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Krylov complexity in mixed phase space
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We investigate the Krylov complexity of thermofield double states in systems with mixed phase space,
uncovering a direct correlation with the Brody distribution, which interpolates between Poisson and
Wigner statistics. Our analysis spans two-dimensional random matrix models featuring (I) GOE-Poisson
and (II) GUE-Poisson transitions and extends to higher-dimensional cases, including a stringy matrix
model (GOE-Poisson) and the mass-deformed SYK model (GUE-Poisson). Krylov complexity consis-
tently emerges as a reliable marker of quantum chaos, displaying a characteristic peak in the chaotic regime
that gradually diminishes as the Brody parameter approaches zero, signaling a shift toward integrability.
These results establish Krylov complexity as a powerful diagnostic of quantum chaos and highlight its
interplay with eigenvalue statistics in mixed phase systems.
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Introduction. Quantum chaos is a ubiquitous phenomenon
with far-reaching implications across physics. It governs the
process of thermalization, dictates the complex dynamics
of many-body systems, and is central to advancements in
information theory, particularly in understanding black holes.
While the principles of classical chaos are well-established and
extensively studied [ 1], the characterization of quantum chaos—
especially in the many-body regime—remains a challenging
and less developed field, demanding deeper exploration.

A foundational principle in quantum chaos is the Bohigas-
Giannoni-Schmit (BGS) conjecture [2—5], which posits that
quantum systems with classically chaotic dynamics exhibit
energy spectra consistent with random matrix theory (RMT).
Hallmarks of RMT, such as level repulsion and spectral
rigidity, serve as definitive signatures of late-time quantum
chaos [2,6,7]. In contrast, early-time quantum chaos manifests
as the exponential growth of specific observables, notably out-
of-time-order correlators (OTOCs) [8,9], characterized by a
quantum Lyapunov exponent bounded by A; < 27zkzT/h
[10]. While progress has been made in exploring these
regimes, the connection between early- and late-time quantum
chaos remains an open question, promising deeper insights
into the interplay of chaos, thermalization, and the funda-
mental limits of quantum dynamics.
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Recently, intriguing connections between maximal chaos
and black hole physics have emerged [11-16]. At the heart of
these insights is the early-time saturation of the ‘chaos bound’
[10], which provides a powerful framework for comparing
black holes and quantum many-body systems as some of the
most efficient information scramblers in nature. This bound has
become crucial for identifying quantum systems with potential
holographic duals [17], highlighting the profound connection
between quantum dynamics and gravitational phenomena.

Most physical systems are, however, neither maximally
chaotic nor fully integrable; instead, they exhibit a mixed
phase behavior where different sectors may exhibit level
repulsion and level clustering simultaneously. This highlights
the urgent need to refine our understanding of quantum chaos
indicators and explore their connections with other diagnostics
of mixed systems. Krylov complexity [18,19], a key tool for
assessing quantum chaos, has already shown potential for
linking early- and late-time signatures. Although its primary
focus has been on characterizing chaotic systems, extending
its application to mixed phase systems is a natural next step,
which we will investigate in this letter.

Krylov complexity has been studied across a wide range of
quantum chaotic systems, including RMT [19-24], quantum
billiards [25-27], quantum spin chains [28-33], and various
versions of the Sachdev-Ye-Kitaev (SYK) model [34-39]. It
has also been explored in diverse contexts such as topological
and quantum phase transitions [40—43], quantum batteries
[44], high-energy quantum chromodynamics [45], bosonic
systems modeling ultracold atoms [46], saddle-dominated
scrambling [47,48], and open quantum systems [49-55].
A comprehensive review can be found in [56].
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Although Krylov complexity was originally developed to
track the growth of operators [18], our focus here is on the
version that monitors the spread of a time-evolving quantum
state [19]. For time-evolved thermofield double (TFD) states
in quantum chaotic systems, Krylov complexity exhibits a
distinct four-phase pattern; an initial growth, a peak, a decline,
and a plateau. As shown in [39], the peak is a universal feature
of quantum chaotic many-body systems and is absent in
integrable systems. In this letter, we extend the analysis of
Krylov complexity to TFD states in systems with mixed phase
space, where both integrable and chaotic regions coexist. We
find a direct correlation between the peak and the Brody
distribution of eigenvalues [57,58], which smoothly interpo-
lates between Poisson and Wigner-Dyson spectra.

Preliminaries. To evaluate Krylov complexity, the Krylov
basis {|K,)} is constructed using the Lanczos algorithm
[59,60]. This procedure generates Lanczos coefficients
{a,, b, }, which capture the system’s dynamical properties.
These coefficients correspond to the entries in the tridiag-
onal matrix representation of the Hamiltonian within the
Krylov basis, given by

H|Kn> = an|Kn> + bn+1|Kn+1> + bn|Kn—1>' (1)

The Krylov wave functions v, (¢) then evolve according to
the recursive differential equation:

iatl//n(t) = an‘/’n(t) + bn+1‘//n+l(t) + ann—l(t)’ (2)

This equation represents the Schrodinger equation in
Krylov space for the Hamiltonian H, with the time-evolved

state given by [y (1)) = 3, w,(1)|K,.).
Krylov complexity is defined as

=D nlw (1) (3)

It quantifies the average spread of the time-evolving state
within the Krylov basis, effectively measuring the dispersion
of the wave function over time. In quantum chaotic systems,
Krylov complexity evolves through a distinct pattern; aramp,
a peak, a decline, and a plateau [19]. This structure plays a
crucial role in distinguishing chaotic dynamics from inte-
grable ones; in particular, the early-time peak serves as a
hallmark of chaos [39], and is absent in integrable systems.

To investigate the transition between chaotic and inte-
grable phases we introduce the order parameter,

AC = C( peak) C<t - OO), (4)

referred to as the Krylov Complexity Peak (KCP) [39].
Here, C(t = t,e,) is the peak value of Krylov complexity,
and C(t — oo) represents its late-time average or plateau. A
nonzero KCP (AC # 0) indicates a chaotic system, while
AC = 0 corresponds to an integrable system.

Following [19], we adopt the TFD state as the initial state
for the dynamics described in (2), expressed as

PEn

w(0)) = " |n) ® |n) (5)

oY
We focus on the maximally entangled case (f = 0), where
chaotic features are most pronounced [19,39,48]. In contrast,
increasing f tends to weaken these signatures [19,39,48].
Further, for the maximally entangled state, the late-time
saturation of Krylov complexity can be analytically com-
puted as C(t = o0) = (L — 1)/2, where L is the size of
Hamiltonian [37].

Eigenvalue statistics of mixed systems. Our focus now shifts
to considering key examples of systems with mixed dynam-
ics, where the spectrum follows a variant of the Brody
distribution [57,58]. Originally introduced to model complex
atomic nuclei, this distribution interpolates between the
Poisson distribution and the GOE distribution in RMT. A
slight generalization is provided by the following probability
density function [61,62]:

P(s) = (b + 1)cy(as® + as®* 1) exp (—c,,s*1),  (6)

known as the generalized Brody distribution. Here,

2
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+1 for Poisson <> GOE, (8)
€ =
—1 for Poisson < GUE,

where ¢ takes values based on the symmetry class. When
€ = +1, the distribution in (6) reduces to the original Brody
distribution [57,58], interpolating between the Poisson
(b =0) and GOE (b = 1) distributions. Conversely, for
€ = —1, (6) interpolates between the Poisson (b = 0) and
GUE (b = 1) distributions.

Primitive 2 x 2 random matrix models. We first examine
the 2 x 2 matrix model introduced in [63] to build intuition
about the role of Krylov complexity in characterizing
mixed phases. Its Hamiltonian is given by

_<IA|" %IBld) o)
S\l o0 )

where A and B are real numbers drawn from a Gaussian
distribution with zero mean and variance o, and d satisfies
1 < d < 2. The eigenvalues of H are given by

1
=5 (A1 £ /JAPE + B>, (10)
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Left panel: Averaged Krylov complexity for a matrix model interpolating between GOE and Poisson statistics (9), with o = 1

andd =1, 1.2, 1.5, 1.8, 2 (red, orange, yellow, green, blue). The dashed line represents the late-time plateau. Right panel: KCP AC vs
Brody parameter b. The colored dots correspond to the same data shown in the left panel.
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FIG.2. Left panel: Averaged Krylov complexity for a matrix model interpolating between GUE and Poisson statistics (12), witho = 1
andd =1, 1.2, 1.5, 2, 3 (red, orange, yellow, green, blue). Right panel: KCP AC defined in (4) vs Brody parameter b. The colored dots

correspond to the same data shown in the left panel.

which leads to the level spacing s = E, — E_. The prob-
ability density for the spacing, P(s), is derived as follows:

2 [e A%+ B?
— dAdB -
no? A AdBexp < 20° >
2 o [3
= WA ds Az d¢ S%_ICOS%_IC]’)SiH%_Iqﬁ

20 2 . 2
X exp <_ si(cosig + smdq’)))

26°
/oo dsP(s),
0

where the Jacobian determinant was used in the second
equality with A¢ = s cos(¢) and B? = ssin(¢). As noted in
[63], the distribution P(s) in (11) closely follows a Brody
distribution (6), with the Brody parameter b related to d in (9)
by b = (2—d)/d. Thus, d =1 (b = 1) corresponds to the
GOE distribution, while d =2 (b =0) represents the
Poisson distribution.

Notably, by slightly modifying the above matrix model,
we can change the symmetry class and obtain a distribution
that transitions between GUE and Poisson. To this end, we
consider the following Hamiltonian:

Al 3B +31cl
“\ 1R/ _io) - (12)
3Bl =5]C| 0

P =

(11)

where A, B, and C are real numbers drawn from a Gaussian
distribution with zero mean and variance o. In this case, the
eigenvalues are given by

B =5 [l e P ). a3

and probability density P(s) follows from

0 2 2 2
P = 2}/2 dAdBdC exp (— 7A * Bz +C )
w263 Jo 26

= / ~ dsP(s), (14)
0
where A? = ssin(0) sin(¢), B¢ = ssin(0) cos(¢) and
C? = s cos(6). Comparing with the generalized Brody dis-
tribution (6) for the GUE scenario (where ¢ = —1), we can
find a phenomenological relation between the Brody param-
eter b and d, which can be expressed as b = (3 — d)/2d.
Thus, d =1 (b = 1) corresponds to the GUE distribution,
while d = 3 (b = 0) represents the Poisson distribution.
With these models established, we now turn to calculat-
ing Krylov complexity. For a general system with a two-
dimensional Hilbert space in the TFD state, the analytical
expression for Krylov complexity is [22]

szz = Sin2 <% t> .

(15)
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Left panel: The Krylov complexity of the odd sector of the stringy matrix model (17) for y = 0, 4, 10 (blue, red, green). Similar

results are observed in the even sector, but are omitted for brevity. Right panel: KCP AC vs mass parameter u. The characteristic peak is
most pronounced around p = 4, aligning with the expectations from the level statistics.
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FIG. 4. Left panel: KCP AC vs Brody parameter b from y = 0 (b = 0) to = 4 (b = 0.8). Right panel: KCP AC vs Brody parameter b

from u =4 (b=~0.8) to u =10 (b= 0).

For a random ensemble characterized by the probability
density P(s), the remaining task is to compute the averaged

Krylov complexity, C, expressed as

C= /oo CroP(s5)ds.
0

In the left panel of Fig. 1, we show numerical results for C using
P(s) from (11) for d € [1, 2]. The peak is maximal at d = 1
(GOE limit) and diminishes as d — 2 (Poisson limit). The right
panel recasts this behavior in terms of the Brody parameter b,
where the KCP defined in (4) decreases as b — 0. Qualitative
similar behaviors are observed for random matrix models
interpolating between GUE and Poisson ensembles, as detailed
in Fig. 2. In this case we use P(s) from (14) ford € [1, 3]. The
peakis maximal atd = 1 (GUE limit) and diminishesas d — 3
(Poisson limit). These results highlight Krylov complexity as a
probe of quantum chaos in the mixed phase, consistent with the
Brody distribution analysis.

(16)

Stringy matrix model. We now shift our attention to

representative examples with higher-dimensional Hilbert

spaces, beginning with a truncated version of the stringy

BMN matrix model [64-66]. Its Hamiltonian is given by
2R e o

2.,2 4

X uy y
g=Px B A Y o AV 3 Y
2+2+8+2+xy+2 /ty+2

(17)

It describes two coupled nonlinear oscillators that model
the configuration of two fuzzy spheres, governed by the
mass parameter y. Recent studies of this system [66] have
examined its level statistics, identifying a mixed phase
space characterized by a Brody distribution.

The Hamiltonian (17) exhibits a x — —x symmetry,
allowing eigenstates to be classified by even or odd parity
with respect to the x-coordinate. In our calculations, we used
2,000 eigenvalues for each symmetry sector. As noted in
[66], we find that for both very small and large y, the Brody
parameter b approaches zero. In contrast, for moderate y, b
attains its maximum value of approximately b = 0.8 around
u =~ 4. This indicates a transition in the stringy matrix model
(17) from Poisson-like behavior (small u, b ~ 0) to chaotic
behavior (u ~ 4, b ~ 0.8), and back to Poisson-like behavior
at larger 4 (b = 0). Detailed analysis of this transition in the
level statistics is provided in the Supplemental Material [67].

In Fig. 3, we show the normalized Krylov complexity
C(t)/L for p =0, 4, 10. Our analysis reveals two key
observations: (I) A prominent peak appears around u = 4,
vanishing for sufficiently small or large 4, in agreement with
level statistics; (II) Unlike other chaos diagnostics, such as
OTOCs and the spectral form factor (SFF) explored in [66],
Krylov complexity correctly identifies integrability at y = 0
by the absence of a peak. This shows that KCP is insensitive to
instabilities from flat directions, making it a more reliable
probe of quantum chaos. Moreover, the agreement between
level spacing and Krylov complexity suggests a direct
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FIG. 5. Left panel: KCP AC vs mass parameter k in the deformed SYK model. Right panel: KCP AC vs Brody parameter b. The
smooth monotonic dependence between the two quantities demonstrate the reliability of the KCP to characterize mixed phase systems.

correlation between the KCP and the Brody parameter b, as
demonstrated in our earlier two-dimensional toy models.
Indeed, we find that this relationship holds for the stringy
matrix model, as illustrated in Fig. 4. These findings reinforce
Krylov complexity as a valuable indicator of quantum chaos,
consistent with the level spacing analysis in mixed systems.

Mass-deformed syk model. A second example of a system
with a higher-dimensional Hilbert space and a mixed phase
space—this time interpolating between the Poisson and
GUE distributions—is the mass-deformed SYK model
[68—70]. Its Hamiltonian is given by

N . N
i
H > Jijkl)(i)(j)(k)(l"f’EZKu)(iZjv (18)
=

1
T4

4 ik l=1
where y; are Majorana fermions obeying the anticommu-
tation relations {y;.y;} = ;;, while the coupling constants

Jiju and k;; are Gaussian random variables with zero mean

and standard deviations v/6J/N*? and x/+/N, respec-
tively. The Hamiltonian (18) features a conserved charge
parity operator, splitting the system into parity-even and
parity-odd sectors [14,71,72].

The undeformed SYK model (without the mass deforma-
tion, i.e., the x;; term) is maximally chaotic, saturating the
chaos bound [10], while the purely quadratic Hamiltonian
corresponds to an integrable system. Depending on the
number of Majorana fermions, NV, the SYK model’s spectrum
aligns with different random matrix ensembles; GUE, GOE,
or GSE [73]. Here, we set N = 26, a standard choice in SYK
studies, placing the system in the GUE ensemble in its
chaotic phase. Increasing the mass deformation parameter x
drives a transition from chaos to integrability, a phenomenon
captured by level statistics and OTOCs [70,74—84] as well as
by Krylov complexity [39]. Notably, [39] established the
KCP as a robust diagnostic of this phase structure, comple-
menting traditional chaos indicators.

The system’s level statistics is, in fact, well described by
a generalized Brody distribution. Our analysis shows that
as k increases, the Brody parameter » decreases monoton-
ically, marking a smooth transition from a GUE distribution
at k = 0 (where b = 1) to a Poisson distribution at k = 70

(where b ~ 0.02). This transition is illustrated in detail in
the Supplemental Material [67].

A detailed study of Krylov complexity in the mass-
deformed SYK model was conducted in [39]; here, we focus
on its correlation with the Brody distribution. The left panel of
Fig. 5 shows the KCP as a function of the mass deformation
parameter x for both parity-even and parity-odd sectors,
revealing a decrease in KCP at larger k, consistent with the
findings of [39]. The right panel of Fig. 5 illustrates the
relationship between the KCP and the Brody parameter b,
showing a clear monotonic behavior. These results strengthen
the case for the KCP as a reliable indicator of the chaos-to-
integrability transition, aligning with level statistics and
demonstrating a direct correlation with the Brody distribution.

Discussion. In this work, we investigated Krylov complexity
in systems with mixed phase spaces, encompassing both
chaotic and integrable regimes. Focusing on TFD states, we
analyzed systems with energy level spacing distributions
described by a generalized Brody distribution, where the
Brody parameter b interpolates between Poisson statistics
(b = 0) and random matrix ensembles (b = 1). We demon-
strated that Krylov complexity effectively captured the
transition from quantum chaos to integrability, with a distinct
peak in the chaotic regime that diminished as integrability
increased, in precise correlation with the Brody parameter.
Our examples included both few-body and many-body
systems, with deterministic and probabilistic spectra, further
reinforcing the robustness of our conclusions.

This correlation is significant given the discrepancies
observed among various quantum chaos indicators. For
instance, in [85], the authors examined the inverted harmonic
oscillator (an integrable system that is classically unstable) and
found exponential growth of the OTOC, a behavior typically
associated with chaotic systems. More recently, studies on the
stringy matrix model [66] reported similar discrepancies for
the SFF and OTOC correlators vis-a-vis the Brody distribu-
tion, which were similarly attributed to classical instabilities of
the model. Our investigation is thus particularly valuable, as it
provides complementary insights into time regimes where
OTOCs alone may offer an incomplete or misleading char-
acterization of chaos and integrability.
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The correlation between Krylov complexity and the
Brody parameter provides crucial quantitative insights into
the dynamics of mixed phase systems, offering a deeper
understanding of chaotic-integrable transitions and shed-
ding light on potential connections between chaos, quan-
tum information, and black hole physics.
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