σw < σw;c;

σ 2
w

∫
Dz1

∫
Dz2 h′(u∗

1 )h′(u∗
2 ) σw > σw;c,

(15)

where σw;c is the critical point for the specified σb, satisfying

σ 2
w;c

∫
Dz h′2(

√
q∗z) = 1. (16)

Note also that half of the maximum Lyapunov exponent for
the trivial fixed point of the iterative C-map

λC := log

(
σ 2

w

∫
Dz h′2(

√
q∗z)

)
(17)

equals the maximum Lyapunov exponent λ1 of the ordered
state [see Eq. (3)] in the limit of infinite width n. Encourag-
ingly, the behavior of λ1 for n = 50 as a function of σw is
already close to the n → ∞ limit [Fig. 1(b)]; this suggests that
the infinitely wide neural network may serve as a good starting
point for understanding the behavior of the neural networks of
practical width.

B. Scaling results for the infinitely wide networks

One of the most common strategies for studying systems
with absorbing phase transition is to examine universal scaling
laws [9,10]. For instance, the time evolution of the order pa-
rameter ρ(t ) in the thermodynamic limit admits the following
scaling ansatz:

ρ(t ; τ ) ∼ (κt )−β/ν‖ f ((κt )1/ν‖ζ τ ), (18)

where τ denotes the discrepancy from the critical point and
β, ν‖ are the critical exponents associated with the onset of
order parameter ρ and the correlation time ξ‖ of the steady

state, respectively, that is,

ρ(t → ∞) ∼ (ζ τ )β, ξ‖ ∼ |γ τ |−ν‖ as τ → 0; (19)

γ := ζκ1/ν‖ . (20)

Remarkably, the critical exponents and the scaling function f
are the same for all systems in a given universality class, while
the specific details are summarized in the nonuniversal metric
factors κ, ζ , γ [38], two of which are independent.

Let us investigate the universal scaling laws in the signal
propagation dynamics. In the present context, we define the
order parameter ρ to be the Pearson correlation coefficient
between preactivations for different inputs, which is then sub-
tracted from unity so that ρ vanishes in the ordered phase.
In particular, when the network is infinitely wide, the order
parameter ρ (l ) at each hidden layer is directly related to c(l )

[see Eq. (11)] in the mean-field theory:

ρ (l ) := 1 − c(l ). (21)

We can show that the multilayer perceptrons exhibit the
universal scaling laws identical to those of the mean-field
theory for absorbing phase transitions [9,10]. Specifically,
ρ (l ) and the correlation depth ξ‖ [see Eq. (14)] exhibits the
power-law scaling (19) with

β = 1, ν‖ = 1. (22)

This can be shown by considering an infinitesimally small
deviation from the critical point and expanding the mean-field
theory (7) and (8) to track the change of the position of the
fixed point and of the correlation depth (15) up to the lowest
relevant order of the deviation; see Appendix A for details.
An interesting corollary is that the nonuniversal metric factors
κ, γ in the sense of Eq. (18) can be evaluated theoretically
in the present case. For instance, if we choose to fix the bias
parameter σb and vary the weight parameter σw (the discrep-
ancy τ from the critical point is defined to be σw − σw;c), then
we find

γ↔ = 2

σw;c

⎛
⎜⎜⎝1 −

(
q∗

c − σ 2
b

) ∫
Dz zh′(

√
q∗

c z)h′′(
√

q∗
c z)

√
q∗

c

∫
Dz h(

√
q∗

c z)h′′(
√

q∗
c z)

⎞
⎟⎟⎠,

(23)

κ =
q∗

c

∫
Dz h′′2(

√
q∗

c z)

2
∫

Dz h′2(
√

q∗
c z)

, (24)

where q∗
c is the fixed point of Eq. (7) at the critical point and

the arrow symbol ↔ indicates the direction in which we cross
the boundary in the phase diagram (Fig. 1). We empirically
validate the results in Fig. 3. In particular, we see that the
order parameter dynamics ρ (l ) for various activation functions
collapse into a single universal curve, as predicted by the scal-
ing ansatz (18), except when l is small just as expected. These
observations further support the view that the network exhibits
an absorbing phase transition into the ordered state. Similar
results (albeit with different metric factor γ�) can be obtained
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FIG. 3. The universal scaling laws in the order parameter ρ (l )

[see Eqs. (11) and (21)] for the signal propagation dynamics in the
infinitely wide multilayer perceptrons (1). (a) The main panel shows
ρ (l ) as a function of l for various σw [from 1.35 (blue; the ordered
phase) to 1.45 (magenta; the chaotic phase)], calculated from the
mean-field theory (7) and (8). The inset shows the stationary value
ρ∗ of the order parameter and the reciprocal correlation depth ξ−1

‖
[see Eqs. (14) and (15)] as a function of σw . The dashed line and
the solid line are guides to the eye for linear onset with a slope of
γ↔ and ζ↔ := γ↔/κ1/ν‖ , respectively (δσw := σw − σw;c). The bias
parameter σb was fixed to be 0.3, and tanh activation function was
used in the both panels. (b) The order parameter ρ (l ) as a function of
l for various activation functions, rescaled according to the universal
scaling ansatz (18) with the mean-field critical exponents (22). Dif-
ferent symbols with the same color correspond to different σw: +,
×, ∗, � in ascending order. The bias parameter σb was fixed to be
0.3. The nonuniversal metric factors γ↔ and κ are calculated from
Eq. (23) and Eq. (24), respectively, for each case.

if σw is fixed and σb is varied, provided that σw > (h′(0))−1:

γ� =
2σb;c

∫
Dz zh′(

√
q∗

c z)h′′(
√

q∗
c z)

√
q∗

c

∫
Dz h(

√
q∗

c z)h′′(
√

q∗
c z)

, (25)

where σb;c is the critical point for the specified σw.
The nonuniversal metric factor κ deserves special attention

because it serves as an intrinsic characterizer of a critical
point. That is, κ is uniquely determined once a critical point is
specified, in contrast with γ and ζ , which also depend on how
we approach the critical point. Formally κ is the reciprocal
amplitude of the power-law decay at a critical point

ρ (l ) ∼ (κl )−β/ν‖ for l � 1, (26)

but the readers might ask for a more intuitive meaning. The
scaling laws for a critical initial slip [29] can be utilized to
address this question. At a critical point, we find that the order
parameter ρ (l ) for various cosine distances

ρ (0) := 1 − x1 · x2

‖x1‖2‖x2‖2
(27)

of the normalized inputs x1, x2 exhibits the universal scaling
law described by the following scaling ansatz [Fig. 4(a)]:

ρ (l ) 
 (κl )−1g(ωρ (0)κl ), (28)

where ω is a metric factor associated with an initial condition
depending on a critical point of interest and the inputs [39].
Notably, the scaling function g shows a crossover between two

FIG. 4. Critical dynamic scaling of the order parameter ρ (l ) and
its consequence on NTK. (a) The order parameter ρ (l ) at a criti-
cal point (specifically (σw, σb) ∼ (1.23367, 0.3) with erf activation;
κ ∼ 0.252674) for various cosine distances ρ (0) [ranging from 10−4

(orange) to 10−1 (purple); see Eq. (27)], calculated from the mean-
field theory (7) and (8) and rescaled according to the scaling ansatz
(28). The inputs x1, x2 with nin = 10 elements were normalized so
that ‖x1‖2 = ‖x2‖2 = 1. The dashed lines are guides to the eye for
the asymptotic behavior (29) of the scaling function g. The raw ρ (l )

is shown in the inset with a guide to eye for ρ (l ) = (κl )−1. (b) The
NTK �(L)(x1, x2) [see Eq. (34)] as a function of the network depth L,
rescaled according to the scaling ansatz (37). The same (σw, σb, ρ

(0) )
and activation function as (a) were used. The two horizontal lines
are guides to the eye for the asymptotic behavior (40) as L → ∞:
the upper one for x1 = x2 [ρ (0) = 0] and the lower one for x1 �= x2

[ρ (0) > 0].

asymptotic behaviors:

g(x) ∼
{

x x � 1;
1 x � 1.

(29)

Which asymptotic regime the signal propagation dynam-
ics belongs to is a matter of comparison between ρ (0) and
(ωκl )−1. This suggests a striking resemblance to the cosine
distance scoring [40], where a simple thresholding on the
cosine distance of the feature vectors yields fast and robust
speaker verification. In the case of the multilayer perceptrons,
the threshold for the crossover is determined implicitly by
specifying a critical point (κ, ω), the depth of the network (l),
and how we design the inputs (ω). In other words, the metric
factor κ , combined with the depth, characterizes the network’s
sensitivity against input differences.

To gain a deeper insight into the implications of the scaling
laws for the training dynamics of the neural networks, let us
study the NTK [30]

�(L)(x1, x2; θ0) :=
∑

j

∂y

∂θ j
(x1; θ0)

∂y

∂θ j
(x2; θ0) (30)

of the initialized networks [here y(x; θ) is the output and
θ0 is an initial value of the trainable parameters, namely
{W (l ), b(l )}L+1

l=1 ]. NTK is directly related to the time evolution
of the output y(x; θ) under the gradient descent using mean-
squared error,

dy(x; θ)

dt
= −2η

N

N∑
i=1

�(L)(x, xi; θ)(y(xi; θ) − yi ), (31)
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where η is a learning rate and {(xi, yi )}N
i=1 a training dataset.

Remarkably, in the limit of infinite width, the initial value
of NTK is deterministic despite the randomness of θ0 them-
selves, and also NTK stays constant during the training if
the learning rate is small enough [32]. Consequently, the
dynamics of the output y(x; θ) under such circumstances
can be reduced to a linear ordinary differential equation.
In particular, a collection of the residual errors �y(θ) :=
(�y(x1; θ), . . . ,�y(xN ; θ))T for training inputs {x1, . . . , xN }
is governed by

d�y(θ(t ))

dt
= −2η

N
�

(L)
train�y(θ(t )), (32)

where �
(L)
train is the following Gram matrix (the explicit θ0

dependence is dropped due to the deterministic property):

�
(L)
train :=

⎛
⎜⎝�(L)(x1, x1) · · · �(L)(x1, xN )

...
. . .

...

�(L)(xN , x1) · · · �(L)(xN , xN )

⎞
⎟⎠. (33)

NTK also plays a significant role in characterizing general-
izability of the infinitely wide neural networks trained under
the stochastic gradient descent [41]. Thus, the initial value of
NTK is relevant for understanding the training dynamics and
performance of the neural networks.

The connection between the initialized NTK and the
universal scaling laws can be seen by observing that the
closed-form expression [42] of the NTK for the present case
is described in terms of u(l )

1 , u(l )
2 , and C(l ) in the mean-field

theory:

�(L)(x1, x2)

=
L+1∑
l=1

C(l )
L∏

l ′=l

(
σ 2

w

∫
Dz1

∫
Dz2 h′(u(l ′ )

1

)
h′(u(l ′ )

2

))
.

(34)

The both terms in the right-hand side of Eq. (34) at a critical
point is directly related to the order parameter ρ (l ) [to find
Eq. (36), perform a similar infinitesimal expansion to the one
demonstrated in Appendix A]

C(l ) 
 q∗
c (1 − ρ (l ) ), (35)

σ 2
w;c

∫
Dz1

∫
Dz2 h′(u(l )

1

)
h′(u(l )

2

) 
 1 − 2κρ (l ). (36)

As such, we naturally expect a universal scaling ansatz akin to
Eq. (28) for the NTK at a critical point:

�(L)(x1, x2) 
 q∗
c Lg̃(ωρ (0)κL) (37)

with a suitable scaling function g̃. Here the prefactor q∗
c L

reflects the asymptotic proportionality to L established in the
literature [19,21]; the limits of the scaling function g̃ can also
be deduced from the prior works

g̃(x) →
{

1 as x → 0;
1/3 as x → ∞.

(38)

Alternatively, one may heuristically understand these limits by
substituting ρ (l ) = 0 to Eqs. (35) and (36) (for x → 0) or by
plugging the asymptote ρ (l ) 
 (κl )−1 into Eq. (36) and then

resorting to an arithmetic formula (for x → ∞)

lim
L→∞

[
1

L

L∑
l=1

L∏
l ′=l

(
1 − 2

l ′

)]
= 1

3
. (39)

Either way, reasonable scaling collapse (except when L is
small, just as expected) shown in Fig. 4(b) empirically vali-
dates the scaling ansatz (37).

The ansatz (37), together with the asymptotics (38), sug-
gests that κL is a crucial factor for the properties of NTK at
a critical point. If κL is too small, then the resulting �

(L)
train

becomes nearly rank-1, which implies slow training of the
network in general. Conversely, if κL is too large, then NTK
asymptotically behaves like an indicator function

�(L)(x1, x2) 

{

q∗
c L x1 = x2;

q∗
c L/3 otherwise,

(40)

which seriously deteoriates the network. For instance, the
dynamics of an output y(x) for an input x outside the training
dataset under the gradient descent, namely,

dy(x; θ(t ))

dt
= −2η

N
�

(L)
test(x)�y(θ(t )) (41)

with

�
(L)
test(x) := (�(L)(x, x1), · · · ,�(L)(x, xN )), (42)

becomes almost independent of x, which indicates a poor
generalization performance. To put it differently, even if ini-
tialized at a critical point, the networks with too small κL
behave as if they were in the ordered phase, whereas those
with too large κL in the chaotic phase (see also Xiao et al.
[19]). Thus, κL should be properly chosen to fully exploit
the benefit of initialization at a critical point. Along this line
of thinking, the curse of depth reported by Hayou et al. [21]
can be understood as a devastating consequence of infinite κL,
rather than as an intrinsic limitation of the infinitely wide net-
works. One caveat is that the range within which κL should be
tuned as suggested from Fig. 4(b) alone, namely [below, ρ (0)

max

and ρ
(0)
min denote the maximum and minimum nonzero cosine

distance ρ (0) achieved in a training dataset, respectively]

0.1/ωρ (0)
max � κL � 10/ωρ

(0)
min (43)

so that �(L)(xi, x j ) for all the pairs of training inputs xi, x j

(i �= j) do not fall into the same asymptotic regime, is rather
loose. We might be able to tighten the range by a more
thorough analysis of NTK for a dataset at hand, although we
cannot expect such a tighter range to be carried over different
datasets. We plan to investigate this point more in the near
future.

C. Scaling results for the finite networks
and different architectures

Another virtue of the universal scaling laws is that they
give us useful intuition even into the networks of finite width,
where quantitatively tracking the deviation from the Gaussian
process can be cumbersome (if not impossible [26,27]). To
illustrate this point, let us consider the finite-size scaling of the
neural network at a critical point. Since the order parameter
ρ (l ) in the mean-field theory is defined through the Pearson
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FIG. 5. Finite-size scaling of the order-to-chaos transition in the
multilayer perceptrons (1). (a) The order parameter ρ (l ) [see Eq. (44)]
at a critical point [(σw;c, σb) ∼ (1.39558, 0.3) with tanh activation;
κ ∼ 0.233498] for various widths n [ranging from 50 (purple) to
400 (orange)], empirically averaged over 104 independent runs. Two
orthogonal inputs x1, x2 (with ‖x1‖2 = ‖x2‖2 = 1) of size nin = 10
were given. The inset shows the same data rescaled according to the
univesal scaling ansatz (45). The black dashed curve indicates the
solution (47) of the phenomenological description (46) with (κ, μ) ∼
(0.233498, 0.6601), where μ was chosen by fitting the solution to the
empirical result for n = 400. (b) The nonuniversal metric factor μ as
a function of κ in the case of tanh activation, where μ for each κ was
estimated from the same fitting as the inset of (a) using the empirical
ρ (l ) for n = 200.

correlation coefficient c(l ) [see Eq. (11)], definition of the
finite-width counterpart is straightforward:

ρ (l ) := 1 −
∑

i

(
z(l )

1;i − Z (l )
1

)(
z(l )

2;i − Z (l )
2

)
√∑

i

(
z(l )

1;i − Z (l )
1

)2 ∑
i

(
z(l )

2;i − Z (l )
2

)2
, (44)

where z(l )
1 , z(l )

2 ∈ Rn are the preactivations at the lth hidden
layer for different inputs x1, x2, respectively, z(l )

j;i the ith el-

ement of z(l )
j , and Z (l )

j := 1
n

∑
i z(l )

j;i . We empirically find that
the order parameter ρ (l ) at a critical point for various widths n
admits the following universal scaling ansatz [Fig. 5(a)]:

ρ (l )[σw = σw;c; n] 
 n−1 f (n−1l ). (45)

The empirical finding above can be heuristically un-
derstood by considering a finite-width correction to the
mean-field theory. In the case of the finite-width networks, the
fourth-order (and other even-order) cumulants come into play,
while the third-order (and other odd-order) ones vanish just as
the odd-order moments do [43]. In the spirit of the asymptotic
expansion of the probability distribution [44], this observation
indicates that the leading correction to the Gaussian process is
an order of n−1, the reciprocal of the width. Thus, together
with an obvious fact that ρ = 0 is an absorbing state also
for the finite networks, we are led to the following modified
phenomenological description:

dρ

dl
= −μ

n
ρ − κρ2, (46)

where μ is a new nonuniversal metric factor. Unfortunately,
theoretical calculation of μ would be challenging, since this
requires us to analyze the approximate recursion relation up
to O(n−1) for the covariance, which is no longer closed within

the variance and the covariance [as opposed to the mean-field
theory (7) and (8)]. Still, one can measure it by fitting the em-
pirical ρ (l ) to the analytical solution of the phenomenological
description (46)

nρ (l ) = ρ0μ

ρ0κ (e
μl
n − 1) + (μ/n)e

μl
n

, (47)

as demonstrated in the inset of Fig. 5(a).
While it is nowadays well established that the depth-to-

width ratio L/n is a key quantity for describing the multilayer
perceptrons with finite n [23,45,46], the metric factor μ en-
riches this insight by providing the means to quantitatively
characterize the sensitivity of the network to the width. Specif-
ically, the width n of the network should satisfy n � μL so
that the signal propagation dynamics therein is reasonably
well approximated by the infinitely wide limit. This intro-
duces another design consideration for the neural networks.
Recalling the relevance of κL for the training dynamics of
the networks, one would be tempted to use a critical network
with larger κ to obtain good generalization with smaller L.
However, Fig. 5(b) empirically suggests that larger κ comes
with a cost of larger μ, which imposes an extra computational
burden for larger n. Hence, if one chooses to operate the net-
work near the infinitely wide limit, then one needs to make a
trade-off between these two factors for cost-effective training.
Theoretically, a more precise formulation of this idea might be
achieved by studying the finite-width corrections [47] to the
training dynamics, which is beyond the scope of the present
work.

Finally, we briefly discuss the convolutional neural net-
works to see how the analogy to absorbing phase transitions
carries over different architectures. Formally, the recurrence
relations for the preactivation z(l;α) of a d-dimensional con-
volutional neural network (a periodic boundary condition,
also known as circular padding, is assumed for simplicity)
is described as follows (below c and k denote the number of
channels and the width of the convolution filter, respectively):

z(l+1;α) = σw√
ckd

c∑
m=1

w(l+1;α,m) � h(z(l;m) ) + σbb(l+1;α), (48)

where � denotes the cross-correlation operator [the
summation below is taken over the range {(k −
1)/2, · · · ,−1, 0, 1, · · · , (k − 1)/2} for each j1, · · · , jd ]

(A � B)i1,··· ,id :=
∑

j1,··· , jd

A j1+ k+1
2 ,··· , jd + k+1

2
Bi1+ j1,··· ,id + jd , (49)

and h(z) is a shorthand for element-wise application of h to z.
Each element of the convolutional filter w(l;α,m) ∈ Rkd

and the
bias b(l;α) is initialized according to the standard normal dis-
tribution N (0, 1). In the present case, ρ (l ) is obtained by first
calculating the correlation coefficient (44) for each channel
and then taking the average over all the channels.

The key difference compared to the multilayer percep-
trons is the locality of the interaction between the neurons.
The neurons within a convolutional layer interact only lo-
cally through the convolutional filters, in contrast with the
multilayer perceptions, where the network admits the fully
connected structure. The richer dynamics due to the spatial
degrees of freedom can be partly grasped by studying the limit
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of infinitely many channels c → ∞. In this limit, the neural
network is again equivalent to a Gaussian process [48] and
the phase diagram of the mean-field theory remains exactly
the same [24] as the multilayer perceptrons (Fig. 1), making
it easy to compare between the two architectures. Different
phases in the convolutional networks are characterized by how
a noise in a single pixel spatially spread in the course of
the signal propagation, in addition to the asymptotic behavior
of the order parameter ρ. One can empirically check that
the noise eventually decays in the ordered phase, whereas it
spreads ballistically in the chaotic phase. At a critical point,
the spreading process is diffusive, whose characteristic width
n∗ scales with the network depth l as n∗ ∼ lν⊥/ν‖ = √

l , which
induces a new critical exponent

ν⊥ = 1/2. (50)

This is exactly what happens in the mean-field theory of ab-
sorbing phase transitions with the spatial degrees of freedom
[10] at a critical point,

∂ρ

∂l
= −κρ2 + D∇2ρ. (51)

Thus, the signal propagation dynamics of the convolutional
neural networks with infinitely many channels and input
pixels at the critical point is characterized by two indepen-
dent metric factors (κ, D). Theoretical calculation of the new
metric factor D could perhaps be done using the similar tech-
niques [49,50] for studying the dynamics of wavefronts in
coupled map lattices [51], although this is substantially more
challenging than κ . Since an exact and efficient algorithm to
compute NTK is also available for the convolutional networks
[42], it would be interesting to investigate the role of D in the
training dynamics. At any rate, we believe it is safe to say that
the analogy to absorbing phase transitions is a promising in-
sight for studying deep neural networks outside the multilayer
perceptrons.

The analogy to absorbing phase transitions also gives us
a nontrivial and yet intuitive insight into the signal propa-
gation dynamics of the convolutional neural networks with
finite channels c, although the implications to the training
dynamics may be less direct, just as in the case of the finite-
width multilayer perceptrons. Empirical evidence we show in
Fig. 6 suggests the following phenomenology. If c is finite,
then the dynamics of the covariance (and hence of the order
parameter ρ (l )) is no longer deterministic but is accompanied
by a multiplicative noise, whose amplitude is asymptotically
proportional to

√
ρ (l ) as normally expected for models with

microscopic stochastic elements [52]. The noise works as a
relevant perturbation to the mean-field theory (51) in the sense
of the renormalization group, and it changes the asymptotic
scaling behavior of the network at a large scale to that of
the directed percolation (DP) universality class [53]. As such,
the universal scaling ansatz (18) remains valid with different
critical exponents. For instance, reasonable scaling collapse
can be found for the order parameter ρ (l ) in the spatially
one-dimensional convolutional networks [Fig. 6(a)] using
the exponents for the (1 + 1)-dimensional DP universality
class [54]

β1DDP ∼ 0.27649, ν‖1DDP ∼ 1.73385, (52)

FIG. 6. Directed percolation scaling in the order-to-chaos tran-
sition in the convolutional neural networks (48). (a) The order
parameter ρ (l ) with d = 1, n = 400, k = 5, and c = 10, empirically
averaged over 106 independent runs. The raw data are shown in the
left panel, which is then rescaled according to the scaling ansatz
(18) with the critical exponents of (1 + 1)-dimensional DP (52) in
the right. Two orthogonal inputs x1, x2 (with ‖x1‖2 = ‖x2‖2 = 1)
of size n were given. σw;c := 1.408 is chosen to find the scaling
collapse. (b) Similarly with (a), but with d = 2, n = 100, k = 3, and
c = 5, averaged over 4000 independent runs. The critical exponents
of (2 + 1)-dimensional DP (53) and σw;c := 1.404 were used to find
the scaling collapse in this case. In both (a) and (b), tanh activation
was used and the bias parameter σb was fixed to be 0.3.

although the order parameter can saturate to a nonzero value
slightly below the critical point (causing the tilts in the
rescaled plot) mainly because the perfect order [ρ (l ) = 0] is
virtually unachievable; the imperfection acts as a small fluctu-
ation, to which the setups near the critical point is particularly
sensitive [55]. We also checked that the essentially same
scenario holds true for the two-dimensional convolutional
networks [Fig. 6(b)], where the critical exponents β, ν‖ are
replaced [56,57] with

β2DDP ∼ 0.58, ν‖2DDP ∼ 1.29. (53)

Remarkably, the deviation from the scaling collapse is less
prominent in the two-dimensional networks than in their
one-dimensional counterparts, which is consistent with our
interpretation of the tilts since fluctuations generally become
less relevant as the spatial dimensionality goes up [10].

The correspondence to the DP universality class suggest
that the signal propagation dynamics in the convolutional
networks is highly nontrivial, especially given the notori-
ous difficulty of exactly solving DP [58]. Yet, thanks to the
universality of the scaling laws of absorbing phase transi-
tions, semiquantitative predictions can be gained via simple
phenomenological considerations. In particular, the most
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informative combination of the width n and the depth L for
describing the behavior of the critically initialized deep con-
volutional networks may be changed from L/n to L/nν‖/ν⊥

using the corresponding critical exponents

ν⊥1DDP ∼ 1.096854, ν⊥2DDP ∼ 0.73. (54)

V. DISCUSSION

To summarize, we pursued the analogy between the behav-
ior of the conventional deep neural networks and absorbing
phase transitions in the present work. During the pursuit,
we demonstrated that the signal propagation dynamics in the
untrained neural networks follows the universal scaling laws,
while the specific details are summarized using the associated
nonuniversal metric factors. In particular, the nonuniversal
metric factor κ was shown to play a significant role in the
training dynamics of the multilayer perceptrons: Its product
with the network depth L should be tuned for optimal gen-
eralization. Thus, the present work provides useful insights
into the neural networks with many but finite hidden layers,
which complements our understanding of two-layer [59,60]
or infinitely deep networks [19,21]. The framework can be
readily extended to ReLU-like activation functions (albeit
with different exponents), which consequently underlines the
significance of properly choosing the amount of leak; see
Appendix B. Furthermore, we provided numerical evidence
suggesting that the analogy to absorbing phase transitions
well captures the signal propagation dynamics in the neural
networks with finite width or different architecture, holding
great promise for future developments.

Let us emphasize that successful deep learning can only be
achieved via a complicated interplay among various setups,
even in one of the simplest cases where NTK describes the
training dynamics reasonably well. In addition to the rel-
evance of initialization at criticality [18,21] and of proper
scaling of a learning rate with respect to depth [19], the
present work demonstrates the necessity of a more specific,
depth-dependent choice of hyperparameters. Furthermore, in
the case of a large but finite width, one should also strike a
balance between width and depth for efficiency. The fact that
all these setups need to be considered simultaneously high-
lights the major challenge in deep learning, which necessitates
extensive study on hyperparameter optimization [61]. To put it
the other way around, considerable theoretical insight into the
mechanism behind the recent success of deep learning may be
obtained by studying the neural networks near the realm of
NTK, contrary to a common belief [62,63].

In a broader context, the present work hopefully exempli-
fies a subtle relationship between criticality and intelligence.
In the case of the artificial neural networks, being at criticality
alone is not sufficient for successful learning, although it is
likely to be necessary. Intriguingly, this theoretical insight
is consistent with the experimental findings on real neural
systems: While deviation from criticality often results in an
altered or abnormal state of consciousness [64,65], a sign of
criticality does not necessarily imply presumable capability
of performing intellectual tasks [66–69]. The effectiveness of
dynamic scaling [29,70] for capturing the training dynamics
of the deep neural networks suggests that intrinsic memory

characteristics of the network arising from the criticality (such
as the metric factor κ in the present work) plays a pivotal role
in information processing within the artificial networks, which
again draws an interesting parallel with brains [71,72]. As
such, understanding of the relationship between criticality and
intelligence may benefit from further study on how the mem-
ory characteristics should be adjusted for specific datasets.

We foresee some interesting directions for future work.
Apart from the ones mentioned in the previous section [73],
one of the most natural directions is to extend the present
framework to more modern architectures [25,74,75]. In par-
ticular, the skip connections employed in the residual neural
networks (ResNet [76]) may be seen as a stimulus kicking
the system out of an absorbing state: Even if the signals
are collapsed during the propagation within a residual block,
the skip connection breaks the order before entering the new
block. Given that a combination of external drive and dis-
sipation into absorbing states has been conjectured to be a
key ingredient of self-organized criticality in physical systems
[3,7], the skip connections may have their unique benefits in
deep learning as well. Another, albeit less straightforward,
direction is to provide thermodynamic foundations of the
speed-accuracy trade-off in deep learning. The deep neural
networks in the ordered phase sacrifice speed for accuracy
and vice versa in the chaotic phase. Since the speed-accuracy
trade-off has been extensively studied in the context of living
systems [77–80], thermodynamical insights developed therein
are likely to be helpful (and indeed, very recently, the trade-off
in the diffusion models has been studied from a thermody-
namic viewpoint [81]), although pursuing this direction would
call for an improved understanding of the thermodynamics of
absorbing phase transitions [82,83]. We believe that further
investigation into a parallel between intelligence in living
systems and that in artificial neural networks will lead us to
a lot of exciting developments, beneficial for both physics and
machine learning communities.
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APPENDIX A: DERIVATION OF THE CRITICAL
EXPONENTS FOR THE MULTILAYER PERCEPTRONS

Here we derive the critical exponents (22) of the multilayer
perceptrons in the main text. That is, we show that the order
parameter ρ∗ [see Eq. (21)] at the fixed point of the itera-
tive C-map (13) and the correlation depth ξ‖ as defined by
Eq. (14) respectively exhibits linear onset in the vicinity of
the critical point [although we have already seen it empirically
in Fig. 1(c)]. To achieve this goal, we expand the mean-field
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theory (7) and (8) with respect to infinitesimally small devia-
tion δσw from the critical point σw;c.

First, let us show the continuity of q∗ as a function of
σw at the edge of chaos for later convenience. Consider the
fixed point q∗ of the mean-field theory (7) for infinitesimally
different σw, and let δσw and δq∗ respectively denote the
increment in σw and q∗. Then we compare the equality for
the fixed point of q as follows:

q∗ = σ 2
w

∫
Dz h2(

√
q∗z) + σ 2

b ; (A1)

q∗ + δq∗ = (σw + δσw )2
∫

Dz h2(
√

q∗ + δq∗z) + σ 2
b


 σ 2
w

∫
Dz h2(

√
q∗z) + σ 2

b

+ δq∗ σ 2
w

∫
Dz

z√
q∗ h(

√
q∗z)h′(

√
q∗z)

+ 2δσw σw

∫
Dz h2(

√
q∗z), (A2)

where we have neglected difference of O((δq∗)2), O((δσw )2),
or O(δq∗δσw ). By subtracting Eq. (A1) from Eq. (A2), we find

δq∗ 

2σw

∫
Dz h2(

√
q∗z)

1 − σ 2
w

∫
Dz

z√
q∗ h(

√
q∗z)h′(

√
q∗z)

δσw

=: αδσw. (A3)

In particular at the critical point σw;c, the coefficient α can be
further simplified to

α =
2

∫
Dz h2(

√
q∗

c z)

−σw;c

∫
Dz h(

√
q∗

c z)h′′(
√

q∗
c z)

, (A4)

where q∗
c is the fixed point of Eq. (7) at the edge of chaos. It

turns out that the numerator and the denominator of the right-
hand side of Eq. (A3) converge to a finite value, so does α

itself.
Next, we study the behavior of ξ−1

‖ slightly below the
critical point. To do this, we expand Eq. (15) with respect to
an infinitesimal deviation δσw from the critical point σw;c:

e
− 1

ξ‖ (σw;c−δσw )

= (σw;c − δσw )2
∫

Dz h′2(
√

q∗
c − αδσwz)


 1 −
[

2

σw;c
+ ασ 2

w;c√
q∗

c

∫
Dz zh′(

√
q∗

c z)h′′(
√

q∗
c z)

]
δσw

= 1 − γ1δσw, (A5)

where

γ1 := 2

σw;c

⎛
⎜⎜⎝1 −

(q∗
c − σ 2

b )
∫

Dz zh′(
√

q∗
c z)h′′(

√
q∗

c z)

√
q∗

c

∫
Dz h(

√
q∗

c z)h′′(
√

q∗
c z)

⎞
⎟⎟⎠.

(A6)

The coefficient γ1 remains finite for activation functions in
the K∗ = 0 universality class, and hence ξ−1

‖ decreases to 0 as
σw ↑ σw;c in an asymptotically linear manner.

The correlation depth ξ−1
‖ slightly above the critical point

[see Eq. (9) for the definitions of u∗
1, u∗

2]

e
− 1

ξ‖ (σw;c+δσw ) = (σw;c + δσw )2
∫

Dz1

∫
Dz2 h′

× (u∗
1 + δu∗

1 )h′(u∗
2 + δu∗

2 ) (A7)

can be studied similarly, but we need first to analyze the
behavior of the fixed point c∗ of the iterative C-map (13) as
a function of σw, due to the c dependence of u2. Hence we
expand the C-map slightly above the critical point (that is,
σw = σw;c + δσw) around the trivial fixed point c(l ) = 1

c(l+1) − c(l ) =
(

dc(l+1)

dc(l )

∣∣∣∣
c(l )=1

− 1

)
(c(l ) − 1)

+ 1

2

d2c(l+1)

dc(l )2

∣∣∣∣
c(l )=1

(c(l ) − 1)2 + · · · . (A8)

Notice that essentially the same calculation as the one for
analyzing linear stability of the trivial fixed point [18] can be
repeated to inductively see

dnc(l+1)

dc(l )n

∣∣∣∣
c(l )=1

= σ 2
wq∗n−1

∫
Dz

(
dnh

dzn
(
√

q∗z)

)2

, (A9)

which implies these derivatives are positive and finite at any
order. Particularly in the vicinity of the critical point, we have,
from Eq. (A5),

dc(l+1)

dc(l )

∣∣∣∣
c(l )=1

− 1 = γ1δσw + o(δσw ). (A10)

By taking the first two terms of the expansion (A8) into ac-
count and solving it with respect to δρ := 1 − c∗ at the fixed
point, one can see that the leading contribution for δρ is of
order δσw, more specifically

δρ = γ1

2
∫

Dz h′2(
√

q∗
c z)

q∗
c

∫
Dz h′′2(

√
q∗

c z)
δσw =: ζ δσw. (A11)

This result implies that the critical exponent β associated with
the onset of the order parameter is 1.

Now we are in the position of studying ξ−1
‖ slightly above

the critical point (A7):

1 − e
− 1

ξ‖ (σw;c+δσw )



[
ζσ 2

w;c

√
q∗

c

(∫
Dz zh′(

√
q∗

c z)h′′(
√

q∗
c z)

−
∫

Dz1

∫
Dz2

√
q∗

c z2
2h′(

√
q∗

c z1)h′′′(
√

q∗
c z1)

)

−ασ 2
w;c√
q∗

c

∫
Dz zh′(

√
q∗

c z)h′′(
√

q∗
c z) − 2

σw;c

]
δσw

= γ2 δσw, (A12)
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where

γ2 := ζ

q∗
c

∫
Dz h′′2(

√
q∗

c z)∫
Dz h′2(

√
q∗

c z)
− γ1 = γ1 =: γ . (A13)

This indicates that ξ−1
‖ decreases to 0 as σw ↓ σw;c in an

asymptotically linear manner. Thus, it is confirmed that ν‖ =
1. Note that the contribution of order δσ

1
2

w vanishes because∫ ∞

−∞
dz

z√
2π

e− z2

2 = 0. (A14)

Although the main purpose of this Appendix, namely the
derivation of the critical exponents β, ν‖, has already been
completed, let us discuss the nonuniversal metric factors γ , κ

introduced in Eq. (18). By comparing the results (A5), (A11),
and (A12) with the solution of the mean-field theory of ab-
sorbing phase transition [10]

dρ

dt
= γ↔(σw − σw;c)ρ − κρ2, (A15)

we find the following results:

γ↔ = γ

= 2

σw;c

⎛
⎜⎜⎝1 −

(
q∗

c − σ 2
b

) ∫
Dz zh′(

√
q∗

c z)h′′(
√

q∗
c z)

√
q∗

c

∫
Dz h(

√
q∗

c z)h′′(
√

q∗
c z)

⎞
⎟⎟⎠;

(A16)

κ = γ /ζ =
q∗

c

∫
Dz h′′2(

√
q∗

c z)

2
∫

Dz h′2(
√

q∗
c z)

. (A17)

By repeating the same argument for a fixed σw > (h′(0))−1,
one can arrive at the same critical exponents with the different
metric factor γ�; see Eq. (25).

APPENDIX B: SCALE-INVARIANT
ACTIVATION FUNCTIONS

The purpose of this Appendix is to study the signal propa-
gation dynamics of the infinitely wide multilayer perceptrons
with scale-invariant activation functions (in the following, a is
a non-negative parameter often referred to as leak)

h(x) =
{

ax x < 0;
x x � 0.

(B1)

The order-to-chaos transition in the neural networks of this
kind is slightly different from the one discussed in the main
text: qualitative change of the behavior can be found in the
variance q(l ) rather than in the covariance C(l ). One can see,
by carrying out the integration in Eq. (7), that q(l ) exhibits
the transition between convergence to some constant q∗ and
exponential divergence at σw = σw;c :=

√
2/(1 + a2), regard-

less of σb [22]. In particular, q(l ) stays constant throughout the

network if

(σw, σb) =
(√

2

1 + a2
, 0

)
, (B2)

while it diverges linearly if σb �= 0 [Fig. 7(a)]. Note that a
special case of Eq. (B2) for a = 0 is nothing but the well-
known He initialization [85] for ReLU activation. With this
initialization scheme, we have a well-defined iterative C-map
(13) and hence we can study the order parameter ρ (l ) defined
in Eq. (21); Cho and Saul [86] provide technical details on
how to analytically deal with the integration appearing in
Eq. (13) in the case of ReLU activation. Notice also that q∗
vanishes for σw < σw;c if σb = 0. In other words, the neurons
within sufficiently deep hidden layers die out [87], which is
reminiscent of an absorbing phase transition discussed in the
main text.

A natural question is whether one can apply the universal
scaling of absorbing phase transitions in the present case,
which we will address below. As visualized in Fig. 7(b), we
find that the order parameter ρ (l ) at the edge of chaos (B2)
follows the universal scaling ansatz,

ρ (l ) 
 (κl )−2g(ρ (0)(κl )2), κ =
√

2(1 − a)2

3(1 + a2)π
, (B3)

with a suitable scaling function g having the same asymptotic
behavior as Eq. (29), where we dropped the metric factor ω

associated with an initial condition because ω = 1 in this case.
The difference in the scaling exponent compared to the result
(28) in the main text stems from the second-dominant term
in the iterative C-map (13). Specifically, one can see that the
difference of ρ (l ) in the adjacent layers is asymptotically of
ρ (l ) 3

2 , rather than ρ (l )2:

ρ (l+1) − ρ (l ) = −σ 2
w;c(1 − a)2

2π
(
√

1 − c(l )2 − c(l ) cos−1 c(l ) )

= −2
√

2(1 − a)2

3(1 + a2)π
ρ (l ) 3

2 + O(ρ (l ) 5
2 ). (B4)

Since the argument for a finite-width correction [see just
above Eq. (46)] is not sensitive to a selection of the activation
function, the correction can be made in the same manner as
the K∗ = 0 activation functions

dρ

dl
= −μ

n
ρ − 2κρ

3
2 , (B5)

although the resulting l dependence of the order parameter
ρ (l ) and the exponents for the finite-size scaling are different:

n2ρ (l ) 
 μ2ρ0(
2κ

√
ρ0

(
e

μl
2n − 1

) + (μ/n)e
μl
2n

)2 , (B6)

ρ (l ) 
 n−2 f (n−1l ). (B7)

Numerical results shown in Fig. 7(c) validate the finite-size
scaling ansatz (B7) and suggest that the positive correlation
between the two metric factors κ, μ holds true for scale-
invariant activation functions (see the inset). Similarly, the
universal scaling for NTK holds for small ρ (0) or large L
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FIG. 7. Universal scaling in the infinitely wide multilayer perceptrons (1) with scale-invariant activation functions (B1). (a) The phase
diagram of the signal propagation for ReLU activation (a = 0). A dashed line is used to indicate the phase boundary because the preactivation
variance diverges at the boundary unless σb = 0 (a black point). (b) The order parameter ρ (l ) at the edge of chaos (B2) for various combinations
of cosine distances ρ (0) and leak parameters a [the resulting ρ (0)κ2 ranges from 3.6 × 10−8 (purple) to 6.3 × 10−4 (orange)], calculated from
the mean-field theory (7), (8) and then rescaled according to the scaling ansatz (B3). The dashed lines are guides to the eye for the asymptotic
behavior (29) of the scaling function g. The inset shows the nonuniversal metric factor κ as a function of a. (c) The main panel shows the order
parameter ρ (l ) [see Eq. (44)] at a critical point [(σw;c, σb) ∼ (

√
2, 0) with ReLU activation; κ = √

2/(3π ) ∼ 0.150053] for various widths n
[ranging from 50 (purple) to 400 (orange)], empirically averaged over 4 × 104 independent runs and rescaled according to the universal scaling
ansatz (B7). Two orthogonal inputs x1, x2 (with ‖x1‖2 = ‖x2‖2 = 1) of size nin = 10 were given. The black dashed curve indicates the solution
(B6) of the phenomenological description (B5) with (κ, μ) ∼ (0.150053, 0.2676), where μ was chosen by fitting the solution to the empirical
result for n = 200. The inset shows the nonuniversal metric factor μ as a function of κ in the case of scale-invariant activation functions,
where μ for each κ was estimated from the same fitting as the main panel using the empirical ρ (l ) for n = 200. (d) The NTK �(L)(x1, x2) [see
Eq. (34)] for various network depths, rescaled according to the universal scaling ansatz (B8). The same combinations of (ρ (0), a) as (b) were
used. The two horizontal lines are guides to the eye for the asymptotic behavior as L → ∞ [21]: the upper one for x1 = x2 [ρ (0) = 0] and the
lower one for x1 �= x2 [ρ (0) > 0].

[Fig. 7(d)]:

�(L)(x1, x2) 
 q∗
c Lg̃(ρ (0)(κL)2). (B8)

Thus, essentially the same scenario as the K∗ = 0 activation
functions is applicable to the scale-invariant functions, with a
suitable change of the scaling exponents.

The analysis above potentially provides theoretical founda-
tions of some empirical insights in the literature. First, we can
correctly anticipate that a small leak of a = 0.01, commonly
referred to as leaky ReLU in the literature, is unlikely to have
a significant impact on the network performance [88,89],
since the metric factor κ changes only by 2%. With larger a,

however, κ noticeably decreases (for instance, it becomes half
of the original ReLU at a = 2 − √

3 ∼ 0.27) and the optimal
depth for training increases in a reciprocal manner (see the
final paragraph of Sec. IV B). Consequently, it is possible
that the networks with suitably chosen leak works better for a
fixed task and other network structures, in particular when the
original ReLU network tends to overfit the training data; the
superior performance of very leaky (a ∼ 0.18) ReLU reported
by Xu et al. [90] may be seen as a remarkable manifestation
of such phenomenology, although the differences in the
network architecture must be taken into account for a direct
comparison.
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