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The jet cross section and jet-substructure observables in pþ p collisions at
ffiffiffi
s

p ¼ 200 GeV were
measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are
reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-kt
algorithm with a jet radius of R ¼ 0.3 for jets with transverse momentum within 8.0 < pT < 40.0 GeV=c
and pseudorapidity jηj < 0.15. Measurements include the jet cross section, as well as distributions of
SoftDrop-groomed momentum fraction (zg), charged-particle transverse momentum with respect to jet axis
(jT ), and radial distributions of charged particles within jets (r). Also measured was the distribution of
ξ ¼ − lnðzÞ, where z is the fraction of the jet momentum carried by the charged particle. The measurements
are compared to theoretical next-to and next-to-next-to-leading-order calculations, the PYTHIA and Herwig

event generators, and to other existing experimental results. Indicated from these measurements is a lower
particle multiplicity in jets at RHIC energies when compared to models. Also noted are implications for
future jet measurements with sPHENIX at RHIC as well as at the future Electron-Ion Collider.
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I. INTRODUCTION

Jets, the collimated sprays of particles originating from
hard parton scatterings, were initially conceptualized as a
probe of quantum chromodynamics (QCD) [1]. Perturbative
QCD (pQCD) is broadly in good agreement with measure-
ments of jets produced in high-energy collisions, particu-
larly at high momentum and large radii [2]. At lower
momenta [3] and small radii [4], it is necessary to include
a good description of the nonperturbative contributions to
jet production, including hadronization. Jet spectra at low
momenta are also sensitive to the underlying event and
effects such as color reconnections [3,5,6]. Measurements
at lower momenta are important to test models for
these nonperturbative components and their effect on jet
production.
The use of jets has been expanded to include measure-

ments of jet substructure, with a wide variety of observ-
ables sensitive to distribution of energy within the jet [2].
These observables are sensitive to final-state radiation
patterns in QCD. At the Large Hadron Collider (LHC),
where studies are dominated by high energy jets, pQCD
and models generally reproduce data within ≈20% for
most substructure measurements [3,7–11]. Calculations of
some observables at the Relativistic Heavy Ion Collider
(RHIC) are likewise within ≈20% of the data [12].
However, in lower-energy collisions, experimental and
theoretical uncertainties have generally been large [13],
and there are some measurements where theoretical
calculations barely agree with the data within large
uncertainties [14]. Monte Carlo generators and pQCD
calculations are often used to predict the behavior of jets
for proposed detectors, to determine corrections to mea-
surements, and as a baseline for systems where jets may be
modified, such as high-energy heavy ion collisions.
Simultaneous comparisons between models and data for
both cross sections and substructure can place substantial
constraints on Monte Carlo models.
At the future Electron-Ion Collider (EIC) [15], jets will

also serve as a tool to study the momentum space structure
of hadrons as well as parton energy loss in cold nuclear
matter [16]. Because the EIC will operate at a relatively low
center-of-mass energy, closer to RHIC than the LHC, it is
important to have measurements in pþ p collisions at
comparable energies to test universality and factorization
breaking effects [17].
Here are presented measurements of the jet cross section

and several jet substructure measurements in pþ p colli-
sions at

ffiffiffi
s

p ¼ 200 GeV. The technique is first summa-
rized, including details of the unfolding and the simulations
used for detector corrections. The results are then presented
and compared to pQCD calculations and output from the
PYTHIA and Herwig event generators, and finally, the
implications of these results are discussed.

II. JET RECONSTRUCTION AND UNFOLDING

A. PHENIX detector and dataset

Combined pþ p datasets collected during 2012 and
2015 were used in this analysis. The 2012 dataset sampled
an integrated luminosity of 1.55 pb−1 using an electro-
magnetic-calorimeter trigger, while the 2015 dataset
sampled 13.5 pb−1 using a similar trigger with a higher-
energy threshold.
Jets were measured in the PHENIX central arms [18].

Each arm covers a pseudorapidity range of jηj < 0.35 and
an azimuthal range of π=2. Charged-particle tracks were
measured by a set of multiwire proportional chambers,
including an inner drift chamber and multiple outer pad
chambers. Energy deposits from neutral particles are mea-
sured by the finely segmented electromagnetic calorimeter
(EMCal), consisting of lead-scintillator modules in the west
arm, and lead-scintillator and lead-glass Čerenkov modules
in the east arm. The modules have a resolution determined
by beam tests [19,20] to be δE=E ¼ 8.1%=

ffiffiffiffi
E

p
⊕ 2.1% and

5.9%=
ffiffiffiffi
E

p
⊕ 0.8%, respectively, where E is in GeV, and

were calibrated through the reconstruction of neutral pion
decays. The calorimeter further provides a trigger signal
initiated by the presence of at least 1.6 GeV (2012) or
2.1 GeV (2015) of energy deposited in one of the groups of
overlapping 4 × 4 towers in the lead-glass or lead-scintilla-
tor modules, respectively. To reduce the inefficiencies
introduced by dead areas in the outer pad chambers, a
confirming hit with an energy greater than a minimum-
ionizing particle is required in the EMCal if a drift chamber
track does not have a confirming hit in the outer pad
chamber. In addition to the spectrometer arms, a pair of
beam-beam counter (BBC) detectors situated along the
beam line at 3.0 < jηj < 3.9 provide the minimum-bias
(MB) trigger signal and reconstruct the z position of the
primary vertex. The BBCs measure charged particles and
are used to determine the collision time and vertex position
along the beam axis.

B. Jet reconstruction

Jets were reconstructed using the anti-kt algorithm
[21,22] with radius parameter R ¼ 0.3 from electromag-
netic clusters in the EMCal [23] and charged-particle tracks
(in the drift and pad chambers) [24] each with a minimum
pT of 0.5 GeV=c. The anti-kt algorithm, the de facto
standard for hadronic collisions, was chosen because it
clusters outward from the hard core of jets, thus reducing the
sensitivity to detector edges. A set of criteria designed to
select charged particles with a well-measured momentum,
and reject conversions and ghost tracks was applied to
candidate reconstructed tracks. Clusters consistent with
arising from the same particle as a reconstructed track were
rejected to avoid double counting the jet constituent energy.
To eliminate both beam and detector backgrounds, jets were
required to have at least three constituents, have a charged

N. J. ABDULAMEER et al. PHYS. REV. D 111, 112008 (2025)

112008-4



fraction of momentum between 0.3 and 0.7, be within
jηjetj < 0.15, and be reconstructed in the same PHENIX
detector arm that provided the trigger signal. Only events
passing the offline-event vertex cut jzvertexj < 10 cm were
accepted. Jets were required to be fully contained within the
η;ϕ acceptance of the PHENIX arm, where the η acceptance
takes into account the longitudinal vertex location. The
reconstructed jets average between 45% and 55% of the true
jet energy, with the average fraction increasing slowly with
jet pT . A jet at a reconstructed pT of 10 GeV=c has a mean
of 4.5 track and cluster constituents. This rises to a mean of
six track and cluster constituents at a reconstructed pT of
20 GeV=c. In addition to the jet cross section, the following
substructure properties were also measured:
(1) distributions of SoftDrop [25,26] groomed momen-

tum fraction (zg),
(2) charged-particle transverse momentum with respect

to the jet axis (jT),
(3) radial distributions of charged particles within the jet

(r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δϕ2 þ Δη2

p
), where Δϕ and Δη are the dis-

tances from a charged particle to the jet axis in
azimuthal angle and pseudorapidity respectively, and

(4) distributions of ξ ¼ − lnðzÞ, where z is the fraction
of the jet momentum carried by the charged particle.

C. Unfolding

The reconstructed jet distributions were corrected for
the detector response by Bayesian unfolding [27] using
the “RooUnfold” framework [28]. The response matrix for
unfolding was obtained using a simulation of pþ p
collision events with the PHENIX detector response
simulated by Geant3 [29]. In the first step, PYTHIA6 [30]
Tune A was used with QCD hard-scattering processes
selected, along with an additional Gaussian partonic kt
smearing with a width of 3 GeVas this combination better
reproduces two-particle correlations previously measured
in PHENIX [31]. To sample the full jet cross section as a
function of jet pT with adequate statistics, the PYTHIA6

events were generated in fixed ranges of partonic pT . The
full event sample was obtained by recombination using
the cross section reported by PYTHIA6. The PHENIX
simulations included run-specific detector configura-
tions, including tracking and EMCal tower inefficiency
and trigger efficiency maps. The simulation response
was matched to the reconstructed data, and the same
kinematic and selection cuts used in the data were applied
to the reconstructed results in the simulation. A total of
≈ 832; 000 PYTHIA6 events per run configuration were
processed through the full Geant-based simulation of the
PHENIX detector.
In processing the simulated events to generate the

response matrix, jet finding is performed with both
the truth simulation input and the reconstructed output of
the simulations. Truth jets are determined directly from
the MC-generator output, excluding neutrinos. The same

binning was used for both the truth input and reconstructed
output, both in jet pT and in the substructure distribution
variables. When constructing a response matrix three
possibilities need to be considered:
(1) A matched reconstructed and truth jet pair is found.

This is used to define the mapping between the
reconstructed and truth pT and substructure quan-
tities.

(2) A corresponding reconstructed jet is not found for a
given truth jet. This jet may not have been found due
to detector inefficiencies or acceptance limitations,
analysis cuts, or failed to satisfy a trigger condition.
This inefficiency must be accounted for when
reconstructing the truth pT spectrum and substruc-
ture distributions.

(3) A reconstructed jet is found that does not match a
truth jet in the simulated data. This is a fake jet and
typically represents a contribution from the under-
lying event. This contribution is more important at
low jet pT , and the contribution of these jets are
subtracted from the measured jet pT spectrum and
substructure distributions as part of the unfolding
process.

Response matrices are defined for the cross section,
which are used for one-dimensional unfolding in jet pT .
For the substructure distributions, two-dimensional
unfolding is performed in both jet pT and the substructure
variable. This is a commonly used method which takes
advantage of a relatively large statistical sample of simu-
lated data to extract information from measurements that
have a substantial smearing in the reconstructed quantities.
An example of the unfolding matrix for the two-dimen-
sional unfolding for the ξ substructure variable is shown
in Fig. 1.
To test the unfolding procedure a closure test was

performed. Two statistically independent samples of
PYTHIA6 simulated events were used to determine the
response matrices and provide a sample that was treated
as pseudodata. The pseudodata were unfolded following
the exact same procedures as for data, and the results
compared to the PYTHIA6 truth distributions. The results of
the closure test indicate that the unfolding method can
reproduce the input distribution with a high degree of
fidelity, and there are no errors in the procedure that cause a
deviation between the input and unfolded distributions.
Tests with Bayesian and singular value decomposition
unfolding using PYTHIA6 pseudodata and reweighting the
cross section to next-to-leading-order (NLO) predictions
showed that the unfolding converged after two iterations. In
what follows Bayesian unfolding is used with two iter-
ations, and the difference between the second and third
iteration is used as a systematic uncertainty.
An examination of the unfolding using the initial PYTHIA6

sample showed that the integrals of the ξ ¼ − lnðzÞ, jT and r
distributions, which is the average number of charged
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particles in the jet, were consistent with each other but
lower than the PYTHIA6 input by approximately one charged
particle per jet, with a weak dependence on jet pT . Similar
results were obtained using the PYTHIA8 [32] event gen-
erator in its standard configuration with the Monash tune
[33]. A similar discrepancy between measurements and
PYTHIA6 was observed at RHIC in inclusive π� yields [34].
This difference leads to a bias in the unfolded substructure
distributions, as well as a systematic uncertainty in the
determination of the efficiencies used to correct the jet pT
cross section. As described below, to mitigate this bias the
choice is made to modify the PYTHIA6 events used to
generate the unfolding matrices in an iterative fashion until
the PYTHIA6 events better matched the unfolded substructure
distributions.
As an example, unfolded ξ distributions obtained using

different versions of PYTHIA and Herwig are shown in Fig. 2.
The Herwig and unmodified PYTHIA references tend to pull
the unfolded distributions systematically high, while iter-
atively adjusting the MC input to be closer to the data allows
the input distribution to converge to the unfolded data.
Upon examining the difference between the initial

unfolding with PYTHIA6 for the charged-particle substruc-
ture distributions, it was noted that the difference in r
between the unfolded data and the PYTHIA6 model was
predominantly at large distances from the jet axis, which is
correlated with a deficit in the unfolded data at large jT . This
indicates that a simple model that reduces the number of
particles, based on the observed radial distribution in the
data, could simultaneously improve the model agreement
with multiple unfolded substructure distributions. Given

these observations, the choice was made to modify the
PYTHIA output to produce a reference that better matches the
unfolded data:
(1) Final-state particles are clustered using the FastJet

[22] anti-kt algorithm with jet radius R ¼ 0.3.
(2) The ratio of the unfolded data to PYTHIA6 in the r

distributions for each jet pT bin is used to randomly
remove constituent particles from the jet. This
removal is applied equally to charged and neutral
particles. The transverse momentum of the removed
particles is recorded.

(3) To avoid changing the overall shape of the jet cross
section as a function of jet pT , the momentum of the
remaining constituents is rescaled to account for the
particles that were removed from the jet.

Each step in this process required the generation and
simulation of complete PYTHIA6 event samples as described
above. It was found that the agreement between the integral
of the ξ, jT and r distributions was in good agreement after
two iterations. This event sample is referred to as “modified
PYTHIA6,” and the final results in what follows were
generated by unfolding using the modified PYTHIA6 event
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sample. The zg distribution is relatively insensitive to the
PYTHIA6 model used in the unfolding, as expected by its
construction. Note that although the PYTHIA output was
modified using the radial distribution of particles in the jet,
the procedure also improves the agreement for the ξ and
jT=p

jet
T distributions as well. The approach chosen to

modify PYTHIA6 by reducing the number of constituents
and rescaling their momentum to keep the jet momentum
unchanged produces a harder fragmentation spectrum
preferred by the data, as can be seen in Fig. 2.
The consistency of the substructure distributions

extracted separately from the 2012 and 2015 data and
unfolded using the modified PYTHIA6 reference is shown in
Fig. 3. The final results are produced by combining the
2012 and 2015 distributions using the full correlation
matrix extracted from the separate unfoldings to produce
the final combined result.

D. Systematic uncertainties

Systematic uncertainties were calculated for each run
period by comparing variations of cuts, efficiencies, and the
unfolding procedure to the baseline. These variations
included the following:

(1) The Bayesian regulation parameter in the unfolding
was varied from the nominal two to three iterations.

(2) The charged fraction cut on jets was tightened to
0.3–0.6 (from 0.3 to 0.7), and the number of
constituents (nc) cut was raised from nc ≥ 3
to nc ≥ 5.

(3) The outermost pad chamber or EMCal cluster
matching cut for drift chamber tracks was lowered
to 1.5σ (from 3σ). This is our dominant source of
tracking inefficiency.

(4) The minimum pT of tracks used for jet finding was
raised to 1.5 GeV=c, keeping the cluster energy cut
at 0.5 GeV=c.

(5) The minimum energy of clusters used for jet finding
was raised to 1.5 GeV, keeping the track pT cut
at 0.5 GeV=c.

(6) The energy of EMCal clusters is varied up and down
by the scale uncertainty of �3%, as determined by
measurements of π0 mesons.

(7) The pT of charged tracks is varied up and down by
�2%, consistent with the estimated track momen-
tum scale uncertainty in PHENIX.

(8) The overall trigger efficiency was varied within
uncertainties.
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(9) The difference between a separate reconstruction of
the east and west detector arm results is also added in
quadrature to the systematic uncertainty, although
this difference was negligible.

To determine systematic uncertainties, the variations in
cuts are applied to both the data and the modified PYTHIA-

MC generator processed through the Geant-based PHENIX
simulation. New unfolding matrices are generated, the data
are unfolded again, and the results are compared with the
baseline. For energy- and momentum-scale errors, the
energy scale in the data is shifted, and the results are
unfolded with the standard unfolding matrix. At low jet pT
different sources of systematic uncertainty are comparable,
while at highest pT the uncertainties related to the
unfolding procedure dominate. For each run period the
systematics determined in this fashion are assumed to be
uncorrelated and are combined in quadrature. An additional
overall 10% systematic uncertainty is applied to the cross
section measurement based on the uncertainty in the cross
section measured by the BBC.
The systematic uncertainties for the combined result are

produced by combining the 2012 and 2015 systematic
uncertainties using the full correlation matrix extracted
from the separate unfoldings, assuming that the systematic
uncertainties are correlated through the unfolding in the
same way as the statistical uncertainties.
Finally, a systematic uncertainty based on the model

dependence of the unfolding procedure is applied by
comparing the results unfolded using PYTHIA8 and Herwig

to the results unfolded using modified PYTHIA6. A point-by-
point-modeling systematic uncertainty is combined in
quadrature with the systematic uncertainties described
above to produce the final systematic uncertainty on each
point in the cross section and substructure distribution
measurements. The modeling systematic uncertainty is
subdominant for all but the two highest jet pT points in
the cross section measurements. However, the modeling
systematic uncertainty dominates for most points in the
substructure distributions, depending on the specific dis-
tribution and jet pT bin.

III. RESULTS

A. Jet cross section

The jet cross section is calculated as

d2σ
dpTdη

¼ σBBC
chardBBCNMB

NjetðpTÞ
ΔpTΔη

; ð1Þ

where σBBC ¼ 23.0� 2.2 mb is the MB cross section
sampled by the BBC; chardBBC ¼ 0.79� 0.02 is the correction
factor to account for the BBC sampling a larger fraction of
the cross section when the collision includes a hard
scattering process. NMB is the effective number of MB

events sampled by the trigger that pass event-level cuts in
offline analysis (jzvertexj < 10 cm).
The jet differential cross section in pþ p collisions atffiffiffi
s

p ¼ 200 GeV as a function of pT is shown in Fig. 4. The
bands in Fig. 4 show theoretical calculations obtained by
matching the NLO [35,36] and NNLO predictions [37] to
leading-logarithmic resummation of the jet radius [38]. The
matching is done using the approach described in [39],
adopting the partonic scalar sum as the central scale choice
and using the seven-point rule for uncertainties (adding the
large-angle and small-angle uncertainties in quadrature).
The perturbative calculations are supplemented with non-
perturbative (NP) corrections extracted from Monte Carlo
simulations, as discussed also in [39]. These corrections are
obtained as the average and envelope of five setups:
PYTHIA8.306 with tune 4C [40], PYTHIA8.306 with tune
Monash13 [33], PYTHIA8.306 with tune ATLAS14 [41]
(with NNPDF2.3 [42]), Sherpa2.2.11 [43] (default tune), and
Herwig7.2.0 [44] (default tune). The nonperturbative correc-
tions include hadronization and multiparton interactions,
and their uncertainties are added in quadrature to the
perturbative scale uncertainties.
Figure 4 shows that theory substantially overestimates

the measured cross sections. This observation is consistent
within systematic uncertainties with a previously pub-
lished comparison between jets measured by the STAR
Collaboration at RHIC energies using a midpoint-cone
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algorithm and NLO calculations without leading-loga-
rithm resummation [13], as well as results from the
ALICE Collaboration for the low-pT jet cross section at
a higher center-of-mass energy [45] when compared to MC
generators. However, the ALICE results show a jet pT
dependence while the PHENIX ratio is flat as a function of
jet pT . Studies of the jet cross section relative to NLO
predictions at LHC energies indicate that NLO predictions
overestimate the jet cross section at small anti-kt R, while
the agreement is better at larger values of R [46]. This
could indicate that the angular distribution of particles in
the jet is not accurately reproduced by NLO calculations.
As noted above, NLO calculations work at the partonic
level, and use a hadronization model to make a comparison
to the experimental data measured at the hadron level. The
hadronization correction effectively shifts partonic jet pT
distributions to lower hadronic jet pT . As shown in
Ref. [39], the pT shift of the partonic jet due to the
hadronization correction is larger at jet momenta lower
than LHC energies, and there is a substantial variation
between Monte Carlo models. The hadronization correc-
tion could also be substantially affected if the fragmenta-
tion of the jet is substantially different in data than in the
Monte Carlo models, as indicated by the unfolding of
the PHENIX data. This could lead to an underprediction
of the pT shift by the hadronization and an overprediction
of the theory cross section compared to data.

B. Jet substructure distributions

The zg distribution is calculated using all jet constituents,
while the distributions in ξ; jT and r are calculated for
charged particles only. To derive zg from a previously
determined R ¼ 0.3 anti-kt jet, the jet constituents are
reclustered using the Cambridge-Aachen algorithm [47].
This algorithm works by clustering from small angles to
larger angles, and the clustering tree can be accessed to
determine the last two subclusters that were combined
to determine the final jet. The quantity zg ¼ minðpT1;pT2Þ

pT1þpT2
,

where pT1 and pT2 are subcluster transverse momenta, is
evaluated, and if zg ≤ 0.1 the lowest pT cluster is dropped
and the remaining subjet is declustered and evaluated again.
This continues until the condition zg > 0.1 is met or the jet
runs out of constituents. The SoftDrop zg was first
measured by the CMS Collaboration in pþ p and Pbþ
Pb collisions at

ffiffiffi
s

p ¼ 5.02 TeV at the LHC for jets with
pT > 140 GeV=c [48], and later by the STAR
Collaboration at RHIC energies [49,50]. Figure 5 shows
the SoftDrop [25,26] groomed momentum fraction zg, with
SoftDrop condition zcut ¼ 0.1 and SoftDrop β ¼ 0 for
different pT bins and the STAR results [49] for different
values of anti-kt R. The STAR results are in good
qualitative agreement with the PHENIX data. With increas-
ing jet pT the distributions get steeper, demonstrating that
jets with highly asymmetric splittings are enhanced.

Figure 6 shows the distribution of charged particles as a
function of ξ ¼ − lnðzÞ, where z is the fraction of the jet
momentum carried by the charged particle, for different pT
bins. This distribution is typically referred to as the frag-
mentation function. As the jet pT increases, the observed ξ
distributions shift right, or to smaller constituent momentum
fractions z. This is highlighted in Fig. 6(g), which compares
the lowest and highest jet momenta. The PHENIX measure-
ments are limited to ξ > 0.6 by the jet-charged-momentum-
fraction cut. A deficit of charged particles in the jet relative to
the modified PYTHIA6 model grows as a function of jet pT
between 1 < ξ < 2.5.
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Figure 7 shows the distribution of the charged particle
transverse momentum with respect to the jet axis jT=p

jet
T ,

where pjet
T is the jet transverse momentum, for different jet

pT bins. Figure 7(g), which compares the lowest and
highest jet-momenta bins, indicates that jT scales up with
increasing jet pT slower than the jet pT itself. This is
consistent with the changes observed in the r distribution.
The radial distribution of charged particles within the jet

with respect to the jet axis (r) is shown in Fig. 8 as a
function of jet pT . The distribution of particles in the jet as a
function of distance from the jet axis shows a significant
increase at small r with increasing jet pT , as can be seen in
Fig. 8(g), where both the lowest and highest jet pT bins are
superimposed. This indicates the development of a higher

particle density in the core of the jet with increasing jet pT ,
which is consistent with the expected increase in the
contribution of quark jets over gluon jets with increasing
jet pT at RHIC [34].

IV. SUMMARY AND CONCLUSIONS

In summary, presented here are the jet pT-differential
cross section and jet substructure distributions in pþ p
collisions at

ffiffiffi
s

p ¼ 200 GeV. Jets were reconstructed using
the anti-kt algorithm with a jet radius R ¼ 0.3 for jets with
transverse momentum within 8.0 < pT < 40.0 GeV=c and
pseudorapidity jηj < 0.15. The results were unfolded for
experimental and detector effects. The unfolding indicates a
lower average charged particle multiplicity is observed in
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FIG. 6. ξ distributions for different jet pT bins compared to the
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the PHENIX data than in the PYTHIA event generators, as
much as one particle at the highest measured jet pT .
These results indicate that NLO and NNLO predictions

are higher than the measured jet cross section at RHIC, a
result that is within the large systematic errors in a prior
measurement [13]. This may indicate a limitation of the
procedure used to translate from the partonic to the
hadronic cross section, which requires Monte Carlo gen-
erators for the NP corrections. The measured data indicate a
lower particle multiplicity at these center-of-mass energies
and jet momenta than in the event generators used to
calculate these corrections, while measurements at the LHC
indicate that NLO calculations overestimate the jet cross
section at small anti-kt R. This indicates there may be
multiple effects contributing to the disagreement between

QCD calculations of the jet cross section and the mea-
sured data.
Presented were unfolded distributions in jets for

zg; ξ; jT=p
jet
T , and r. The measured zg distribution agrees

well with the STAR results and becomes steeper with
increasing jet pT . The ξ distribution shifts toward a lower
momentum fraction within the range measured in the
PHENIX data. The jT=p

jet
T distribution stays relatively

unchanged with increasing jet pT , while the r distribution
shows a significant increase at small r with increasing jet
pT , consistent with an increasing fraction of quark jets at
higher jet pT .
In conclusion, these measurements contribute to an

improved understanding of the jet cross section and
substructure in pþ p collisions at RHIC, and are essential
to be able to exploit new data from the sPHENIX detector,
which will measure jets in heavy-ion collisions at RHIC
with unprecedented precision [51]. In addition, as the
center-of-mass energies and pT range will be similar these
results will also help inform jet measurements at the future
Electron-Ion Collider.
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