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Machine-learning study of phase transitions in Ising, Blume-Capel, and Ising-metamagnet models
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We combine machine-learning techniques with Monte Carlo (MC) simulations and finite-size scaling (FSS)
to study continuous and first-order phase transitions in Ising, Blume-Capel, and Ising-metamagnet spin models.
We go beyond earlier studies that had concentrated on obtaining the correlation-length exponent ν. In particular,
we show (a) how to combine neural networks (NNs), trained with data from MC simulations of Ising-type spin
models on finite lattices, with FSS to obtain both thermal magnetic exponents yt = 1/ν and yh, respectively, at
both critical and tricritical points, (b) how to obtain the NN counterpart of two-scale-factor universality at an
Ising-type critical point, and (c) how to get FSS at a first-order transition. We also obtain the FSS forms for the
output of our trained NNs as functions of both the temperature and the magnetic field.
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I. INTRODUCTION

The development of the theory of phase transitions is
among the most important advances in theoretical physics
over the last 60 years [1–8]. We can now obtain, with great
accuracy, the universal critical exponents that characterize the
universality classes of different continuous phase transitions.
Examples of such transitions include the liquid-gas critical
point, the Curie and Néel transitions in ferromagnets and
antiferromagnets, respectively, the normal-superconductor
transition, and the change from a normal fluid to a superfluid.

Some studies have explored intriguing intersections be-
tween statistical physics and machine learning (ML). Ideas
from statistical physics are frequently employed to gain in-
sights into ML models, even as the application of ML methods
in physics moves apace (see, e.g., Refs. [9–11]). A diverse
array of ML techniques are being utilized to explore prop-
erties of various models of statistical physics, such as Ising
models [12–19], directed percolation [15,20–23], and mod-
els for nonequilibrium transitions [24,25]. Furthermore, the
ML-aided classification of phases and phase transition has
attracted significant attention [12,14–18,20,23,26–31]; both
supervised and unsupervised ML methods have been used in
such classification. For example, ML-assisted dimensionality
reduction, in the vicinity of critical points, has used princi-
pal component analysis (PCA) and autoencoders (see, e.g.,
[27,32,33]).

Phase transitions can occur only in the thermodynamic
limit, i.e., when the linear system size L → ∞. How-
ever, finite-size-scaling (FSS) analysis provides an effective
method for estimating, from finite-size calculations, ther-
modynamic functions and their singularities, for both con-
tinuous and first-order transitions [8,34–37]. Traditionally,
FSS is used directly with thermodynamic functions like the
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magnetization M in a ferromagnet. Recent studies have
demonstrated that outputs from machine-learning models,
such as neural networks (NNs), can be analyzed with FSS
to obtain thermal critical exponents, like ν, at Ising-type
critical points [12,14,16–18,20,23]. We extend these stud-
ies significantly by working with the two-dimensional Ising,
Blume-Capel, and Ising-metamagnet models and demonstrat-
ing (a) how to combine NNs, trained with data from Monte
Carlo simulations of Ising-type spin models on finite lat-
tices, with FSS to obtain both thermal magnetic exponents
yt = 1/ν and yh, respectively, at both critical and tricritical
points, (b) how to obtain the NN counterpart of two-scale-
factor universality [38,39] at an Ising-type critical point, and
(c) how to combine NN methods and FSS at a first-order
transition. We also use the probability distribution functions
(PDFs) of the magnetization M, near the critical point, to
obtain general forms for the output of our trained NNs as
functions of the temperature and the magnetic field; this has
not been attempted hitherto to the best of our knowledge.
We also demonstrate, for the Blume-Capel [40–43] and Ising-
metamagnet [44–47] models, that NNs, trained near zero-field
critical points, can successfully uncover scaling properties,
in particular critical exponents and scaling functions, in the
vicinities of critical points or lines at nonzero values of these
fields. (We use the word field in a generalized sense for
parameters in these models; such fields include, e.g., the ex-
ternal magnetic and crystal fields for the Blume-Capel model
[40–43], and the external magnetic and staggered-magnetic
fields for the Ising-metamagnet model [44–47].) Our method
does not yield new physical results for these phase transitions,
nor has it achieved, so far, the level of accuracy for critical
exponents calculated by high-resolution Monte Carlo sim-
ulations, conformal-bootstrap analysis, or series-expansion
methods [48–57]. However, our NN-based study is able to
exploit transfer learning, whereby the zero-field-trained NN
suffices to study critical points at nonzero fields.

Our paper is organized as follows: In Sec. II we define
the Ising, Blume-Capel, and Ising-metamagnet models, the
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Monte Carlo and finite-size scaling methods we use, and the
neural network architectures we employ. We then present our
results in Sec. III. Section IV is devoted to a discussion of our
results and conclusions.

II. MODELS AND METHODS

A. Models

We consider the following three spin models for two-
dimensional (2D) square lattices: the ferromagnetic Ising
model (Sec. II A 1), the Blume-Capel model (Sec. II A 2), and
the Ising-metamagnet (Sec. II A 3).

1. Ising ferromagnet

The Ising model is defined by the Hamiltonian

HI = −J
∑
〈i, j〉

SiS j − H
∑

i

Si, (1)

where the Ising spins Si = ±1 and 〈i, j〉 denotes nearest-
neighbor pairs of sites [58–61] and we consider a square
lattice with N = L2 sites, labeled by i. There is a magnetic
field H at every site, and the exchange coupling J > 0; i.e.,
we consider the ferromagnetic case, which has completely
aligned spins at temperature T = 0 and, at H = 0, two coex-
isting phases: the ↑ phase with Si = 1, ∀i, and the ↓ phase
with Si = −1, ∀i. The equilibrium statistical mechanics of
this model follows from its intensive bulk free energy fB,
which can be obtained exactly [58–61] if H = 0, whence we
know that this Ising model exhibits a critical point at H = 0
and T = Tc, with

sinh

[
2J

kBT eq
c

]
= 1,

⇒ kBTc = 2J

ln(1 + √
2)

, (2)

where kB is the Boltzmann constant. Henceforth, we use units
in which kB and J are set to 1. The order parameter for this
model is the magnetization per spin M = 〈∑i Si〉/N , where
the angular brackets denote thermal averages like 〈Si〉 =∑

{S j}[Si exp(−βHI )]/
∑

{S j }[exp(−βHI )], where
∑

{S j} de-
notes the sum over all spin states, and β ≡ 1/(kBT ). This
magnetization and the two-spin correlation length ξ show the
following power-law behaviors in the vicinity of the critical
point:

M ∼ |t |β, t → 0− and h = 0,

M ∼ |h| 1
δ , h → 0± and t = 0,

ξ ∼ |t |−ν, t → 0± and h = 0,

ξ ∼ |h|− ν
βδ , h → 0± and t = 0, (3)

the reduced temperature t = T −Tc
Tc

, and t → 0− indicates that
t approaches 0 from below; t → 0± means that t approaches
0 either from above or below. The exponents β = 1/8, ν = 1,
and δ = 15 for this 2D Ising model (and all models in this
universality class [7,8,58–61]).

2. Blume-Capel model

We also study the Blume-Capel model on a 2D square
lattice with nearest-neighbor interactions and the Hamiltonian
[40–43]

HBC = −J
∑
〈i, j〉

SiS j + �
∑

i

S2
i − H

∑
i

Si, (4)

where the spins Si = ±1, 0, the ferromagnetic coupling J >

0, and � and H are, respectively, the crystal field and the
magnetic field H . In the �-T plane, with the H = 0, this
model exhibits a line of first-order transitions and another
line of 2D Ising-type second-order transitions that meet at a
tricritical point [40–43], which has distinct critical exponents.
This model (4) has the following two order parameters:

M ≡ 〈∑i Si〉
N

; Q ≡
〈 ∑

i S2
i

〉
N

. (5)

3. Ising-metamagnet

We consider the Ising-metamagnet on a two-dimensional
(2D) square lattice, with N = L2 sites, labeled by i, nearest-
neighbor (nn) antiferromagnetic interactions J1 < 0, and next-
nearest-neighbor (nnn) ferromagnetic interactions J2 > 0, and
the Hamiltonian [44–47]

HM = − J1

∑
〈i, j〉nn

SiS j − J2

∑
〈i, j〉nnn

SiS j

− H
∑

i

Si − Hs

[∑
i∈A

Si −
∑
i∈B

Si

]
, (6)

where the Ising spins Si = ±1; H and Hs are, respectively, the
external magnetic field and the staggered magnetic field; and
A and B are the two interpenetrating square sublattices that
comprise our original bipartite square lattice.

The fields H and Hs are thermodynamically conjugate to
the magnetization M and the staggered magnetization Ms

order parameters for this system; these are defined as follows:

MA ≡
∑

i∈A〈Si〉
NA

, MB ≡
∑

i∈B〈Si〉
NB

,

M ≡ MA + MB, Ms ≡ MA − MB, (7)

where NA = NB = N/2.
In the H-T plane, with Hs = 0 and H � 0, the model (6)

exhibits a line of first-order transition and a line of second-
order transitions, in the 2D Ising universality class, that meet
at a tricritical point [44–47].

B. Monte Carlo simulations

For arbitrary values of the exchange couplings J, . . ., fields
H, . . . , and the temperature T , the bulk free energy fB and
other thermodynamic functions like M cannot be obtained
analytically for the models (1), (4), and (6). Here we use
standard Metropolis Monte Carlo methods [62], with non-
conserved order parameters, to obtain order parameters and
their probability distributions. Furthermore, we use various
spin configurations, which emerge from our MC simulations
at given values of couplings, fields, and the temperature T ,
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FIG. 1. Schematic diagrams of (a) the fully connected neural nework (FCNN) and (b) the convolutional neural network (CNN), which
we train to classify snapshots of spin configurations that we obtain from our Monte Carlo simulations, both above and below the critical
temperature Tc.

as inputs for training and testing the convolutional neural net-
works (CNNs) and fully connected neural networks (FCNNs)
(see Sec. II D).

C. Finite-size scaling

Finite-size scaling helps us to extract universal critical
exponents and scaling functions, in the vicinity of a critical
or a tricritical point, from calculations on small systems, e.g.,
with N small in models (1), (4), and (6). Strictly speaking,
to obtain the intensive bulk free energy fB, we must take the
thermodynamic limit L → ∞, where the linear system size
L = Na, with a the lattice spacing for the models we consider
(we choose a = 1). In the vicinity of the critical point, fL, the
finite-size approximation to the fB, assumes a scaling form
[35,63], which is given below for model (1):

fL(t, h) = L−d f ∗(tLyt , hLyh
)
, (8)

where d is the dimension, the reduced temperature t ≡ (T −Tc )
Tc

,
with Tc the critical temperature, h ≡ H/(kBTc), and yt and yh

are universal scaling exponents that are related to the conven-
tional critical exponents via

yt = 1

ν
and yh = βδ/ν whence (9)

M = −∂ fL

∂h

∣∣∣∣
h=0

= L−β/ν f ∗
h (tL1/ν, 0), at h = 0, (10)

M = − ∂ fL

∂h

∣∣∣∣
t=0

= L−β/ν f ∗
h (0, hLβδ/ν ), at t = 0. (11)

From Eqs. (10) and (11), we can see that plots of (a) MLβ/ν

vs tL1/ν , for h = 0, and (b) MLβ/ν vs hLβδ/ν , for t = 0, fall on
top of scaling curves for different values of L [these curves are
different for cases (a) and (b)]. The best fits for these scaling
curves lead to estimates for the critical exponents.

For the 2D Blume-Capel model (4), in the vicinity of tri-
critical point [40,42,43] at H = 0, T = T BC

t , and � = �t , the

finite-size scaling relation for the free energy is

f BC
L (t, g, h) = L−d f ∗BC(

tLyt , gLyg, hLyh
)
, (12)

where t = (T −T BC
t )

kBT BC
t

and g = (�−�t )
(kBT BC

t )
+ at [40,43], where a is a

nonuniversal constant, and g is the deviation from the tricriti-
cal point along the tangent to the coexistence curve, in the t-�
plane.

Similarly, for the 2D metamagnet, the singular part of the
free energy in the vicinity of the tricritical point, at Hs = 0,
T = T M

t , and H = HM
t , has the form (cf. Refs. [45–47])

f M
L (t, g′, hs) = L−d f ∗M(

tLyt , g′Lyg′ , hsL
yh
)
, (13)

where t = (T −T M
t )

kBT M
t

, and g′ = (H−HM
t )

(kBT M
t ) + a′t [47] is the tangent

to the coexistence curve in the T -H plane, hs = Hs/(kBT M
t ) is

the staggered field, and a′ is a nonuniversal coefficient.

D. Neural-network architectures

We employ fully connected neural networks (FCNNs) and
convolutional neural networks (CNNs). In Fig. 1(a), we give
a schematic diagram of the FCNN we use; the mathematical
operations for our FCNN are given below:

Input: σX,Y (L × L), i.e., 1 � X,Y � L,

Flatten: Fk = σX,Y , k = (Y − 1)L + X,

Dense layer 1: E (1)
n =

L2∑
k=1

W (1)
n,k Fk + b(1)

n , 1 � n � 64,

ReLU: E (1)
n = max

(
0, E (1)

n

)
, 1 � n � 64,

Dense layer 2: E (2)
l =

64∑
m=1

W (2)
l,mE

(1)
m + b(2)

l , 1 � l � 2,

Softmax: Os
l = exp

(
E (2)

l

)
2∑

j=1
exp

(
E (2)

j

) , l = 1, 2. (14)
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Here the input σX,Y is the spin at site (X,Y ) [Si for models (1)
and (6) and Si for model (4)]. We have a hidden layer with 64
dense nodes with weights W (1)

n,k , and biases b(1)
n , followed by

the ReLU activation. In the output, we have two nodes with
weights W (2)

l,m and biases b(2)
l , followed by a softmax activation

to obtain the normalized outputs Os
l .

In Fig. 1(b) we give a schematic diagram of the CNN we
use; and the mathematical operations for our CNN are given
below:

Input: σX,Y (L × L), i.e., 0 � X,Y < L,

Padding: σ̃X,Y , i.e., 0 � X,Y < L + 2,

σ̃X,Y = σX−1,Y −1, if 1 � X, Y � L,

else σ̃X̃ ,Ỹ = 0,

Convolution: C(p)
X,Y =

2∑
i=0

2∑
j=0

σ̃X+i,Y + jF
(p)

i, j + b(p),

p ∈ [0, 1, . . . , 31],

ReLU: Rp
X,Y = max

(
0,C(p)

X,Y

)
,

Max-pool: M (p)
x′,y′ = max

(
R(p)

(X :X+1)(Y :Y +1)

)
,

2x′ = X, 2y′ = Y, 0 � x′, y′ <
L

2
,

Flatten: Fq = M (p)
x′,y′ , q = p

(
L

2

)2

+ y′
(

L

2

)
+ x′,

Dense layer 1: Z (1)
s =

32( L
2 )2−1∑

r=0

W (1)
s,r Fr + b(1)

s , 1 � s � 64,

ReLU: Z (1)
s = max

(
0, Z (1)

s

)
, 1 � s � 64,

Dense layer 2: Z (2)
t =

64∑
s=1

W (2)
t,s Z (1)

s + b(2)
t , 1 � t � 2,

Softmax: Os
u = exp

(
Z (2)

u

)
2∑

t=1
exp

(
Z (2)

t

) , u = 1, 2. (15)

We have a convolutional layer, with 32, 3 × 3 filters F (p)
i, j , and

biases b(p), with ReLU activation (we apply the padding to
retain the original spatial dimensions), followed by a max-
pooling layer with 2 × 2 filters and a stride of 2, and a dense
layer with 64 nodes, with weights W (1)

s,r , and biases b(1)
s . In

the output, we have two nodes with weights W (2)
t,s and biases

b(2)
t , followed by a softmax activation to obtain the normalized

outputs Os
t .

With the spin configurations σX,Y as the input, we train our
neural networks to classify these configurations using binary
cross-entropy, with a regularizer term as the loss function,

L = 〈−P(σ ) log P̂(σ) − [1 − P(σ )] log[1 − P̂(σ)]〉 + λ||W||,
(16)

where P(σ ) takes the values 1 (or 0) if the spin configuration
σ, from the training data, is below (or above) the critical
temperature; and P̂(σ) ∈ [0, 1] is the output or the prediction
of the neural network, which is Os

1 for our FCNN [Eq. (14)]

and Os
1 for our CNN [Eq. (15)], 〈·〉 denotes the average over

the training data set, λ is the regularization strength, and

||W|| =
64∑

n=1

L2∑
k=1

W (1)
n,k

2 +
2∑

l=1

64∑
m=1

W (2)
l,m

2
, (17)

for the FCNN, and

||W|| =
p=31∑
p=0

2∑
j=0

2∑
i=0

F (p)
i, j

2 +
64∑

s=1

32( L
2 )2−1∑

r=0

W (1)
s,r

2

+
2∑

t=1

64∑
s=1

W (2)
t,s

2
, (18)

for the CNN. We implement our neural networks using Ten-
sorflow [64].

III. RESULTS

We present our results for the scaling forms for neural
network outputs in Sec. III A, and results for the ferromagnetic
Ising model (1), the Blume-Capel model (4), and the Ising-
metamagnet (6) in Secs. III B–III D respectively. We discuss
universal scaling functions and scale factors in Sec. III E and
FSS in the vicinity of the first-order transition for the Ising
model (1) in Sec. III F.

A. Scaling forms for neural network outputs

For a system with linear size L, we define

PL(t, h) = 〈P̂L(σ)〉{σ}, (19)

where 〈·〉{σ} denotes the average of P̂L(σ) [Eq. 16] over the
spin configurations σ from the test data set obtained at given
values of t and h. PL(t, h) can be expressed as (cf. Ref. [16]
for h = 0)

PL(t, h) =
∫

dσ PL(σ, t, h)P̂L (σ), (20)

where the PL(σ, t, h) is the probability distribution function
(PDF) of σ. We now follow Refs. [16,65] to go from σ to |M|
to obtain

PL(t, h) =
∫

d|M| [PL(|M|, t, h)P̂L (|M|)] (21)

for a system of linear size L, this has the FSS form [66]

PL(|M|, t, h) ≡ L
β

ν P∗(|M|L β

ν , tLyt , hLyh
)
. (22)

A heuristic explanation of the expression (22) follows (see
Refs. [66–68] for details). Let P̄L(M, t ) be the PDF of M at
h = 0 for a system of linear size L, then the corresponding
FSS form can be written as [67,68]

P̄L(M, t ) = 1

ςM
P̄∗

(
M

ςM
,

L

ξ

)
(23)

in the vicinity of the critical temperature Tc, ξ ∼ |t |− 1
yt ,

but ξ is bounded above by L, in a finite-size system, so
L
ξ

becomes relevant for FSS [35,36,67,68]. In Eq. (23),
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ςM =
√

〈M2〉 − 〈M〉2 =
√

〈M2〉, whence we obtain ςM ∼
L

−β

ν ; finally we have the following FSS form:

P̄L(M, t ) = L
β

ν P̄∗(ML
β

ν , tLyt
)

; (24)

similarly at t = 0, from ξ ∼ |h|− 1
yh , |M| ∼ |h| 1

δ , we have

P̄L(M, h) = L
β

ν P̄∗(ML
β

ν , hLyh
)
. (25)

We now employ the following FSS form [see Ref. [16] and
Fig. 7(a) in Appendix D]

P̂L(|M|) ≡ P̂∗(|M|L β

ν

)
(26)

and use Eqs. (20), (22), and (26) to obtain

PL(t, h) =
∫

d|M|L β

ν

[
P∗(|M|L β

ν , tLyt , hLyh
)

× P̂∗(|M|L β

ν

)]
≡P∗(tLyt , hLyh

)
. (27)

Henceforth, we denote by P∗
L (tLyt , hLyh ) our numeri-

cal approximation of P∗(tLyt , hLyh ) for systems with linear
size L.

Note that the FSS forms (22) and (26) show that tranfer-
learning works for our NNs (Secs. III C and III D) because the
output of this NN exhibits FSS irrespective of the details of
the form of the function PL(|M|, t, h) (see also Ref. [16]).

In Secs. III B–III D, we show how the FSS expression
(27) holds for the Ising, Blume-Capel, and Ising-metamagnet
models that we consider.

B. Two-dimensional Ising model

We give the specific architectures of the CNN and FCNN
that we train to classify the spin configurations of the 2D Ising
model (Sec. II A 1), above and below the critical temperature
kBTc/J = 2/ ln(1 + √

2), in Sec. II [Eqs. (14) and (15)], and
the details of training and testing are given in Appendixes A
and B.

Figure 2 contains the results from our CNN (15). In
Fig. 2(a), we plot PL(t, 0) vs t , for L = 12, 16, 20, and
30; in the inset we give the finite-size-scaling (FSS) plot
of P∗

L (tLyt , 0) vs tLyt from which we obtain the best-fit ex-
ponent yt = 1.03(2) that is close to the exact value 1 (cf.
Refs. [12,14–18] for similar studies at h = 0).

We now show how to generalize our discussion above to
obtain the magnetic exponent yh. In Fig. 2(b) we plot PL(0, h)
vs h; and in the inset we give the FSS plot of P∗

L (0, hLyh ) vs
hLyh ; this yields the best-fit magnetic exponent yh = 1.84(1),
which is close to the exact value 1.875. In Appendix B we
give the estimates for yt and yh, from NNs saved across dif-
ferent training epochs, whence we get error estimates for yt

[�O(0.01)] and for yh [�O(0.1)]. Here we use NNs, from
which the estimates for yt and yh are close to the known
values. The plot in Fig. 2(c) shows PL(t, h) as a function
of t and h for L = 12 and 20; in the inset we give the FSS
plot of P∗

L (tLyt , hLyh ) as a function of tLyt and hLyh , for
L = 12, 16, 20, 30, whence we obtain yt = 1.07(5), and yh =
1.83(12); in Figs. 2(d) and 2(e), we show different views of

TABLE I. Our estimates for the thermal (yt ) and magnetic (yh )
exponents in the vicinity of the second-order transition for the Ising
model (1).

NN yt [exact:1] yh [exact:1.875]

CNN 1.03(2) 1.84(1)
FCNN 1.06(2) 1.85(1)

the surface onto which the points collapse. In Table I we give
the estimates for yt and yh that we obtain from scaling-collapse
fits for both the CNN (15) and FCNN (14).

C. Two-dimensional Blume-Capel model

We train our CNN (15) and FCNN (14) to classify the
spin configurations of the 2D Blume-Capel model (4) above
and below its critical temperature Tc � 1.69 [69], with � = 0
and h = 0 (details of the training and testing are given in
Appendixes A and B).

Figure 3 contains the results from our CNN (15). In
Fig. 3(a), we plot PL(t, 0) vs t , for L = 12, 16, 20, and 30 for
� = 0 and h = 0; in the inset we give the finite-size-scaling
(FSS) plot of P∗

L (tLyt , 0) vs tLyt from which we obtain the
best-fit exponent yt = 1.05(2). In Fig. 3(b), we plot PL(0, h)
vs h; and in the inset we give the FSS plot of P∗

L (0, hLyh ) vs
hLyh ; this yields the best-fit magnetic exponent yh = 1.83(1).
In Table II we give the estimates for yt and yh that we
obtain from scaling-collapse fits for both the CNN (15)
and FCNN (14).

We now test our CNN (15), trained at � = 0 and h = 0,
for FSS along the second-order transition line and for the
2D Blume-Capel model (4); this transition is in the univer-
sality class of the 2D Ising model [40,42,43]. In particular,
in Fig. 3(c), we fix � = 1, and change T , in the vicin-
ity of PL(t, h = 0) � 0.5. Now FSS best-fit plots [insets in
Figs. 3(c) and 3(d)] yield yt = 1.03(1) and yh = 1.78(1). We
summarize these results for the CNN (15) and FCNN (14) in
Table II.

The Blume-Capel model (4) exhibits a tricritical point at
� � 1.966 and T � 0.608 (see, e.g., Ref. [42]); the exponents
at this tricritical point are different from those that charac-
terize the 2D Ising universality class [40–43]. Here we train
our CNN (15) and FCNN (14) to classify the spin configu-
rations below and above Tc = 0.608 [42], with � = 1.966. In
Fig. 3(e) we plot PL(t, 0) vs t , for L = 10, 12, 16; in the inset
we give the FSS plot of P∗

L (tLyt , 0) vs tLyt , whence we obtain
the best-fit exponent yt = 1.60(2), which is close to yt � 1.8

TABLE II. Estimates for the thermal (yt ) and magnetic (yh ) ex-
ponents in the vicinity of the second-order transition for � = 0 and
� = 1 in the Blume-Capel model (4).

NN yt [exact:1] yh [exact:1.875]

CNN: � = 0 1.05(2) 1.83(1)
FCNN: � = 0 1.07(2) 1.81(1)
CNN: � = 1 1.03(1) 1.78(1)
FCNN: � = 1 1.09(1) 2.0(1)
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FIG. 2. Plots for the 2D Ising model (1): (a) PL (t, 0) vs t , for L = 12, 16, 20, and 30; in the inset we give the finite-size-scaling (FSS)
plot of P∗

L (tLyt , 0) vs tLyt from which we obtain the best-fit exponent yt = 1.03(2) that is close to the exact value 1. (b) PL (0, h) vs h; and in
the inset we give the FSS plot of P∗

L (0, hLyh ) vs hLyh ; this yields the best-fit magnetic exponent yh = 1.84(1), which is close to the exact value
1.875. (c) PL (t, h) as a function of t and h for L = 12 and 20; in the inset we give the FSS plot of P∗

L (tLyt , hLyh ) as a function of tLyt and hLyh ,
for L = 12, 16, 20, 30, whence we obtain yt = 1.07(5), and yh = 1.83(12). In panels (d) and (e), we show different views of the surface onto
which the points collapse.

[40–43]. In Fig. 3(f) we plot PL(0, h) vs h; and in the inset we
give the FSS plot of P∗

L (0, hLyh ) vs hLyh ; this yields the best-fit
magnetic exponent yh = 1.94(4), which is close to yh � 1.92
[40–43]. In Table III we give the estimates for yt and yh that
we obtain from scaling-collapse fits for both the CNN (15)
and FCNN (14).

D. Two-dimensional Ising-metamagnet model

We turn now to the 2D Ising-metamagnet model (6). We
train our CNN (15) and FCNN (14) to classify the staggered

TABLE III. Estimates for the thermal (yt ) and magnetic (yh )
exponents in the vicinity of the tricritical point for the Blume-Capel
model (4).

NN yt [exact:1.8] yh [exact:1.92]

CNN: � = 1.966 1.60(2) 1.94(4)
FCNN: � = 1.966 1.87(3) 1.94(3)

spin configurations of the 2D Ising-metamagnet model (6)
above and below its critical temperature Tc � 5.263 [45], with
h = 0 and hs = 0 (details of the training and testing are given
in Appendixes A and B).

Figure 4 contains the results from our CNN (15). In
Fig. 4(a) we plot PL(t, 0) vs t , for L = 12, 16, 20, and 30
for h = 0 and hs = 0; in the inset we give the FSS plot
of P∗

L (tLyt , 0) vs tLyt from which we obtain the best-fit ex-
ponent yt = 1.06(1). In Fig. 4(b) we plot PL(0, hs) vs hs,
and in the inset we give the FSS plot of P∗

L (0, hsLyh ) vs
hsLyh ; this yields the best-fit magnetic exponent yh = 1.90(1).
In Table IV we give the estimates for yt and yh that we
obtain from scaling-collapse fits for both the CNN (15)
and FCNN (14).

We now test our CNN (15), trained at h = 0 and hs = 0, for
FSS along the second-order transition line; for the 2D Ising-
metamagnet model (6), this transition is in the universality
class of the 2D Ising model [45]. In particular, in Fig. 4(c),
we fix H = 1, and change T , in the vicinity of PL(t, h = 0) �
0.5. Now the FSS best-fit plots [insets in Figs. 4(c) and 4(d)]
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FIG. 3. Plots for the 2D Blume-Capel model (4): (a) PL (t, 0) vs t , for L = 12, 16, 20, and 30 for � = 0 and h = 0; in the inset we give the
finite-size-scaling (FSS) plot of P∗

L (tLyt , 0) vs tLyt from which we obtain the best-fit exponent yt = 1.05(2). (b) PL (0, h) vs h; and in the inset
we give the FSS plot of P∗

L (0, hLyh ) vs hLyh ; this yields the best-fit magnetic exponent yh = 1.83(1). Panels (c) and (d) are the counterparts of
(a) and (b), but with � = 1. (e) and (f) are the counterparts of (a) and (b), but in the vicinity of tricritical point at � = 1.966.

yield yt = 1.07(2) and yhs = 1.85(2). We summarize these
results for the CNN (15) and FCNN (14) in Table IV.

The 2D Ising-metamagnet model (6) exhibits a tricritical
point at hs = 0, H � 3.927, and T � 2.41 (see, e.g., [45]); the

exponents at this tricritical point [45–47] are different from
those that characterize the 2D Ising universality class. Here
we train our CNN (15) and FCNN (14) to classify the spin
configurations below and above Tc = 2.41 [45], with Hs = 0

FIG. 4. Plots for the 2D Ising-metamagnet model (6): (a) PL (t, 0) vs t , for L = 12, 16, 20, and 30 for h = 0 and hs = 0; in the inset we
give the FSS plot of P∗

L (tLyt , 0) vs tLyt from which we obtain the best-fit exponent yt = 1.06(1). (b) PL (0, hs ) vs hs; and in the inset we give
the FSS plot of P∗

L (0, hsLyh ) vs hsLyh ; this yields the best-fit magnetic exponent yh = 1.90(1). Panels (c) and (d) are the counterparts of (a) and
(b), but with H = 1. Panels (e) and (f) are the counterparts of (a) and (b), but in the vicinity of the tricritical point at H = 3.927.
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TABLE IV. Estimates for the thermal (yt ) and magnetic (yh )
exponents in the vicinity of the second-order transitions for H = 0
and H = 1 for the Ising-metamagnet model (6).

NN yt [exact:1] yh [exact:1.875]

CNN: H = 0 1.06(1) 1.90(1)
FCNN: H = 0 1.09(1) 1.85(2)
CNN: H = 1 1.07(2) 1.85(2)
FCNN: H = 1 1.092(1) 1.93(2)

and H = 3.927. In Fig. 4(e) we plot PL(t, 0) vs t , for L =
10, 12, 16; in the inset we give the FSS plot of P∗

L (tLyt , 0)
vs tLyt , whence we obtain the best-fit exponent yt = 1.71(3),
which is close to yt � 1.8 [45]. In Fig. 4(f), we plot PL(0, hs)
vs hs; and in the inset we give the FSS plot of P∗

L (0, hsLyh ) vs
hsLyh ; this yields the best-fit magnetic exponent yh = 1.87(4),
which is close to yh � 1.92. In Table V we give the estimates

for yt and yh that we obtain from scaling-collapse fits for both
the CNN (15) and FCNN (14).

E. Universal scaling functions and scale factors

We now investigate two-scale factor universality
[38,39,70] by comparing the scaling functions P∗α

L (tLyt , hLyh )
obtained from our neural networks, where the label α

is I, BC, and M for the 2D Ising (1), 2D Blume-Capel
(4), and 2D Ising-metamagnet (6) models, respectively.
The plots in Fig. 5(a) of P I

L((T − T I
c ), 0) vs (T − T I

c ),
PBC

L ((T − T BC
c ), 0) vs (T − T BC

c ), and PM
L ((T − T M

c ), 0) vs
(T − T M

c ), for L = 12, 16, 20, and 30 show that these curves
are different for these three models. We now show that, if we
scale tLyt by model-dependent scale factors, then all these
curves collapse onto one universal curve. In particular, if we
use the scaled variables

f BC
t tLyt and f M

t tLyt (28)

FIG. 5. (a) Plots of PI
L ((T − T I

c ), 0) vs (T − T I
c ), PBC

L ((T − T BC
c ), 0) vs (T − T BC

c ), and PM
L ((T − T M

c ), 0) vs (T − T M
c ), for L =

12, 16, 20, and 30; these curves are different for the three models we consider. (b) PI
L (0, H ) vs H , PBC

L (0, H ) vs H , and PM
L (0, Hs ) vs Hs, for

L = 12, 16, 20, and 30. (c) Pα
L ((T − T α

c ), H ) and Pα
L ((T − T α

c ), Hs ) vs T − T α
c and H or Hs, for all three models, α = I, BC, M. (d) These

surfaces collapse onto one universal scaling surface, if we use the scaled variables f BC
t tLyt and f BC

h hLyh , for the Blume-Capel model (4), and
f M
t tLyt and f M

h hsLyh , for the Ising-metamagnet model (6).
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TABLE V. Estimates for the thermal (yt ) and magnetic (yh ) expo-
nents in the vicinity of the tricritical point for the Ising-metamagnet
model (6).

NN yt [exact:1.80] yh [exact:1.92]

CNN 1.71(3) 1.87(4)
FCNN 1.69(2) 2.03(5)

for the Blume-Capel and the Ising-metamagnet models, re-
spectively, then we get the universal curve shown in the inset
of Fig. 5(a) and the best fit yields the model-dependent scale
factors f BC

t � 1.27(6) and f M
t � 1.1(4). Similarly, the plots

in Fig. 5(b) of PI
L (0, H ) vs H , PBC

L (0, H ) vs H , and PM
L (0, Hs)

vs Hs, for L = 12, 16, 20, and 30, demonstrate that these
curves are different for these three models; but, if we use the
scaled variables

f BC
h hLyh and f M

h hsL
yh (29)

for the Blume-Capel and the Ising-metamagnet models, re-
spectively, then we get the universal curve shown in the inset
of Fig. 5(b) and the best fit yields the model-dependent scale
factors f BC

h � 0.95(10) and f M
h � 1.02(5). The plots in the

insets of Figs. 5(a) and 5(b) are a result of two-scale factor
universality [38,39,70] in our NN study. In Fig. 5(c) we give
plots of Pα

L ((T − T α
c ), H orHs) vs T − T α

c and H or Hs, for all
three models, i.e., α is I, BC, and M; these surfaces collapse
onto one universal scaling surface [Fig. 5(d)], if we use the
scaled variables f BC

t tLyt and f BC
h hLyh , for the Blume-Capel

model, and f M
t tLyt and f M

h hsLyh , for the Ising-metamagnet
model.

If Nα
L is the number of spin configurations that are correctly

classified out of a total N configurations for a system of linear
size L, say, below T α

c and in the temperature range [T0, T α
c ],

then we can show (see Appendix D)(
N − Nα

L

)
N

∝ 1

f α
t

∣∣tα
0

∣∣Lyt
, (30)

where tα
0 ≡ T0−T α

c
Tc

. The plot of (N−Nα
L )

N vs f α|tα
0 |Lyt in Fig. 7(b)

in Appendix D verifies this relation.

F. First-order phase boundary in the 2D Ising model

To investigate the FSS of the CNNs in the vicinity of the
first-order transition, we follow the theoretical ideas given in

Refs. [36,37,71–73]. In a renormalization-group (RG) treat-
ment, the jump of the order parameter at a first-order transition
is governed by the flows of the RG recursion relations in the
vicinity of a discontinuity fixed point (see, e.g., Ref. [73]);
such a fixed point occurs in the subspace of even-spin cou-
plings (i.e., h and all odd-spin couplings vanish) and lies out at
infinity (i.e., at J/(kBT ) and many other even-spin couplings
= ∞) [74]; the dominant eigenvalues at this discontinuity
fixed point are such that yh = d and yt = (d − 1), where d
is the spatial dimension [71–73]. Therefore, in the vicinity
of the first-order transition [37] in the Ising model (1) we

have the following: for HMspLd

kbT � 1, where Msp is the infinite-
system magnetization at h → 0+ [37], the magnetization for
the system of linear size L is ML, which → M0, the equi-
librium magnetization value for the infinite L and h [see

Fig. 6(a)]. If HMspLd

kbT � 1, we have ML ∝ hLd [37].
Transfer learning allows us to use the CNNs, which we

have trained in the vicinity of the critical point of the Ising
model (1), to obtain plots of PL(T = 2.1, h), as we change
h from positive to negative values to cross the first-order
boundary at T = 2.1 < Tc [Fig. 6(b)]; we show plots for
L = 5, 6, and 9. From these plots we see that PL tends to
PL(|M0|), for large values of h; and PL[|M|L(h = 0)] at h = 0
depends on the value of L. In Fig. 6(c) we present plots
of [PL(T = 2.1, h) − PL(T = 2.1, h = 0)] vs h; in the inset
we show that these curves collapse onto one curve if we
plot [P∗

L (T = 2.1, hLd ) − PL(T = 2.1, h = 0)] vs hLd , with
d = 2.

IV. DISCUSSION AND CONCLUSIONS

Earlier studies [12,14,16–18,20,23] of neural-network-
aided methods for the determination of critical exponents
have considered only simple critical points, such as the one
in the Ising model (1) at h = 0. Our work goes well beyond
these earlier investigations by developing a full framework for
the scaling forms of NN outputs in the vicinities of critical
and tricritical points and obtaining the following: (a) both
the thermal and magnetic exponents, yt and yh, not only at
simple Ising-type critical points, but also at tricritical points
in the Blume-Capel (4) and the Ising-metamagnet (6) models;
(b) the full scaling form for the NN outputs PL given in
Eq. (27); (c) the nonuniversal scale factors that are required
for two-scale-factor universality; and (d) the CNN manifesta-

FIG. 6. (a) Plots of ML vs h for the Ising first-order transition in the vicinity of Tc = 2.1. (b) PL (T = 2.1, h) vs h (c) [PL (T = 2.1, h) −
PL (T = 2.1, h = 0)] vs h, and in the inset is the collapse plot of [P∗

L (T = 2.1, hLd ) − PL (T = 2.1, h = 0)] vs hLd .
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FIG. 7. (a) Plot of PL (|M|) vs |M|, and in the inset, a plot of P∗
L (|M|L β

ν ) vs |M|L β
ν , for the Ising model (1). (b) Plot of

N−Nα
L

N vs f α|tα
0 |Lyt

[see Eq. (D8)] for the Ising (I) (1), Blume-Capel (BC) (4), and Ising-metamagnet (M) (6) models.

tion of finite-size scaling at the Ising-model first-order phase
boundary.

From the machine-learning point of view, our study
provides the following interesting applications of transfer
learning: We first train our CNNs and FCNNs in the vicinities
of the zero-field critical points, at h = 0 of the Ising model (1),
at � = 0, h = 0 in the Blume-Capel model (4), and at hs =
0, h = 0 for the Ising-metamagnet (6); and then we use these
trained NNs to uncover scaling and critical exponents at crit-
ical points that occur at h �= 0 for the Ising model (1), h �= 0
and � �= 0 for the Blume-Capel (4) model, and h �= 0, hs �= 0
for the Ising-metamagnet model (6). Our studies are valuable
because they help us to go beyond the mere classification of
phase by understanding the behavior and characteristics of
the NN outputs PL(t, h) and then extract, from these char-
acteristics, other useful quantities, e.g., the scaling form for
the number of spin configurations that are correctly classified
[see Eq. (30)]. Our NN method has an additional computa-
tional overhead because of training, compared to traditional
FSS methods that work directly with the order parameter M
obtained from MC simulations. However, once the NN has
been trained at, say, the Ising-model critical point, it can be
used for other critical points in this university class because
of transfer learning. Furthermore, our NN method provides
P̂L(σ).

The methods that we have developed can be extended, via
transfer learning, to study phase transitions in other models.
For example, the well-known Ising-lattice-gas mapping re-
lates the Ising spins Si to lattice-gas variables ni = [Si + 1]/2;
given that Si = ±1, we have ni = 0 or 1 and the up-spin
(down-spin) of the Ising model maps onto the high-density
(low-density) phase of the lattice gas; in general, the liquid-
gas critical point in a d-dimensional continuum fluid should
be in the universality class of the d-dimensional Ising model.
Therefore, it is interesting to use our trained NNs first to study
Ising-model criticality in d = 3 and then employ transfer
learning to examine the liquid-gas critical point in a contin-
uum fluid described, e.g., the Lennard-Jones potential [8,75]
as we will show in future work.

Although machine-learning methods, e.g., those that we
have employed here, have, so far, not yielded values of critical
exponents that are as accurate as those obtained by high-
resolution MC, conformal-bootstrap, and series-expansions
methods (e.g., see Refs. [48–57] for the three-dimensional
Ising model). We expect that, as these ML methods are re-
fined, by building on the framework that we have outlined
here, the ML-based determination of critical exponents will
move apace and achieve accuracies comparable to those at-
tained by the other methods mentioned above. In future work,
we hope to use the Wolff [76] or Swendsen-Wang [77] al-
gorithms along with our NN study to overcome problems
posed by critical slowing down, sampling bias, and large time
correlations. It would also be interesting to explore if the
estimates for the tricritical exponents (see the estimates of
yt in Tables III and V), improve with training data obtained
from such sampling algorithms. Another interesting direction
for future work is to employ our NN method in conjunction
with spin configurations sampled from generative models,
such as variational autoregressive networks [78] and restricted
Boltzmann machines [79].
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APPENDICES

In Appendix A we give the details of the training datasets
and neural-network training. This is followed by Appendix
B, in which we give the details of the datasets and neural net-
works that we use for testing and error estimates. In Appendix
C, we give the details of our explorations with neural networks
into regularization strength and larger system sizes. Finally, in
Appendix D we give a detailed derivation of Eq. (30).

APPENDIX A: DATASETS AND NEURAL NETWORK
TRAINING

For the 2D Ising model (1) in the vicinity of second-order
transition, we carry out Monte Carlo (MC) simulations, for
systems with linear sizes L = 12, 16, 20, and 30, at 100 dif-
ferent values of the temperature T , spaced at intervals of
0.01 in the range [Tc − 0.5, Tc + 0.5], where Tc � 2.269 is the
critical temperature. For each value of T , we discard the first
106 Monte Carlo steps per spin (MCS/S) and include 2000
spin configurations, from the subsequent 106 MCS/S; thus,
we obtain a total of 2 × 105 spin-configuration snapshots,
which we then use to train our neural networks (NNs). We
carry out similar MC simulations to obtain training data for
the Blume-Capel model (4), with training data in the range
[Tc − 0.5, Tc + 0.5], where Tc � 1.693, and for the Ising-
metamagnet model (6), with training data in the range [Tc −
1, Tc + 1], where Tc � 5.263. For the 2D Blume-Capel model
(4) and the Ising-metamagnet model (6), while obtaining the
spin configurations to train NNs in the vicinity of their tricrit-
ical points, we discard the first 107 MCS/S, and include 2000
spin configurations from the next 107 steps for each of the 100
values of temperature in the ranges [Tc − 0.125, Tc + 0.125]
(Tc � 0.608) and [Tc − 0.75, Tc + 0.75] (Tc � 2.41), respec-
tively.

To test the NNs in the vicinity of the first-order transition
for the 2D Ising model (1), we train systems of linear size
L = 5, 6, 9, where we obtain the training spin configurations
from MC simulations, in the temperature range [Tc − 1, Tc +
1] (see discussion above).

We train our NNs for 9000–10 000 epochs and save the
NNs, after every 100 epochs; finally, we obtain 10 NNs,
for each system size, which we use on our test data set
(Appendix B). We train our NNs with the Adam Optimizer
[80], with an initial learning rate of 10−3 and a batch size of
256. To prevent the overfitting of NNs, we set the regularizer
strength λ = 0.005 in Eq. (16).

APPENDIX B: NEURAL NETWORKS AND DATASETS
FOR TESTING AND ERROR ESTIMATIONS

In the vicinity of a second-order transition, we calculate PL

for the test data as follows: We discard the first 106 MCS/S, at
each temperature, and consider 5000 snapshots from the next
106 MCS/S. We draw 2000 snapshots randomly, five times,
from these 5000 snapshots. This yields five values of PL, per
NN, so, for 10 NNs (see Appendix A), we obtain 50 values
from which we obtain the mean and the error for PL. From
the 50 estimates for PL, obtained for the Ising model (1), we
obtain yt = 1.06(7), and yh = 1.73(26) for the CNNs.
Similarly, for the FCNNs, we obtain yt = 1.0(3) and

yh = 1.80(30). In Fig. 2 we use the CNN set for which
PL(0, 0) is close to 0.5. In Table I we use the NN set that
gives the estimates of yt and yh which are close to the known
values; to obtain the error estimates for this NN set, we draw
2000 spin-configurations randomly, from the 5000 spin con-
figurations; we repeat this 10 times and obtain the mean and
the standard deviations for the best fits for the exponents (we
use the same procedure for error estimation for all the models
in the vicinity of a second-order transition).

We use the procedure, described in the previous paragraph,
for the Blume-Capel (4) model at � = 0. This yields yt =
1.05(6) and yh = 1.91(30), for the CNNs, and yt = 1.06(4)
and yh = 1.77(25), for the FCNNs. In Figs. 3(a) and 3(b), we
used the CNNs for which PL(0, 0) is close to 0.5. In Table II
we use the CNN and FCNN sets that yield estimates close
to known values of yt and yh. For � = 1, when we use the
CNNs trained for � = 0, this yields yt = 1.05(5) and yh =
1.76(23); similarly, for FCNNs, we obtain yt = 1.03(9) and
yh = 2.00(30). For � = 1, in Figs. 3(c) and 3(d) and Table II,
we use the CNN and FCNN set that we have used for � = 0
[Figs. 3(a) and 3(b)].

A similar procedure for the Ising metagmagnet (6) model
at H = 0 yields yt = 1.07(4) and yh = 1.74(27), for the
CNNs, and yt = 1.08(4) and yh = 1.85(39), for the FCNNs.
In Figs. 4(a) and 4(b) and Table IV, we use the CNN and
the FCNN sets that yield estimates close to known values of
yt and yh. For H = 1, the CNNs trained with H = 0 yield
yt = 1.09(3) and yh = 1.70(30); similarly, for the FCNNs, we
obtain yt = 1.1(5) and yh = 1.89(31). In Figs. 4(c) and 4(d),
and Table IV, for H = 1, we use the NN set that we employ
for H = 0 [Figs. 4(a) and 4(b)].

In the vicinity of the tricritical point, we calculate PL for
the test data as follows: We discard the first 107 MCS/S, at
each temperature, and consider 5000 snapshots from the next
107 MCS/S. We draw 2000 snapshots randomly, five times,
from these 5000 snapshots. This yields five values of PL, per
NN, so, for 10 NNs (see Appendix A), we obtain 50 values
from which we obtain the mean and the error for PL. From
the 50 estimates for PL, obtained for the Blume-Capel model
(4), we obtain yt = 1.51(8), and yh = 1.96(44) for the CNNs.
Similarly, for the FCNNs, we obtain yt = 2.00(15) and yh =
2.08(27). In Figs. 3(e) and 3(f), and Table III, we use the NN
set that gives the estimates of yt and yh which are close to the
known values; to obtain the error estimates for this NN set, we
draw 2000 spin configurations randomly, from the 5000 spin
configurations; we repeat this 50 times and obtain the mean
and the standard deviations for the best fits for the exponents
[we use the same procedure for error estimation for the Ising-
metamagnet model (6) in the vicinity of its tricritical point].

We use the procedure, described in the previous paragraph
for the Ising-metamagnet (6) model in the vicinity of the
tricritical point. This yields yt = 1.66(3) and yh = 2.64(75)
for the CNNs, and yt = 1.67(9) and yh = 2.21(73) for the
FCNNs. In Figs. 4(e) and 4(f), and Table V, we use the CNN
and FCNN sets that yield estimates close to known values of
yt and yh.

In the vicinity of the first-order boundary for the Ising
model (1), we obtain the PL(T = 2.1, h) in Fig. 6, by aver-
aging over all 10 CNNs, for each L (see the discussion in
Appendix A).
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TABLE VI. Loss (16) and classification accuracy for the training and validation data, for the 2D Ising model (1) with L =
12, 16, 20, and 30 and for different values of λ (17) for our FCNN (14).

Metric λ L = 12 L = 16 L = 20 L = 30

Training Validation Training Validation Training Validation Training Validation
Loss 0 0.279(1) 0.361(1) 0.167(2) 0.381(2) 0.045(4) 1.04(2) 0.019(2) 0.338(3)
Accuracy 0 0.880(1) 0.848(1) 0.937(1) 0.869(1) 0.982(2) 0.879(1) 0.990(1) 0.929(1)
Loss 10−4 0.299(3) 0.365(2) 0.204(1) 0.354(2) 0.129(4) 0.374(4) 0.074(3) 0.302(3)
Accuracy 10−4 0.877(1) 0.850(1) 0.929(1) 0.8769(4) 0.926(2) 0.908(1) 0.983(1) 0.926(1)
Loss 10−3 0.326(3) 0.359(2) 0.256(9) 0.30(1) 0.199(3) 0.244(3) 0.140(3) 0.154(3)
Accuracy 10−3 0.866(1) 0.853(1) 0.905(4) 0.885(4) 0.927(2) 0.909(2) 0.940(1) 0.939(1)
Loss 10−2 0.343(3) 0.347(3) 0.269(1) 0.271(2) 0.221(5) 0.224(4) 0.157(1) 0.161(1)
Accuracy 10−2 0.855(2) 0.854(2) 0.894(1) 0.891(1) 0.911(4) 0.911(2) 0.940(1) 0.939(1)
Loss 10−1 0.355(5) 0.358(5) 0.287(7) 0.286(7) 0.233(4) 0.235(4) 0.137(2) 0.134(7)
Accuracy 10−1 0.853(2) 0.852(3) 0.889(2) 0.888(2) 0.912(1) 0.911(1) 0.939(1) 0.938(1)
Loss 1 0.372(7) 0.373(8) 0.302(8) 0.302(7) 0.248(1) 0.248(4) 0.152(5) 0.142(7)
Accuracy 1 0.850(3) 0.849(3) 0.887(3) 0.885(3) 0.908(3) 0.909(4) 0.936(4) 0.935(5)

In Fig. 7(a) we obtain PL(|M|) as follows: we calcu-
late |M| using σ from the test data (see Appendix B) and
consider the interval [0, 1], dividing it into 10 bins, i.e.,
[0, 0.1], [0.1, 0.2], . . . , [0.9, 1]; for σ with |M| lying in each
of these bins, we calculate the average of P̂(σ ) and plot it
versus the average value of |M|.

APPENDIX C: NEURAL NETWORK EXPLORATIONS

In Table VI we show how the regularization strength λ

affects the loss (16) and the classification accuracy of our
FCNN (14) for the training and validation data obtained from
our MC simulations of the 2D Ising model (1). From Table VI
we observe that, small values of λ (i.e., λ ∈ [0, 10−3)) lead
to overfitting, i.e., the loss (16) (accuracy) for the training
data is higher (lower) than that for the validation data. For
λ ∈ [10−3, 10−2], we see that (a) the training- and validation-
data loss (16) (accuracy) are comparable and (b) there is
an improvement in the validation-data loss (16) (accuracy)
compared to that for low values of λ; hence, this is a suitable
range for λ for better generalization. For λ ∈ (10−2, 1], we
find underfitting, i.e., there is a increase (decrease) in the
overall loss (16) (accuracy) for both the training and validation
data.

In Table VII we obtain the training data from our MC sim-
ulations of the 2D Blume-Capel model (4) at � = 0 and the
validation data from such simulations for the 2D Blume-Capel
model at � = 1, and we present the classification accuracies
of our FCNN (14) for different values of λ. Here we observe
that the dependence of the generalization capabilities on λ

of our FCNN is similar to that mentioned in the previous
paragraph for the 2D Ising model.

In Table VIII we give the loss (16) and classification ac-
curacy for the FCNN, which has the same architecture as
in Eq. (14) but with 128 nodes, and for the CNN with the
same architecture as in Eq. (15) but with 64 filters and 128
nodes. Here we set λ = 0.05; the loss (16) and classification
accuracy in Table VIII are similar to those in Table VI with
λ ∈ [10−3, 10−2].

In Tables VI–VIII, we trained the FCNNs for 1000 epochs
for each value of λ. The training and validation data each

consist of 2 × 105 snapshots (spin configurations). In Ta-
bles VI–VIII, we present the mean and our error estimates
obtained from 10 FCNNs saved every 10 epochs, from the
900th to the 1000th training epoch.

The training time for our neural networks increases with
system size; for example, the training time for our FCNN
increases from �5 × 103 seconds to �7.5 × 103 seconds (on
a single NVIDIA A100 GPU) for system sizes L = 12 to L =
30 for the Ising model (1) (similarly, the training time for the
CNN increases from �7.5 × 103 seconds to �10 × 103 sec-
onds). Furthermore, when we train our FCNN with L = 50,
the training time increases to �12 × 103 seconds (�15 × 103

seconds for the CNN]) Including L = 40 and L = 50 in our
FSS yielded the best-fit exponents yt = 1.06(2) and yh =
1.82(1) for the CNN (15), and yt = 1.04(1) and yh = 1.85(1)
for the FCNN. It would be interesting to investigate our
method for larger system sizes, employing sampling methods
such as Wolff [76] or Swendsen-Wang [77] algorithms.

APPENDIX D: RELATION BETWEEN SYSTEM SIZE,
TWO-SCALE FACTOR, REDUCED TEMPERATURE, AND

CLASSIFICATION ACCURACY

In Eq. (30) we had shown that, if Nα
L is the number of

spin configurations that are correctly classified out of a total
N configurations for a system of linear size L, say, below T α

c
and in the temperature range [T α

0 , T α
c ], then

(
N − Nα

L

)
N

∝ 1

f α
t

∣∣tα
0

∣∣Lyt
, (D1)

where tα
0 ≡ T0−T α

c
Tc

. We derive this relation now.
Let ns be the number of spin configurations (henceforth,

snapshots) that we use in our testing data set for reduced
temperatures that lie between t and t + dt , where t = T −Tc

Tc
.

Out of these ns snapshots, let nL(t ) be the number of snapshots
that are correctly classified (e.g., as lying below Tc), for a
system with linear size L. By definition,

nL(t ) = FL(t )ns, (D2)
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TABLE VII. Loss (16) and classification accuracy for the FCNN (14), whose training data were obtained for the 2D Blume-Capel (4) at
� = 0, and validation data obtained at � = 1, for L = 12, 16, 20, and 30 with different values of λ (17).

Metric λ L = 12 L = 16 L = 20 L = 30

Training Validation Training Validation Training Validation Training Validation
Loss 0 0.182(1) 0.269(4) 0.089(2) 0.368(2) 0.0041(4) 2.24(3) 0.001(1) 1.53(4)

Accuracy 0 0.927(1) 0.905(1) 0.967(1) 0.911(1) 0.999(1) 0.908(1) 0.9997(2) 0.9404(4)
Loss 10−4 0.203(5) 0.274(5) 0.128(4) 0.306(3) 0.129(4) 0.374(4) 0.054(6) 0.416(6)

Accuracy 10−4 0.923(2) 0.908(2) 0.958(2) 0.917(1) 0.983(5) 0.915(3) 0.9929(2) 0.935(1)
Loss 10−3 0.228(3) 0.25(1) 0.179(1) 0.201(5) 0.199(3) 0.244(3) 0.123(7) 0.128(5)

Accuracy 10−3 0.913(2) 0.909(7) 0.936(1) 0.930(2) 0.949(1) 0.944(2) 0.961(1) 0.959(2)
Loss 10−2 0.242(3) 0.235(6) 0.195(3) 0.183(6) 0.221(4) 0.224(4) 0.130(2) 0.128(7)

Accuracy 10−2 0.907(1) 0.910(4) 0.929(1) 0.933(4) 0.942(1) 0.943(2) 0.9586(4) 0.961(2)
Loss 10−1 0.248(3) 0.247(9) 0.203(5) 0.194(1) 0.233(4) 0.234(4) 0.137(2) 0.134(7)

Accuracy 10−1 0.906(1) 0.912(3) 0.928(2) 0.930(5) 0.957(1) 0.960(1) 0.958(1) 0.960(1)
Loss 1 0.259(9) 0.248(9) 0.216(9) 0.198(7) 0.198(7) 0.248(4) 0.152(5) 0.142(7)

Accuracy 1 0.905(2) 0.912(3) 0.926(3) 0.935(2) 0.955(2) 0.960(1) 0.955(4) 0.960(5)

where FL(t ) = ∫
dσ PL(σ, t, 0)H[P̂L (σ) − 0.5], the Heav-

iside function H (x) = 0, if x < 0, and H (x) = 1, if x � 0,
and we use 0.5 as the threshold for classifying the spin config-
urations. Arguments similar to those used in Eqs. (22), (26),
and (27) give the same FSS form for FL(t ) as that for PL(t, 0).

If n is the number of sets of such (ns) snapshots, in the
intervals [ti, ti + dt], where i ∈ [1, 2, . . . , n], and total number
of snapshots is N = ns ∗ n, then the total number of snapshots
correctly classified (e.g., as lying below Tc) is

NL =
n∑

i=1

nL(ti) =
n∑

i=1

FL(ti )
N

n
. (D3)

Using Tc−T0
Tc

= ndt = |t0| in Eq. (D3) we get

NL

N
= 1

|t0|
n∑

i=1

FL(ti )dt, and, if n → ∞,

= 1

|t0|
∫ 0

t0

FL(t )dt

= 1

|t0|Lyt

∫ 0

x0
L

F∗
L (x)dx, (D4)

where we have used FL(t ) ≡ F∗
L (tLyt ) = F∗

L (x) and changed
the variable of integration from t to x = tLyt . From Eq. (D4)

and using

∫ 0

xo
L

F∗
L (x)dx =

∫ X 0

x0
L

F∗
L (x)dx +

∫ 0

X 0
F∗

L (x)dx

≈ X 0 − x0
L +

∫ 0

X 0
F∗

L (x)dx

= X 0 − t0Lyt +
∫ 0

X 0
F∗

L (x)dx

= a + |t0|Lyt , (D5)

where F∗(x) is asymptotically close to 1 ∀x0
L < X 0, we get

NL

N
≈ 1 + a

|t0|Lyt
⇒ (N − NL )

N
≈ A

|t0|Lyt
, (D6)

where A = −a. If we now consider F∗α
L (x), for the Ising (α =

I), Blume-Capel (α = BC), and metamagnet (α = M) models
(1), (4), and (6), we must include the scale factors f α

t [see
Eq. (28)], and use F∗α

L ( f α
t x) ≡ F∗

L (x) to obtain

aα = X 0,α +
∫ 0

X 0,α

F∗α
L (x′)dx′

= X 0

f α
t

+
∫ 0

X 0 F∗
L (x)dx

f α
t

= a

f α
t

. (D7)

TABLE VIII. Loss (16) and classification accuracy for the training and validation data, for the 2D Ising model (1) with L =
12, 16, 20, and 30, for the FCNN [similar to Eq. (14)] with 128 hidden nodes, and for the CNN [similar to Eq. (15)] with 128 hidden nodes
and 64 filters.

NN Metric L = 12 L = 16 L = 20 L = 30

Training Validation Training Validation Training Validation Training Validation
FCNN Loss 0.339(3) 0.345(3) 0.265(1) 0.268(2) 0.216(2) 0.222(3) 0.153(2) 0.158(2)
FCNN Accuracy 0.856(1) 0.854(1) 0.895(1) 0.892(1) 0.916(1) 0.914(1) 0.941(1) 0.939(1)
CNN Loss 0.322(1) 0.323(1) 0.247(1) 0.244(1) 0.188(2) 0.190(2) 0.122(1) 0.125(1)
CNN Accuracy 0.862(1) 0.862(1) 0.900(1) 0.898(1) 0.921(1) 0.921(1) 0.949(1) 0.948(1)
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Then the relation for the number of correctly classified snap-
shots for tα

0 � t � 0, Nα
L is(

N − Nα
L

)
N

= A

f α
t

∣∣tα
0

∣∣Lyt
. (D8)

We verify this relation in Fig. 7(b), where we plot (N−Nα
L )

N
vs f α

t |tα
0 |Lyt for the Ising (I) (1), Blume-Capel (BC) (4)

and Ising-metamagnet (M) (6) models, for systems with
linear sizes L = 12, 16, 20, and 30 [in Fig. 7(b), we use the
temperature range [Tc − 1, Tc] for the Ising (1) and Blume-
Capel (4) models, and [Tc − 1.5, Tc] for the Ising-metamagnet
model (6)].
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