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Machine learning force field model for kinetic Monte Carlo simulations
of itinerant Ising magnets
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We present a scalable machine learning (ML) framework for large-scale kinetic Monte Carlo (kMC) simu-
lations of itinerant electron Ising systems. As the effective interactions between Ising spins in such itinerant
magnets are mediated by conducting electrons, the calculation of energy change due to a local spin update
requires solving an electronic structure problem. Such repeated electronic structure calculations could be
overwhelmingly prohibitive for large systems. Assuming the locality principle, a convolutional neural network
(CNN) model is developed to directly predict the effective local field and the corresponding energy change
associated with a given spin update based on Ising configuration in a finite neighborhood. As the kernel size
of the CNN is fixed at a constant, the model can be directly scalable to kMC simulations of large lattices.
Our approach is reminiscent of the ML force field models widely used in first-principles molecular dynamics
simulations. Applying our ML framework to a square-lattice double-exchange Ising model, we uncover unusual
coarsening of ferromagnetic domains at low temperatures. Our work highlights the potential of ML methods for
large-scale modeling of similar itinerant systems with discrete dynamical variables.
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I. INTRODUCTION

Machine learning (ML) and data science methods have
become transformative tools in physics research, enabling
breakthroughs and advancements across a range of domains
[1–8]. For example, by combining data-driven inference with
domain-specific constraints, ML-based models are able to
predict material properties, such as lattice structures or con-
ductivity, and accelerate the design of new materials by
analyzing high-dimensional datasets. The utilization of ML
techniques in computational physics has also reinvigorated the
field of multiscale modeling of complex electron systems. A
fundamental issue in multiscale simulations is the trade-off
between efficiency and accuracy of the numerical methods.
An accurate treatment of complex quantum materials often re-
quires time-consuming calculations, which significantly limit
the accessible system sizes and timescales. ML models acting
as universal approximations for high-dimensional functions
[9–11] have significantly improved the efficiency of such
complex numerical simulations.

One of the most prominent examples of ML-enabled
large-scale modeling is ab initio molecular dynamics (MD)
simulations that are based on ML force field models [12–25].
Contrary to classical MD simulations with empirical force
fields, the atomic forces in quantum MD are computed by
integrating out electrons on the fly as the atomic trajecto-
ries are generated [26]. Over the past decade, various ML
models have been developed to emulate the time-consuming
first-principles electronic structure calculations, mostly based
on density functional theory. Since a ML force field model
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is essentially a complicated classical force field model which
can be efficiently evaluated, the ML approaches thus combine
the best of the two worlds: the high-efficiency of classical MD
simulations and the accuracy of quantum electronic structure
calculations.

The modern ML force field models are also canonical ex-
amples of transferrable and scalable computational methods.
Fundamentally, as argued by Kohn, linear-scaling electronic
structure methods are possible mainly because of the locality
nature or nearsightedness principle [27,28] of many-electron
systems. The locality principle does not require the existence
of well-localized Wannier-type wave functions but rather re-
sults from the wave-mechanical destructive interference in the
many-body system. Indeed, in the pioneering works of Behler
and Parrinello [12] and Bartók et al. [13], the locality prin-
ciple was tacitly assumed in their construction of the neural
network (NN) interatomic potential model. In this approach,
the total energy of the system is partitioned as E = ∑

i εi,
where εi is called the atomic energy and only depends on
the local environment of the ith atom [12,13]. The atomic
forces are then obtained from derivatives of the predicted en-
ergy: Fi = −∂E/∂Ri, where Ri is the atomic position vector.
Crucially, the complicated dependence of atomic energy εi on
its neighborhood is approximated by the ML model, which
is trained on the condition that both the predicted individual
forces Fi as well as the total energy E agree with the quantum
calculations.

Motivated by the success of such ML-based quantum
MD methods, similar ML force field models have also been
developed to enable multiscale dynamical modeling of sev-
eral well-known condensed-matter lattice models [29–35].
Of particular interest is the large-scale Landau-Lifshitz-
Gilbert (LLG) dynamics simulations of so-called itinerant
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electron magnets. Such metallic magnets are characterized by
long-range electron-mediated spin-spin interactions and the
emergence of complex noncollinear or noncoplanar magnetic
orders. Dynamical modeling of complex textures in itinerant
spin systems, however, is a computationally challenging task.
This is because the local effective magnetic fields, analogous
to forces in molecular dynamics, originate from exchange
interactions with itinerant electrons and must be computed
quantum mechanically. To solve this computational difficulty,
the Behler-Parrinello (BP) ML scheme [12,13] has been gen-
eralized to build effective magnetic energy models with the
accuracy of quantum calculations for itinerant electron mag-
nets [32–37].

The ML force-field approaches, however, only apply to
systems whose evolution is governed by an equation of mo-
tion with driving forces originating from the electron degrees
of freedom. For similar hybrid classical-quantum systems
with discrete dynamical classical degrees of freedom, such
as Ising or Potts variables, the BP-type methods cannot be
directly applied. The time evolution of such systems with
discrete dynamical variables is often modeled by kinetic
Monte Carlo (kMC) methods [38,39] with Metropolis or
Glauber dynamics instead of differential equations. Central
to kMC simulations is the calculation of energy difference
�E when attempted updates are made to a local discrete
variable. Yet, as the energy calculation requires solving the
electron structure problem, similar to both quantum MD and
itinerant electron systems, each local update is computation-
ally demanding, thus rendering large-scale kMC simulations
impossible.

In this paper, we propose a linear-scaling ML framework
for kMC simulations of discrete classical degrees of freedom
coupled to itinerant electrons. Our approach can be viewed
as the discrete analog of the BP-type ML force field models.
Central to our approach is a deep-learning neural network
model which is trained to predict the energy change �E
caused by a local update of the discrete variable. Importantly,
this energy prediction is assumed to depend only on configu-
rations of the classical variables within a finite neighborhood
based on the locality principle. As a result, our proposed ML
approach is both transferrable and scalable, which means that
the same NN model, successfully trained from small-scale
exact solutions, can be applied to much larger systems without
rebuilding or retraining.

We demonstrate our approach on an itinerant Ising magnet
which can be viewed as a simplified version of the double-
exchange (DE) model with strong easy-axis anisotropy.
The DE mechanism [40–42], which describes the interplay
between ferromagnetism and electron conduction, plays a
central role in the emergence of colossal magnetoresistance
(CMR) observed in several manganites [43–47]. The Ising-DE
model on a square lattice exhibits a ferromagnetic ordered
state due to the DE mechanism at low temperatures. Although
the ferromagnetic transition is shown to be in the 2D Ising
universality class based on previous exact diagonalization
(ED)-MC simulations [48], the kinetics of the phase transition
has yet to be carefully studied. Our large-scale ML-enabled
kMC simulations uncover intriguing temperature-dependent
phase ordering dynamics of this Ising-DE system. While the
coarsening of Ising domains at higher temperatures (but still

below the critical temperature) is consistent with the Allen-
Cahn domain-growth law for a nonconserved Ising order, a
significantly slower growth of Ising domains at lower temper-
atures is found to follow an anomalous power law with a much
smaller exponent.

The rest of the paper is organized as follows. We discuss
the adiabatic dynamics of the Ising double-exchange model in
Sec. II, followed by an explanation of the implementation of
the ML method. In Sec. III, the ML model is benchmarked
against the results by the ED method for �E prediction.
The critical temperature and correlation functions are also
calculated to justify our proposed method. The ML model is
then applied to the dynamical simulation of the Ising double-
exchange model. Detailed characterizations of the domain
growth are covered in Sec. IV. Finally, we conclude the article
in Sec. V with a summary and outlook.

II. MODEL AND METHODS

A. Ising double-exchange model

We consider the following double-exchange Hamiltonian
with Ising spins [48]:

H = −tnn

∑
〈i j〉

∑
σ=↑,↓

c†
iσ c jσ − JH

∑
i

σi(c
†
i↑ci↑ − c†

i↓ci↓), (1)

where Ising spin σi = ±1 represents a local magnetic moment
at site i, c†

iσ (ciσ ) is the creation (annihilation) operator of an
electron with spin σ =↑,↓ at site i, tnn represents the hopping
coefficient between nearest neighbors, and JH denotes the on-
site Hund’s rule coupling between conduction electrons and
local spins. In the limit of large coupling JH → ∞, electrons
are forced to align with the local spins in the low energy
section of the model. After projecting to the low-energy sector
in this limit, the model simplifies to

H = − tnn

2

∑
〈i j〉

(1 + σiσ j )c̃
†
i c̃ j . (2)

Here c̃†
i and c̃i are spinless fermion operators. The above

Hamiltonian is essentially a disordered tight-binding model
with a nearest-neighbor hopping coefficient t〈i j〉 = 1 or 0 de-
pending on whether the corresponding spin pair is parallel
σiσ j = +1 or antiparallel σiσ j = −1. For an inhomogeneous
Ising state, the system is composed of ferromagnetic clus-
ters (parallel spins) separated by antiferromagnetic domain
walls (antiparallel spins). Since electrons are forbidden to hop
across antiparallel spin pairs, they are confined within indi-
vidual ferromagnetic clusters. As electrons can gain kinetic
energy through delocalization over the cluster, this quantum
effect, also known as the DE mechanism, thus drives the
growth of ferromagnetic domains and the emergence of fer-
romagnetic order at low temperatures.

Monte Carlo (MC) methods are the main tools to study
both the thermodynamic phases and dynamical phenomena of
Ising systems. Central to MC simulations is the calculation of
energy difference �E when attempting an update to the Ising
spin configuration. Due to the complex and often frustrated
electron-mediated spin-spin interactions, the Ising-DE model
is not amenable to efficient cluster algorithms for updating
spins. And for kMC simulations of thermal quench processes
to be discussed below, locality of the fundamental dynamics
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indicates that the evolution of the system is driven by single-
spin updates. For such local updates, it is convenient to relate
the energy change �Ei due to flipping of σi to a local effective
magnetic field hi:

�Ei = 2σi hi. (3)

Noting that a spin flip results in a change of magnetic moment
�mi = (−σi ) − σi = −2σi, the local field can be viewed as
an effective force given by the discrete analog of the energy
derivative: hi = −�Ei/�mi.

For short-range Ising models, the calculation of local field
hi is straightforward and can be done rather efficiently; com-
putation of energy difference for itinerant Ising magnets,
however, is time-consuming. This is because, even though
the tight-binding Hamiltonian is modified only locally by a
single-spin flip, the resultant energy change could be rather
nonlocal due to the quantum-mechanical delocalization of
electrons. Within the adiabatic approximation, which assumes
fast electron relaxation in between spin updates, one can in
principle introduce an effective spin-spin interaction of the
Ising-DE model in Eq. (2) by integrating out the electrons.
Taking into account the time-reversal symmetry of the model,
this effective interaction can be formally expressed as

E =
∑

i j

Ji jσiσ j +
∑
i jkl

Ki jklσiσ jσkσl

+
∑

i jklmn

Li jklmnσiσ jσkσlσmσn + · · · . (4)

The various terms represent the two-, four-, and six-spin in-
teractions, and so on. The coupling coefficients J, K , and L
are constrained by the lattice symmetries. Given the above
classical spin Hamiltonian, one immediately obtains the local
field:

hi = −
∑

j

Ji jσ j −
∑
jkl

Kjklσ jσkσl − · · · . (5)

For small Hund’s coupling J � tnn, one can perform a
many-body perturbation calculation to derive these interaction
coefficients. For example, the two-spin coefficient of the order
Ji j ∼ O(J2/tnn), which is similar to the RKKY interaction for
the weak-coupling s-d model [49–51], is expected to decay
with the distance ri j . For intermediate or large Hund’s cou-
pling, a systematic calculation of the multispin interactions is
extremely tedious, if not impossible.

On the other hand, since the Ising-DE Hamiltonian in
Eq. (2) is quadratic in electron operators, the energy differ-
ence �Ei can be exactly calculated by numerically solving
the electron tight-binding Hamiltonian. Specifically, within
the adiabatic approximation, the energy change is given by
�Ei = 〈H(S′)〉 − 〈H(S)〉, where the two spin configurations
S and S′ differ by a single-spin flip σi → −σi and each
calculation of the expectation value requires solving the cor-
responding tight-binding Hamiltonian. A standard method to
solve the tight-binding Hamiltonian is ED. For example, from
the eigensolutions, the total system energy at zero temper-
ature is simply 〈H〉 = ∑Ne

m=1 εm, where εm denotes the mth
eigenenergy (arranged in ascending order) and Ne = f N is the
total number of electrons determined from the filling fraction
f . However, due to the poor cubic scaling O(N3) of ED, the
method cannot be used for large-scale MC simulations.

The kernel polynomial method (KPM) offers a more
efficient linear-scaling approach to solve the electron
Hamiltonian [52–54]. In this approach, the total energy
is expressed as the integral 〈H〉 = ∫ εF ε ρ(ε)dε, where εF is
the Fermi level determined by the filling fraction and ρ(ε) is
the density of state (DOS) function. By expanding the DOS in
terms of Chebyshev polynomials, the expansion coefficients
can be efficiently computed from sparse-matrix-vector
multiplications. When combined with MD or LLG
simulations, one single electronic structure calculation
with KPM is used to update the whole system at a time step,
thus realizing linear scalability. However, in MC simulations,
every single-spin update requires one KPM calculation, which
means the time complexity for one sweep over the system,
the basic time unit in MC simulations, scales as O(N2).
As a result, system sizes that can be feasibly simulated by
KPM-based MC are restricted to at most a few hundred [48].

B. ML model for local effective field

Here we present a linear-scaling method for kMC simu-
lations of itinerant Ising systems based on ML force field
models. As discussed above, linear scalability of computa-
tional methods fundamentally relies on the locality principle,
and a ML-based divide-and-conquer approach provides a
most natural way to take advantage of this locality property
for implementing linear-scaling algorithms. Specifically, we
assume that the local effective field hi at a given lattice site i
depends only on a finite neighborhood:

hi = F ({σ j | j ∈ Bi}), (6)

where Bi denotes a finite region of linear size � centered at site
i, and F (·) is a universal function depending on the electron
models being considered. The complex dependence of hi on
the neighborhood Ising configurations is to be learned by a
NN model. Specifically, we employ a convolutional neural
network (CNN) combined with several fully connected lay-
ers of neurons to implement this complex high-dimensional
function F (·). The scale of the NN naturally depends on the
size � of the neighborhood region, which represents the range
of the electron-mediated spin-spin interactions. The spin-flip
induced energy change �Ei, which is central to MC simula-
tions, is given by Eq. (3). Importantly, since the size of the NN
is fixed, the run time of the ML model is independent of the
system size. The time complexity of one MC sweep over the
system is thus of O(N ).

A crucial component of our ML model is the CNN, which
represents a deep learning algorithm specialized for process-
ing data with a gridlike topology. The convolutional layers in
a CNN apply kernels, also known as filters, to perform the
mathematical convolution operation on a multidimensional
array of input data [55]. The filter slides over the input data,
and at each sliding window a dot product of the filter and the
corresponding patch of the input is calculated. The output of
the convolution operation with filters is called a feature map,
or activation map. A convolutional layer can have multiple fil-
ters, each learning a different feature. The output of all filters
is stacked along a new dimension, resulting in a multichannel
feature map. The architecture of multiple convolution layers
in a CNN makes it particularly suited for exploiting spatial
hierarchies in the input data: early layers in a CNN learn
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FIG. 1. Schematic diagram of ML model for prediction of a local effective field hi associated with a spin σi on the lattice. The ML model
consists of a convolutional neural network (CNN) and a fully connected network. The input to the CNN is Ising configurations σ j within a
finite block Bi in the neighborhood of site i. The single node at the output layer of the fully connected neural net gives the local field hi. The
energy change caused by the local spin flip σi → −σi is given by �Ei = 2σihi.

simple features like edges or corners, while deeper layers
combine these simple features into more complex structures.

A schematic diagram of the neural network model for
predicting �Ei is shown in Fig. 1. The input is an Ising
configuration within a 21 × 21 square block Bi, where the
central spin σi is the site of the update attempt. After the
input layer, seven convolutional layers are applied with a
kernel size of 7 × 7 for the first layer and 3 × 3 for the rest
of the layers. The stride is set to 1 for all the layers and
no padding was implemented. Though many convolutional
neural networks include some pooling or batch normalization
layers, the performance of this model is best without either.
The number of filters in the respective layers are 6, 12, 16,
20, 24, 24, 24. Following the convolutional layers is a flatten
layer to transform the 2D output of the convolutional layers
into a 1D array that can be fed into a fully connected network.
The fully connected network consists of one layer with 64
nodes followed by an output layer with a single node, which
outputs the �Ei energy difference of flipping the spin in the
center of the neighborhood. A detailed specification of the
CNN architecture and parameters is provided in Table I.

The Ising-DE models are characterized by both the Z2

time-reversal symmetry as well as the D4 point group sym-
metry of the square lattice. To incorporate both symmetries
into the CNN model, we introduced data augmentation dur-
ing our training phase. Data augmentation is a technique
commonly used in deep learning to introduce more variety
in the data and increase the size of the training dataset by
modifying copies of the original data. The increased size of
the dataset and the model’s exposure to variations on the
input make the model more robust against variations which
are not supposed to change the output. In our case, the
neighborhood Ising configurations that are related to each
other by a symmetry transformation of the Z2 × D4 group
are expected to produce the same output �Ei. We then
expand the dataset by generating 16 symmetry-related con-
figurations for each of the original data entry, all of them
associated with exactly the same output �Ei. Through ex-
posure to the expanded dataset, the symmetry properties of
the Ising-DE model can then be learned by the CNN model

statistically. A similar data-augmentation technique was also
used in a recent work to incorporate continuous symmetries in
a CNN-based force field model for itinerant Heisenberg spin
systems [35].

Finally, we note that the locality principle means that the
interaction coefficients of the spin Hamiltonian Eq. (4), Ji j ,
Ki jkl , . . ., generally decays with increasing separations be-
tween spins. This is indeed the case with RKKY interaction,
although the decay is a slower algebraic one. But the pertur-
bative derivation of RKKY assumes a gapless electron gas
that is unperturbed by the presence of spins [49–51]. For

TABLE I. The CNN architecture and parameters.

Layer Network

conv(7,1,0,6)a

Convolutional layer 1
actb =ReLU

conv(3,1,0,12)
Convolutional layer 2

act =ReLU

conv(3,1,0,16)
Convolutional layer 3

act =ReLU

conv(3,1,0,20)
Convolutional layer 4

act =ReLU

conv(3,1,0,24)
Convolutional layer 5

act =ReLU

conv(3,1,0,24)
Convolutional layer 6

act =ReLU

conv(3,1,0,24)
Convolutional layer 7

act =ReLU

FC(216,64)c

Fully connnected layer
act=ReLU

Output layer FC(64,1)

aConvolutional filter with arguments (filter size, stride, padding, No.
of filters).
bThe activation function.
cFully connected layer with arguments (input size, output size).
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(b)(a)
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MSE = 1.4 × 10−3

counts

FIG. 2. Benchmark of the ML prediction for the energy differ-
ence �E . (a) Comparison of the ML-predicted energy difference
�EML to the ground-truth value �EED calculated by exact diag-
onalization. The mean squared error on the test set is 0.0014.
(b) Histogram of the prediction error δ = �EML − �EED on the test
dataset.

intermediate and large spin-electron couplings, the feedback
from spins often lead to either an opening of the energy gap or
localization of electron wave functions. The resultant spin-
spin coupling coefficients most likely will decay exponen-
tially. However, analytical calculations of these coefficients in
the large JH regime are generally not possible. The ML force
field model offers a more systematic and efficient approach
to obtain the classical effective local field, which is formally
expressed as a multispin expansion in Eq. (5).

III. BENCHMARKS OF ML MODEL

The training and test datasets were generated by ED so-
lutions on a 30 × 30 lattice. A total of 100 independent
Ising configurations were collected for the full dataset. For
each snapshot, each lattice point contributes one entry to
the dataset. Specifically, for a given site i, the input is spin
configuration within the neighborhood Ni, while the output
is the energy change �i due to flipping of σi. This gives a
total of 100 × 900 data entries before data augmentation. We
then implement data augmentation by applying symmetries
in the Z2 × D4 group to the neighborhood associated with
each �Ei value. This gives a total of 100 × 900 × 16 �Ei-
neighborhood pairs in the dataset. This was split into train and
test sets, with test size approximately 15% of the total dataset.

To benchmark the NN model, the �E values predicted
by the model are compared with the ground-truth �E values
obtained using exact diagonalization for data both in the train
and test datasets; see Fig. 2(a). The predictions overall agree
very well with the exact results. We achieve a MSE of 0.0014
on the test set and 0.0013 on the training set. In addition,
the training and test sets produce similar error distributions,
indicating that there is no overfitting in our ML model. We
plot the distribution of the prediction error on the test set
in Fig. 2(b) and see that it follows a Gaussian shape with a
standard deviation of 0.036.

Next we use the trained ML model to examine the
thermodynamic behaviors of the Ising-DE model, espe-
cially the ferromagnetic phase transition. To this end, we

perform Markov Chain Monte Carlo (MCMC) simulations
on a 30 × 30 system using the trained ML model to
compute the �E . The standard Metropolis algorithm pacc =
min{1, exp(−�E/T )} is used to determine the acceptance
probability of the attempted spin flip [56]. Here T is the tem-
perature which is measured in units of the nearest-neighbor
hopping tnn in the following. After throwing away the 20 000
initial thermalization sweeps to allow the system to reach
equilibrium, we sampled 500 Ising configurations with 20
sweeps in between the snapshots to compute the thermody-
namic properties. Here one sweep is defined as a sequential
scan over the entire lattice, applying Metropolis update to each
spin along the way.

In particular, we focus on the temperature dependence of
the magnetization M, which is the order parameter of the
ferromagnetism, and the corresponding susceptibility χ . The
ensemble-averaged magnetization of a given snapshot is de-
fined as

M = 1

N

〈∣∣∣∣∣
∑

i

σi

∣∣∣∣∣
〉
, (7)

where 〈· · · 〉 indicates average over configurations sampled
from MCMC simulations and N = L2 is the total number of
spins in a square lattice of linear size L. The susceptibility is
given by

χ = 1

NT

⎛
⎝

〈∣∣∣∣∣
∑

i

σi

∣∣∣∣∣
2〉

−
〈∣∣∣∣∣

∑
i

σi

∣∣∣∣∣
〉2

⎞
⎠. (8)

The MCMC simulation was conducted on a 25 × 25 lat-
tice and required 5000 sweeps to reach thermal equilibrium.
For comparison, we also performed ten independent runs of
ED on the same lattice at each temperature. For both ED
and ML based MCMC simulations, ten independent runs
were performed, and the standard deviations from the ten
independent runs were used for estimating the error bars.
As shown in Fig. 3, the MCMC results obtained via ED
method show excellent agreement with those from the ML
model, with discrepancies well within the reported error bars.
Furthermore, both approaches clearly indicate the occurrence
of a phase transition at Tc ≈ 0.24. The relatively larger er-
ror bars in the vicinity of the critical temperature reflects
the enhanced correlation length and fluctuations at the phase
transition temperature. Below the transition temperature, the
magnetization M rises to its saturation value Mmax = 1, while
the susceptibility exhibits a pronounced peak at Tc. The transi-
tion temperature obtained from previous MCMC simulations
based on a moment-expansion method similar to KPM is
Tc ≈ 0.058W ≈ 0.232, where W = 4tnn is half the electron
bandwidth of the square-lattice tight-binding model [48].
This previous result is also in remarkable agreement with
the critical temperature obtained from our ML-based MCMC
simulations.

Since the main interest of this work is on the dynamical
evolution of the Ising-DE model, we next perform a dynam-
ical benchmark of the ML energy model. To this end, we
carry out kMC simulations of a thermal quench scenario using
both ED and ML calculations for the energy change �E .
A relatively small system of 30 × 30 lattice was simulated
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FIG. 3. Comparison of MCMC simulation results based on the
ML energy model and ED simulation for the Ising-DE system.
(a) Magnetization M and (b) magnetic susceptibility χ versus tem-
perature. The system size is 25 × 25 and the temperature is measured
in units of the nearest-neighbor hopping tnn.

to perform the ED-kMC simulations. The kMC algorithm is
based on the Glauber dynamics [57] for Ising spins, with three
major steps: (i) Randomly select a site i for an attempted
spin flip. (ii) Compute the energy difference �Ei due to the
spin flip. (iii) Accept the spin flip with a probability pi =
1/(1 + e−�Ei/T ), where T is the temperature of the bath after
the quench.

For the quench simulations, the system is initially prepared
in a state of random spins, corresponding to an equilibrium at
infinite temperature. The thermal bath is suddenly quenched
to a low-temperature T = 0.01 at time t = 0. As this tempera-
ture is well below the critical temperature of the ferromagnetic
phase transition, the subsequent relaxation of the system is
dominated by the development of long-range magnetic order.
To quantify the development of the ferromagnetic order, we
consider the following spin-spin correlation function:

Ci j (t ) = 〈σi(t )σ j (t )〉 − 〈σi(t )〉2. (9)

Here 〈· · · 〉 denotes averaging over spins of a given snapshot as
well as ensemble averages (i.e., independent simulations with
different initial conditions). Figure 4 shows the correlation
functions, obtained from both ED and ML-kMC simulations,
at various times after the thermal quench. Both are obtained by
averaging over 30 independent runs. The correlation functions
obtained from the two approaches agree well with each other.
This dynamical benchmark indicates that the ML model not
only accurately predicts the energy update but also captures
the dynamical evolution of the Ising-DE system.

IV. COARSENING DYNAMICS

On symmetry grounds, the ferromagnetic transition of
the Ising-DE model is expected to belong to the 2D Ising

Cij

Cij

rij rij

(a) (b)

(c) (d)

nstep = 1000 nstep = 2000

nstep = 5000 nstep = 10000

FIG. 4. Dynamical benchmark comparison of ML and ED cor-
relation functions at various times after a quench to temperature
T = 0.01 for a 30 × 30 lattice. nstep refers to the number of kinetic
Monte Carlo spin-update attempts performed before calculating the
correlation function. Correlation functions are averaged over 30 in-
dependent runs and error bars of ±1 standard deviation are shown.

universality class. This has been verified through system-
atic finite-size scaling analysis based on MCMC simulations
where the electron structure is solved by KPM [48]. The
complex electron-mediated interactions, formally expressed
in Eq. (4), seem to produce equilibrium thermodynamic be-
haviors similar to short-range Ising models. Dynamically, the
phase-ordering kinetics of Ising-type symmetry-breaking has
also been extensively investigated. For example, it is well
established that the coarsening of Ising domains is charac-
terized by a power law L ∼ tα , where L is the characteristic
domain size and the growth exponent α = 1/2 and 1/3 for
a nonconserved and conserved, respectively, Ising order pa-
rameter [58–60]. Since the magnetization is not conserved in
the Glauber dynamics for updating Ising spins, the growth
of the ferromagnetic domains in the Ising-DE model is ex-
pected to follow the α = 1/2 power law, also known as the
Allen-Cahn law.

To study the growth dynamics of ferromagnetic domains,
we perform kMC quench simulations with the energy dif-
ference predicted from our trained ML model. It is worth
noting that large-scale simulations are crucial to study the
coarsening dynamics since the growth of ordered domains
could be affected by finite-size effect for small systems. The
ML approach proposed here allows us to carry out quench
simulations on lattices with up to 105 spins to properly extract
the exponent of the growth power law. As discussed above,
the thermal quench scenario corresponds to a sudden change
of reservoir temperature from T = ∞ to a temperature below
the critical point at time t = 0. Practically, the system is first
initialized in a random state (corresponding to an infinite
temperature state). Then Glauber dynamics with T set to
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m

FIG. 5. Snapshots of local magnetization m at various times t after a thermal quench of a 200 × 200 spin system to temperatures T = 0.1
and T = 0.01. The red (blue) regions correspond to ferromagnetic domains of σi = +1 (σi = −1) spins. The system began in a random
configuration, and kinetic Monte Carlo simulations with Glauber spin-flip dynamics were paired with the ML �E predictions to simulate its
evolution after a sudden temperature quench. t is defined as nstep/N , where nstep is the number of kinetic Monte Carlo spin-update attempts and
N is the number of spins in the system.

the quenched temperature is employed to carry out its time
evolution. A scaled simulation time t = nstep/N is introduced
to compare simulation results from different system sizes
[38,39].

Figure 5 shows snapshots of the Ising configuration at
different times after a thermal quench for two different quench
temperatures T = 0.1 and T = 0.01. The system size is
200 × 200. For the case of T = 0.1, the system displays
relatively standard coarsening behavior, with overall behav-
iors similar to the coarsening of ferromagnetic domains in
short-range Ising models [58,60]. The phase ordering is char-
acterized by the formation of larger ferromagnetic domains
with smooth interfaces. By contrast, the evolution in the
quench to T = 0.01 progresses far slower. The domains in
this case also have a distinct shape characterized by straight-
line boundaries which were not present in the T = 0.1 case.
A qualitative comparison between the two cases indicates
temperature-dependent coarsening dynamics of the Ising-DE
model, which is in stark contrast to that of standard short-
range Ising systems, where coarsening behaviors at different
quench temperatures are similar to each other except for the
difference in overall time scale.

To quantify the coarsening dynamics, specifically the
growth of ferromagnetic domains, we examine the time-
dependent correlation length of the system, which can also be
interpreted as the characteristic size of ordered domains. This
length scale is computed from the time-dependent correlation
functions as follows:

L(t ) =
∑

r rC(r, t )∑
r C(r, t )

, (10)

where C(r, t ) = Ci j is defined in Eq. (9) with the distance
r = ri j . We perform a kMC quench simulation on an initially
random 100 × 100 lattice and calculate L(t ) after every 2000

MC steps. For each of the selected time steps, the correla-
tion function is computed by averaging over 20 independent,
randomly initialized runs. The time-dependent characteristic
length L(t ) obtained from the averaged correlation functions
is shown in Fig. 6 for the two quench temperatures T = 0.1
and T = 0.01. The relatively straight lines in the log-log plot
indicate that the domain growth for both temperatures exhibits
a power-law behavior:

L(t ) ∼ tα. (11)

Interestingly, the growth exponent α is different for the two
quench temperatures. For the quench to relatively higher tem-

FIG. 6. Characteristic domain length L(t ) simulated using the
ML model on a 100 × 100 lattice at temperatures T = 0.1 and
T = 0.01. At T = 0.1, the coarsening follows normal Allen-Cahn
growth of L ∼ t1/2 for the standard 2D Ising Model, but at T = 0.01
the growth rate is reduced to L ∼ t1/4.
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perature T = 0.1, the growth of the characteristic L can be
well fitted by the Allen-Cahn power law with α = 1/2. On
the other hand, for quenches to a lower T = 0.01, the coars-
ening is much slower and is best described by a power law
with α = 1/4. The significant difference in the growth ex-
ponent again shows strong temperature-dependent coarsening
dynamics of this itinerant Ising system, and is also in stark
contrast with the short-range Ising systems which exhibit the
same Allen-Cahn domain growth independent of the quench
temperature.

The fact that the coarsening at T = 0.1 is described by the
Allen-Cahn power law indicates a curvature-driven mecha-
nism for the domain growth. This is also consistent with the
emergence of relatively smooth domain walls at late times
of the phase ordering at T = 0.1; see Fig. 5. In this regime,
the domain-wall motion is governed by the Allen-Cahn equa-
tion v = −cκ , where v is the normal velocity of the domain
wall, κ is the curvature of the domain wall, and c is a propor-
tional coefficient depending on the microscopic details [61].
Approximating the interfacial velocity by the domain growth
rate v ∼ dL/dt and the curvature by the inverse domain size
κ ∼ 1/L, one obtains a rate equation for the characteristic
length dL/dt ∼ −1/L. This equation can be readily inte-
grated to give the Allen-Cahn power law L(t ) ∼ t1/2.

On the other hand, the coarsening of Ising domains at the
lower temperature T = 0.01 is characterized by a very dif-
ferent morphology. The interfaces are relatively straight and
favor either vertical or horizontal directions. Many residual
island domains of a few lattice constants remain within larger
ordered domains even at late times. This unusual morphology,
which is very different from short-range Ising systems, is
likely a result of the complex longer-range effective spin-
spin interactions, as exemplified by the formal expression
in Eq. (4). Importantly, due to the vanishing curvature of a
straight domain wall, the relative abundance of such interfaces
would imply a frozen domain-wall motion according to the
Allen-Cahn equation [61]. The power-law growth with an
exponent α = 1/4 thus originates from a different domain-
growth mechanism, most likely related to a corner-driven
scenario. Detailed microscopic mechanisms as well as phe-
nomenological theory of this anomalous coarsening will be
left for future studies.

The coarsening behaviors at these two quench tempera-
tures suggest that the domain growth of the Ising-DE model is
described by a power-law Eq. (11), yet with a growth exponent
which increases monotonically with increasing temperature.
Our kMC simulations of quenches at T → 0, based on both
ED and ML, found that the system is frozen in disordered
states after a very short initial coarsening, suggesting that a
vanishing exponent α = 0 at zero temperature. The freezing
phenomena at T → 0 implies that the system is likely stuck in
a local energy minimum. From the viewpoint of the effective
spin Hamiltonian Eq. (4), this result suggests a glassy ground
state resulting from a highly frustrated spin interaction. In-
terestingly, a temperature-dependent growth exponent α(T )
is also observed in the coarsening dynamics of systems with
quenched disorder. The temperature dependence originates
from a tunneling through energy barriers assisted by thermal
fluctuations [62]. Yet, since there is no quenched disorder
in our simulations of the Ising-DE model, our results thus

(a) T = 0.1

(b) T = 0.01

r/t1/2

r/t1/4

C(r, t)

C(r, t)

t = 10
t = 20
t = 30
t = 40

t = 200
t = 400
t = 600
t = 800

FIG. 7. Data point collapse plot of a 100 × 100 lattice at tem-
peratures (a) T = 0.1 and (b) T = 0.01. The correlation function
C(r, t ) is graphed against r/L(t ), where L(t ) ∼ t1/2 for the higher
temperature and L(t ) ∼ t1/4 for the lower temperature.

could be understood from a self-generated disorder through
the interplay between the Ising spins and itinerant electrons.

Interestingly, while the domain growth of the Ising-DE
system is characterized by the power law of different ex-
ponents depending on temperatures, the coarsening of Ising
domains at both temperatures exhibits the dynamical scaling
property. This means that the domain patterns at different
times look statistically similar once scaled globally by the
factor L(t ) [58]. Specifically, dynamical scaling suggests that
the time dependence of the system can be fully encoded in the
characteristic length L(t ), which grows over time. In partic-
ular, dynamical scaling indicates the following form for the
time-dependent correlation function:

C(r, t ) = G
(

r

L(t )

)
, (12)

where G(x) is a universal scaling function of the specific phys-
ical system. Figure 7 shows the correlation function versus
the distance r/L(t ) rescaled by the time-dependent correlation
length. For both quench temperatures, the data points nicely
collapse on a hidden curve corresponding to the scaling func-
tion, confirming the dynamical scaling symmetry of domain
coarsening in both cases of the Ising-DE model.

V. SUMMARY AND OUTLOOK

To summarize, we have presented a scalable ML frame-
work for the coarsening dynamics of ferromagnetic domains
in the 2D double-exchange model with Ising spins. We have
designed a convolutional neural network, a ML model that is
particularly adept at handling multidimensional discrete spin
inputs, to predict the local effective field and the correspond-
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ing energy change caused by a single-spin flip in itinerant
Ising systems. Based on the locality principle, the local field
is assumed to depend only on a finite neighborhood of the
spin to be updated. As a result, the finite-size NN model,
trained by exact diagonalization solutions from small lattices,
can be applied to MC simulations on larger systems without
rebuilding or retraining, thus ensuring the linear scalability of
our approach. To partially encode the symmetry of the Hamil-
tonian into the model, data augmentation was used during
the model’s training. By integrating the ML energy model
with Markov Chain and kinetic Monte Carlo simulations, our
benchmarks showed that the ML model accurately captures
both the equilibrium behavior and the dynamical evolution of
the itinerant spin systems.

Large-scale kMC simulations enabled by the ML force
field model uncover unusual phase ordering dynamics of the
Ising-DE system. While the coarsening of ferromagnetic do-
mains can be described by a power-law behavior, we find
a temperature-dependent growth exponent α(T ) which in-
creases from zero in the T → 0 limit to the Allen-Cahn
result α = 1/2 at higher quench temperatures. The anoma-
lous temperature-dependent coarsening behaviors are shown
to correlate with distinct domain morphologies at different
quench temperatures. Despite the unusual domain growth, the
coarsening process exhibits dynamical scaling symmetry for
all temperatures.

Unusual domain-coarsening in classical systems is of-
ten related to frustrated interactions or quenched disorder
[62–65]. The anomalous phase ordering of the disorder-free
Ising-DE system could be attributed to highly frustrated
and long-range effective spin interactions. The temperature-
dependent growth exponent, on the other hand, is often
attributed to thermal-activated coarsening in systems with
quenched disorder. A plausible scenario is the self-generated
disorder arising from the interplay between classical Ising
spins and quantum electron degrees of freedom. Given the
complexity of such systems, we envision ML techniques an

indispensable tool for multiscale modeling of nonequilibrium
dynamics driven by electron correlation effect.

Finally, while we demonstrate our approach using the
2D Ising-DE model as an example, the ML framework can
be applied to other similar itinerant systems with discrete
dynamical degrees of freedom. Fundamentally, spins and
other dynamical variables are continuous and governed by
differential equations. Discrete degrees of freedom often
originate from strong local energy minima, such as easy-axis
anisotropy for the case of spins. It is worth noting that dis-
cretization in such systems is the first step toward multiscale
dynamical modeling. For discrete systems with more than
two fundamental states, such as q-state Potts or clock models
with q > 2, there is more than one possible local transition.
As a result, the ML model has to accommodate multiple
local effective fields—each corresponds to a local transition
and is represented by an output of the neural network.
Special care should be taken to properly incorporate both
the discrete internal symmetry and the lattice symmetry into
the NN model.
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